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OUTLINE

e Linear regression
e Overfitting, model selection
e Ridge regression

o PCA

e EM for mixture models



LINEAR REGRESSION

Linear regression is the following conditional density model
T 2
p(yilxi) = N (yi|w” x;,07)
This can be written equivalently as

yi = W' X, + €
where ¢; ~ N(0,07) e.g.

Yi = W0 + W1T; T €




POLYNOMIAL REGRESSION

T) =

r)=|l,xr,x

n=10, loglambda=-Inf, deg=0, mse train 3.1, test 54.0

T 2

ylw* p(x), o
2

n=10, loglambda=-Inf, deg=1, mse train 1.3, test 23.1

2 T T T T T T T T 2 T T T T T T T T T
15 15
it 1
o
o5l o
o
o
osl
Q o
150 15
2 . . . . . . . . . . . . . . . . .
o o1 02 03 04 05 06 07 08 o1 02 03 04 05 06 07 08 09
=10, loglambda=-Inf, deg=3, mse train 0.4, test 4.7 =10, loglambda=-Int, deg=9, mse train 0.0, test 3509509.5
2 T T T T T T T 2 T T T T T T T T T
5] 15




LINEAR LEAST SQUARES

The likelihood of the data is

p(DIw, Ay) = [ [ M (yilw" x;, 0%)

1=1
Let ¢ = log p(y| X, w,c?) be the log likelihood.
4
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OUTLINE

e Linear regression 4/
e Overfitting, model selection
e Ridge regression

o PCA

e EM for mixture models



OVERFITTING

A 9 degree polynomial can perfecly interpolate 10 data points i.e., get
0 training error. Yet it may not generallze weII

n=10, loglambda= I'ngmst in 3.1, test 54.0 n=10, loglambda= I'dglmst in 1.3, test 23.1
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TRAINING VS TEST ERROR

Plot of RMSE vs degree

Can use cross validation to do model selection.



OUTLINE

e Linear regression 4/
e Overfitting, model selection +/
e Ridge regression

o PCA

e EM for mixture models



RIDGE REGRESSION: MOTIVATION

Parameters of overly complex models can get large; penalize magnitude

to enforce smooth functions.
deg =0 deg=1 deg=3 deg=29
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RIDGE REGRESSION (WEIGHT DECAY, L2 REGULARIZATION)

Gaussian Prior on weights

p(w) = N (w0, Ay 1) (9)
Posterior

—log p(w|D) o< —log N(w|0, Ay Ip)N (y| Xw, Ay~ Ty) (10)
o Aullwl? + g lly — Xw| (1)

MAP estimate
Wm’dge = argr%‘iany—XWHQ%—)\HWHQ (12)
= (XX + DXy (13)

where \ = A

Y
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CONNECTION WITH SVD

let X = UDVL, where ULU = VIV = I, VVL = I. For least
squares,

w;,, = VD Uy (14)
d
}Af — XWZS — ZujujTy (15)
j=1
For ridge,
Vridee = V(D2 + X)) 7IDUT (16)
Wridge Yy
d d2
y = XWw Wridge = Zujdg \ u, y (17)
1=1

We shrink parameters w; to 0 more if they have small d?.
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CONNECTION WITH PCA

If X = UDVY then the eigen decomposition of the sample covariance
matrix Is

X'X =vD*V (18)
Hence small d; (large shrinkage) corresponds to small variance direc-
tions; large d; (small srhinkage) corresponds to large variance.
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WML
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WMAP
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REGULARIZE THE LOW VARIANCE DIRECTION MORE

) =ax, or y=hx, or y=cx, +cx,
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BIAS-VARIANCE TRADEOFF

Ridge is a biased estimator. But it is much lower variance. So it is
much better overall, since

MSE = variance + bias’ (19)
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PICKING THE REGULARIZATION CONSTANT

Use cross validation

aaaaaaaa

16



SPLINE MODEL

Suppose we assume the function is piecewise constant, having height
w; in interval ;.

d
j(x) = wil(x € I)) (20)
j=1

This is called a (zero-order) spline model. The intervals can be
defined by a series of knots, I; = (kj, kj+1], at fixed locations. Then
we get a sparse design matrix, where X;; = 1 if x; is in interval j and
0 otherwise.

We may more parameters than data points. Solution: We can impose
a smoothness prior on the neighboring w)".
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(FENERALIZED RIDGE

p(w) ~ Ny(u=0,A=AD"D)

where D is the following (n — 1) x n difference matrix:

_D:

()

R

The term in the exponent gives

w! (D' Dyw = [[Dw||" = 5 > " (wiy1 — w;)’

MAP estimate

J(w) = —log NA(yllw, In) — log N\(w]0, VAD' D)
1 A
= 5lly = wil* + S| Dwl|” + const

n—1

1=1
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REGULARIZED SPLINES

least squares solution
1.4 T T T
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OUTLINE

e Linear regression 4/

e Overfitting, model selection +/
e Ridge regression /

e PCA

e EM for mixture models
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PRINCIPAL COMPONENTS ANALYSIS

Find low dimensional space (pc basis) w, and coordinates (principal
components) z in that space, that best represents data points x in a

least squares sense:
n

J(w1,21) = %Z(Xi — 21;W1) (26)
i=1

subject to WlTwl =1, w; € RY, 2z, € R™

7Z =XW, X=27ZW' (27)
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FIRsST PC = PRINCIPAL EVEC OF COV

@ZZ'J(WL 213) = 0= 215 = Wi x4
Plugging in
0 J(Wl) = 0=
(9w12'
éwl = AW}

1 n
N 1
C’Eélxzxi
1=

Variance of projected data is

W?éwl = A1
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SECOND PC = 2ND LARGEST EVEC OF COV

Pick direction of maximum variance subject to WlTWQ = () and W2TW2 =

1. We find

OWQ — )\QWQ (33)
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COMPUATION OF PCA

4 methods

e Eig of X1 X, O(d?) time
o Eig of XX O(n?) time
e SVD of X, O(nd?) time
e SVD of X', O(dn?) time
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CHOOSING THE NUMBER OF DIMENSIONS

Residual MSE

Make scree plot

d
J= Y X
j=K+1
k K

11111111111
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ProBaBiLisSTIC PCA

x; ~ N(Wz; + p,0°1)
Zg ~ N(()?Ik)

X2

4

3

-
P
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p(x|2)

W,
X2
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MLE ror PPCA

Marginal distribution on observed data

Elx]=FE[Wz+pu+e€=p (38)
Covlx] = E [(Wz + €)(Wz +€)!] = E [Wzz! W!] + E [eel39)
- wwT +21% ¢ (40)

Log likelihood

n
T _
1ng<X‘N'7W7 02) — —511’1 ‘C‘ o % (X’i o N’)TC 1<X’i o M%1>
1=1
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MLE ror PPCA

MLE mean
=X (42)
MLE weight matrix

- 1
W = Ug(Ax — 0’1)2R (43)

where U is the d x K matrix whose columns are the first K eigen-
vectors of S, Ay is the corresponding diagonal matrix of eigenvalues,
amd R is an arbitrary K x K orthogonal matrix.

MLE variance

d
1
~9) o .
e .Z Aj (44)
1=K+1

which is the average variance associated with the discarded dimensions.
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PPCA: wHY BOTHER WITH PROBABILITIES?

e Defines a proper density model p(x)
e Can be used inside a mixture distribution or a generative classifier
e Can be compared to other density models p(x)

e Provides a likelihood function for a Bayesian analysis

29



OUTLINE

e Linear regression 4/

e Overfitting, model selection +/
e Ridge regression /

o PCA /

e EM for mixture models
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(FAUSSIAN MIXTURE MODELS

Joint probability model
p(z]z = k,0) = N(z|ug, X)

p(z = k|0) = my,
Observed data probability model is a mixture
K
p(z|0) = ZP Ip(z|z = k) = > N (2|, Op)
k=1
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MLE FOR FULLY OBSERVED DATA PROBLEM

complete data log likelihood is given by

le(0) = log p(z1. v, 21.v10) (48)
= log | [ p(zn|m)p(2n] 20, 0) (49)
= log H H [N (g, Sp)) o= (50)
— ZZI k)log . + log N (xp| g, 2.)]  (51)

Hence we can find the optimal pz., ¥;. separately for each k (empirical
mean/ covariance), and then find the optimal 7. by counting.
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EM INTUITION

o If we knew the values of the latent variables z,,, then optimizing the
(complete data) likelihood wrt 6 would be easy: we would simply
esimate 1. and ;. applying the standard closed-form formula to all

the data assigned to cluster £.

e Since we don't know the z,,, let's estimate them, and use their filled
in values as substitutes for the real values. More precisely, we will
optimize the expected complete data log likelihood instead of the

actual complete data log likelihood.

e Since the estimate of z,, depends on 6, we iterate until convergence.
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EM ALGORITHM

1. Initialize 6.
2. Repeat until £(6) stops changing

(a) E step: compute p(zp|zn, 0°1%) for each case n.
(b) M step: compute

9" = arg max Q8,6 (52)
where auxiliary function () is the expected complete data log

likelihood.
(c) Compute the log likelihood

00) =1og 3° 3 plen, wl6) (53
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() FUNCTION FOR GMMS

Expected complete data log likelihood:

Q(6,0%%) = EZlog p(Tn, 2n|0) (54)
= E Z Z I(zn = k) log[mpN (wn |, X)) (55)
= Zp Zn\fl?n,HOld Zl k) loglmpN (@, XBK)
= Z > 1 loglm kN (@n| g, X)) (57)

nok
=N rplogmy 430 g log N (@, 21)158)
n k n k

= J(m)+ J(u, X) (59)
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EM ror GMM DEMO

(b)

()
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NEED FOR REGULARIZATION (MAP ESTIMATION)

Some mixture components may have few data points assigned to them.
This can cause various problems. e.g., the likelihood can blow up by
letting o; — 0. “ n
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K MEANS

Special case of EM for GMMs where
oY) = o°] is fixed

e \We do a hard assignment during the E step:
2 = argmax p(klan, 0)

= arg mkaxexp(—% ‘xn - /LkHQ)

= argmin ||zy — gl
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EM FOR MIXTURES OF BERNOULLIS

For clustering binary data, we can use

K K
plalz = k,0) = [] Be(ailfh) = [ o700 =o' (63
1=1 1=1
We find ;. is a weighted average of all the bit vectors x; assigned to
cluster k.
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