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SVD Basics

I Suppose X = [x1, x2, ..., xn] encodes information about our
data, with each item represented as a column vector xj .

I Examples
I Image rasterized as vector (character recognition, etc.).
I Document represented as a column vector.

I If UΣVT = X is the SVD of X, then there are r = rank(X)
nonzero singular values σk ∈ Σ. Note that
σ1 ≥ σ2 ≥ ... ≥ σr > 0
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SVD Basics cont.

I If we set all the singular values past K to be zero (effectively
truncating Σ), we get a rank K approximation to X.

I Specifically, if X̃ is the trucated version of X, then

X̃ = arg min
A

‖X− A‖F

= arg min
A

∑
i ,j

(xij − aij)
2

 1
2
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Lower Dimensional Representation

I We can then project the columns of X into an K -dimensional
subspace.

x̃j = Σ−1
K UTxj

I We can then query it in this low dimensional subspace.

q̃ = Σ−1
K UTq

where q is the query vector and q̃ is it’s projection into RK .

I Demo.
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Vector Representation of Documents

I Given a set of documents D = {d1, d2, ..., dn}, with m total
terms, we can construct a matrix X such that each row
corresponds to a term and each column corresponds to a
document.

I Each element xij corresponds to how many times term ti
appears in document dj .
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Latent Semantic Indexing

I One problem with this approach is that terms related in
English are independent in the matrix.

I This makes searching for documents more difficult.

I For example, suppose someone wanted to find articles on
“automobile design,” but some of the important articles only
mentioned “car”, “truck”, etc. but not “automobile.”
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LSI Cont.

I One general property of documents is that related words tend
to appear together. If a document mentions a word from a
particular subject category, it’s more likely that it mentions
other words from the same category than mentions unrelated
words.

I For example, if you observe that an article mentions
“probability”, then you’d expect to see words like
“distribution,” “convergence,” etc. more than words like
“anemone”, “fish”, “shark”, etc.

I We can exploit this using SVD.
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SVD of a Document Matrix

I When taking the SVD of a document matrix, documents with
similar groups of terms tend to get projected close to each
other.

I This grouping is reflected in the query as well.

I Example.
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Querying

I To query, we need a measure of document similarity.

I Simple distance doesn’t work here, because

I the query would need to match up the number of occurances
as well as the simple existance of words.

I One simple and highly popular metric is the cosine similarity
measure:

sim(q̃1, q̃2) =
q̃T

1 q̃2

‖q̃1‖‖q̃2‖
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Examples

I Demo
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