
Latent Semantic Indexing

Hoyt Koepke

March 26, 2007

Hoyt Koepke Latent Semantic Indexing



SVD Basics

I Suppose X = [x1, x2, ..., xn] encodes information about our
data, with each item represented as a column vector xj .

I Examples
I Image rasterized as vector (character recognition, etc.).
I Document represented as a column vector.

I If UΣVT = X is the SVD of X, then there are r = rank(X)
nonzero singular values σk ∈ Σ. Note that
σ1 ≥ σ2 ≥ ... ≥ σr > 0

Hoyt Koepke Latent Semantic Indexing



SVD Basics

I Suppose X = [x1, x2, ..., xn] encodes information about our
data, with each item represented as a column vector xj .

I Examples
I Image rasterized as vector (character recognition, etc.).
I Document represented as a column vector.

I If UΣVT = X is the SVD of X, then there are r = rank(X)
nonzero singular values σk ∈ Σ. Note that
σ1 ≥ σ2 ≥ ... ≥ σr > 0

Hoyt Koepke Latent Semantic Indexing



SVD Basics

I Suppose X = [x1, x2, ..., xn] encodes information about our
data, with each item represented as a column vector xj .

I Examples
I Image rasterized as vector (character recognition, etc.).
I Document represented as a column vector.

I If UΣVT = X is the SVD of X, then there are r = rank(X)
nonzero singular values σk ∈ Σ. Note that
σ1 ≥ σ2 ≥ ... ≥ σr > 0

Hoyt Koepke Latent Semantic Indexing



SVD Basics cont.

I If we set all the singular values past K to be zero (effectively
truncating Σ), we get a rank K approximation to X.

I Specifically, if X̃ is the trucated version of X, then

X̃ = arg min
A

‖X− A‖F

= arg min
A

∑
i ,j

(xij − aij)
2

 1
2

Hoyt Koepke Latent Semantic Indexing



SVD Basics cont.

I If we set all the singular values past K to be zero (effectively
truncating Σ), we get a rank K approximation to X.

I Specifically, if X̃ is the trucated version of X, then

X̃ = arg min
A

‖X− A‖F

= arg min
A

∑
i ,j

(xij − aij)
2

 1
2

Hoyt Koepke Latent Semantic Indexing



Lower Dimensional Representation

I We can then project the columns of X into an K -dimensional
subspace.

x̃j = Σ−1
K UTxj

I We can then query it in this low dimensional subspace.

q̃ = Σ−1
K UTq

where q is the query vector and q̃ is it’s projection into RK .

I Demo.

Hoyt Koepke Latent Semantic Indexing



Lower Dimensional Representation

I We can then project the columns of X into an K -dimensional
subspace.

x̃j = Σ−1
K UTxj

I We can then query it in this low dimensional subspace.

q̃ = Σ−1
K UTq

where q is the query vector and q̃ is it’s projection into RK .

I Demo.

Hoyt Koepke Latent Semantic Indexing



Lower Dimensional Representation

I We can then project the columns of X into an K -dimensional
subspace.

x̃j = Σ−1
K UTxj

I We can then query it in this low dimensional subspace.

q̃ = Σ−1
K UTq

where q is the query vector and q̃ is it’s projection into RK .

I Demo.

Hoyt Koepke Latent Semantic Indexing



Vector Representation of Documents

I Given a set of documents D = {d1, d2, ..., dn}, with m total
terms, we can construct a matrix X such that each row
corresponds to a term and each column corresponds to a
document.

I Each element xij corresponds to how many times term ti
appears in document dj .

Hoyt Koepke Latent Semantic Indexing



Vector Representation of Documents

I Given a set of documents D = {d1, d2, ..., dn}, with m total
terms, we can construct a matrix X such that each row
corresponds to a term and each column corresponds to a
document.

I Each element xij corresponds to how many times term ti
appears in document dj .

Hoyt Koepke Latent Semantic Indexing



Latent Semantic Indexing

I One problem with this approach is that terms related in
English are independent in the matrix.

I This makes searching for documents more difficult.

I For example, suppose someone wanted to find articles on
“automobile design,” but some of the important articles only
mentioned “car”, “truck”, etc. but not “automobile.”

Hoyt Koepke Latent Semantic Indexing



Latent Semantic Indexing

I One problem with this approach is that terms related in
English are independent in the matrix.

I This makes searching for documents more difficult.

I For example, suppose someone wanted to find articles on
“automobile design,” but some of the important articles only
mentioned “car”, “truck”, etc. but not “automobile.”

Hoyt Koepke Latent Semantic Indexing



Latent Semantic Indexing

I One problem with this approach is that terms related in
English are independent in the matrix.

I This makes searching for documents more difficult.

I For example, suppose someone wanted to find articles on
“automobile design,” but some of the important articles only
mentioned “car”, “truck”, etc. but not “automobile.”

Hoyt Koepke Latent Semantic Indexing



LSI Cont.

I One general property of documents is that related words tend
to appear together. If a document mentions a word from a
particular subject category, it’s more likely that it mentions
other words from the same category than mentions unrelated
words.

I For example, if you observe that an article mentions
“probability”, then you’d expect to see words like
“distribution,” “convergence,” etc. more than words like
“anemone”, “fish”, “shark”, etc.

I We can exploit this using SVD.

Hoyt Koepke Latent Semantic Indexing



LSI Cont.

I One general property of documents is that related words tend
to appear together. If a document mentions a word from a
particular subject category, it’s more likely that it mentions
other words from the same category than mentions unrelated
words.

I For example, if you observe that an article mentions
“probability”, then you’d expect to see words like
“distribution,” “convergence,” etc. more than words like
“anemone”, “fish”, “shark”, etc.

I We can exploit this using SVD.

Hoyt Koepke Latent Semantic Indexing



LSI Cont.

I One general property of documents is that related words tend
to appear together. If a document mentions a word from a
particular subject category, it’s more likely that it mentions
other words from the same category than mentions unrelated
words.

I For example, if you observe that an article mentions
“probability”, then you’d expect to see words like
“distribution,” “convergence,” etc. more than words like
“anemone”, “fish”, “shark”, etc.

I We can exploit this using SVD.

Hoyt Koepke Latent Semantic Indexing



SVD of a Document Matrix

I When taking the SVD of a document matrix, documents with
similar groups of terms tend to get projected close to each
other.

I This grouping is reflected in the query as well.

I Example.

Hoyt Koepke Latent Semantic Indexing



SVD of a Document Matrix

I When taking the SVD of a document matrix, documents with
similar groups of terms tend to get projected close to each
other.

I This grouping is reflected in the query as well.

I Example.

Hoyt Koepke Latent Semantic Indexing



SVD of a Document Matrix

I When taking the SVD of a document matrix, documents with
similar groups of terms tend to get projected close to each
other.

I This grouping is reflected in the query as well.

I Example.

Hoyt Koepke Latent Semantic Indexing



Querying

I To query, we need a measure of document similarity.

I Simple distance doesn’t work here, because

I the query would need to match up the number of occurances
as well as the simple existance of words.

I One simple and highly popular metric is the cosine similarity
measure:

sim(q̃1, q̃2) =
q̃T

1 q̃2

‖q̃1‖‖q̃2‖

Hoyt Koepke Latent Semantic Indexing



Querying

I To query, we need a measure of document similarity.

I Simple distance doesn’t work here, because

I the query would need to match up the number of occurances
as well as the simple existance of words.

I One simple and highly popular metric is the cosine similarity
measure:

sim(q̃1, q̃2) =
q̃T

1 q̃2

‖q̃1‖‖q̃2‖

Hoyt Koepke Latent Semantic Indexing



Querying

I To query, we need a measure of document similarity.

I Simple distance doesn’t work here, because

I the query would need to match up the number of occurances
as well as the simple existance of words.

I One simple and highly popular metric is the cosine similarity
measure:

sim(q̃1, q̃2) =
q̃T

1 q̃2

‖q̃1‖‖q̃2‖

Hoyt Koepke Latent Semantic Indexing



Querying

I To query, we need a measure of document similarity.

I Simple distance doesn’t work here, because

I the query would need to match up the number of occurances
as well as the simple existance of words.

I One simple and highly popular metric is the cosine similarity
measure:

sim(q̃1, q̃2) =
q̃T

1 q̃2

‖q̃1‖‖q̃2‖

Hoyt Koepke Latent Semantic Indexing



Examples

I Demo

Hoyt Koepke Latent Semantic Indexing


