Change of variables formula: multivariate version

(This fixes some typos in Section 11.5.5 of my book.)
We now extend the results of Section 11.4.5 to joint densities.
Let g be a function that maps \mathbb{R}^{n} to \mathbb{R}^{m}, and let $\mathbf{y}=g(\mathbf{x})$. Define the Jacobian matrix as

$$
\mathbf{J}_{\mathbf{X} \rightarrow \mathbf{y}} \stackrel{\text { def }}{=} \frac{\partial\left(y_{1}, \ldots, y_{m}\right)}{\partial\left(x_{1}, \ldots, x_{n}\right)} \stackrel{\text { def }}{=}\left(\begin{array}{ccc}
\frac{\partial y_{1}}{\partial x_{1}} & \cdots & \frac{\partial y_{1}}{\partial x_{n}} \tag{1}\\
\vdots & \ddots & \vdots \\
\frac{\partial y_{m}}{\partial x_{1}} & \cdots & \frac{\partial y_{m}}{\partial x_{n}}
\end{array}\right)
$$

If $m=n$, then \mathbf{J} is square, and we can compute its determinant; denote that by $J=\operatorname{det} \mathbf{J}$. Also, let $|J|$ be the sign of the determinant. This measures how much a unit volume changes when we apply g.
If g is an invertible mapping, we can define the pdf of the transformed variables in terms of the original variables as follows:

$$
\begin{equation*}
p_{y}(\mathbf{y})=p_{x}(\mathbf{x})\left|\operatorname{det}\left(\frac{\partial \mathbf{x}}{\partial \mathbf{y}}\right)\right|=p_{x}(\mathbf{x})\left|\operatorname{det} \mathbf{J}_{\mathbf{y} \rightarrow \mathbf{x}}\right|=p_{x}(\mathbf{x})\left|J_{\mathbf{y} \rightarrow \mathbf{x}}\right| \tag{2}
\end{equation*}
$$

As an example, consider transforming a density from Cartesian coordinates $\mathbf{x}=\left(x_{1}, x_{2}\right)$ to polar coordinates $\mathbf{y}=$ (r, θ), where $x_{1}=r \cos \theta$ and $x_{2}=r \sin \theta$. Then

$$
\mathbf{J}_{\mathbf{y} \rightarrow \mathbf{x}}=\left(\begin{array}{cc}
\frac{\partial x_{1}}{\partial r} & \frac{\partial x_{1}}{\partial \theta} \tag{3}\\
\frac{\partial x_{2}}{\partial r} & \frac{\partial x_{2}}{\partial \theta}
\end{array}\right)=\left(\begin{array}{cc}
\cos \theta & -r \sin \theta \\
\sin \theta & r \cos \theta
\end{array}\right)
$$

and

$$
\begin{equation*}
|\operatorname{det} \mathbf{J}|=|J|=\left|r \cos ^{2} \theta+r \sin ^{2} \theta\right|=|r| \tag{4}
\end{equation*}
$$

Hence

$$
\begin{align*}
p_{\mathbf{y}}(\mathbf{y}) & =p_{\mathbf{x}}(\mathbf{x})|J| \tag{5}\\
p_{R, \Theta}(r, \theta) & =p_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right) r \tag{6}
\end{align*}
$$

To see this geometrically, notice that

$$
\begin{equation*}
P(r \leq R \leq r+d r, \theta \leq \Theta \leq \theta+d \theta)=p_{R, \Theta}(r, \theta) d r d \theta \tag{7}
\end{equation*}
$$

is the area of the shaded patch in Figure 1, which is clearly $r d r d \theta$, times the density at the center of the patch. Hence

$$
\begin{align*}
P(r \leq R \leq r+d r, \theta \leq \Theta \leq \theta+d \theta) & =p_{R, \Theta}(r, \theta) d r d \theta \tag{8}\\
& =p_{X, Y}(r \cos \theta, r \sin \theta) r d r d \theta \tag{9}
\end{align*}
$$

Hence

$$
\begin{equation*}
p_{R, \Theta}(r, \theta)=p_{X, Y}(r \cos \theta, r \sin \theta) r \tag{10}
\end{equation*}
$$

Figure 1: Change of variables from polar to Cartesian. The area of the shaded patch is $r d r d \theta$. Source: ? Figure 3.16.

