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As an extension to the popular hidden Markov model (HMM), a hidden semi-Markov
model (HSMM) allows the underlying stochastic process to be a semi-Markov chain.
Each state has variable duration and a number of observations being produced while in
the state. This makes it suitable for use in a wider range of applications. Its forward–
backward algorithms can be used to estimate/update the model parameters, determine
the predicted, filtered and smoothed probabilities, evaluate goodness of an observation
sequence fitting to the model, and find the best state sequence of the underlying stochastic
process. Since the HSMM was initially introduced in 1980 for machine recognition of
speech, it has been applied in thirty scientific and engineering areas, such as speech
recognition/synthesis, human activity recognition/prediction, handwriting recognition,
functional MRI brain mapping, and network anomaly detection. There are about three
hundred papers published in the literature. An overview of HSMMs is presented in this
paper, including modelling, inference, estimation, implementation and applications. It first
provides a unified description of various HSMMs and discusses the general issues behind
them. The boundary conditions of HSMM are extended. Then the conventional models,
including the explicit duration, variable transition, and residential time of HSMM, are
discussed. Various duration distributions and observation models are presented. Finally,
the paper draws an outline of the applications.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction (History)

A hidden Markov model (HMM) is defined as a doubly stochastic process. The underlying stochastic process is a discrete-
time finite-state homogeneous Markov chain. The state sequence is not observable and so is called hidden. It influences
another stochastic process that produces a sequence of observations. An excellent tutorial of HMMs can be found in Rabiner
[150], a theoretic overview of HMMs can be found in Ephraim and Merhav [57] and a discussion on learning and inference
in HMMs in understanding of Bayesian networks is presented in Ghahramani [66]. The HMMs are an important class of
models that are successful in many application areas. However, due to the non-zero probability of self-transition of a non-
absorbing state, the state duration of an HMM is implicitly a geometric distribution. This makes the HMM has limitations
in some applications.

As an extension of the HMM, a hidden semi-Markov model (HSMM) is traditionally defined by allowing the underlying
process to be a semi-Markov chain. Each state has a variable duration, which is associated with the number of observations
produced while in the state. The HSMM is also called “explicit duration HMM” [60,150], “variable-duration HMM” [107,
155,150], “HMM with explicit duration” [124], “hidden semi-Markov model” [126], generalized HMM [94], segmental HMM
[157] and segment model [135,136] in the literature, depending on their assumptions and their application areas.
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The first approach to hidden semi-Markov model was proposed by Ferguson [60], which is partially included in the
survey paper by Rabiner [150]. This approach is called the explicit duration HMM in contrast to the implicit duration of
the HMM. It assumes that the state duration is generally distributed depending on the current state of the underlying
semi-Markov process. It also assumes the “conditional independence” of outputs. Levinson [107] replaced the probability
mass functions of duration with continuous probability density functions to form a continuously variable duration HMM. As
Ferguson [60] pointed out, an HSMM can be realized in the HMM framework in which both the state and its sojourn time
since entering the state are taken as a complex HMM state. This idea was exploited in 1991 by a 2-vector HMM [93] and a
duration-dependent state transition model [179]. Since then, similar approaches were proposed in many applications. They
are called in different names such as inhomogeneous HMM [151], non-stationary HMM [164], and recently triplet Markov
chains [144]. These approaches, however, have the common problem of computational complexity in some applications.
A more efficient algorithm was proposed in 2003 by Yu and Kobayashi [199], in which the forward–backward variables are
defined using the notion of a state together with its remaining sojourn (or residual life) time. This makes the algorithm
practical in many applications.

The HSMM has been successfully applied in many areas. The most successful application is in speech recognition. The
first application of HSMM in this area was made by Ferguson [60]. Since then, there have been more than one hundred such
papers published in the literature. It is the application of HSMM in speech recognition that enriches the theory of HSMM
and develops many algorithms for HSMM.

Since the beginning of 1990’s, the HSMM started being applied in many other areas such as electrocardiograph (ECG)
[174], printed text recognition [4] or handwritten word recognition [95], recognition of human genes in DNA [94], language
identification [118], ground target tracking [88], document image comparison and classification at the spatial layout level
[81], etc.

In recent years from 2000 to present, the HSMM has been obtained more and more attentions from vast application
areas such as change-point/end-point detection for semi-conductor manufacturing [64], protein structure prediction [162],
mobility tracking in cellular networks [197], analysis of branching and flowering patterns in plants [69], rain events time se-
ries model [159], brain functional MRI sequence analysis [58], satellite propagation channel modelling [112], Internet traffic
modelling [198], event recognition in videos [79], speech synthesis [204,125], image segmentation [98], semantic learning
for a mobile robot [167], anomaly detection for network security [201], symbolic plan recognition [54], terrain modelling
[185], adaptive cumulative sum test for change detection in non-invasive mean blood pressure trend [193], equipment
prognosis [14], financial time series modelling [22], remote sensing [147], classification of music [113], and prediction of
particulate matter in the air [52], etc.

The rest of the paper is organized as follows: Section 2 is the major part of this paper that defines a unified HSMM and
addresses important issues related to inference, estimation and implementation. Section 3 then presents three conventional
HSMMs that are applied vastly in practice. Section 4 discusses the specific modelling issues, regarding duration distributions,
observation distributions, variants of HSMMs, and the relationship to the conventional HMM. Finally, Section 5 highlights
major applications of HSMMs and concludes the paper in Section 6.

2. Hidden semi-Markov model

This section provides a unified description of HSMMs. A general HSMM is defined without specific assumptions on the
state transitions, duration distributions and observation distributions. Then the important issues related to inference, esti-
mation and implementation of the HSMM are discussed. A general expression of the explicit-duration HMMs and segment
HMMs can be found in Murphy [126], and a unified view of the segment HMMs can be found in Ostendorf et al. [136].
Detailed review for the conventional HMM can be found in the tutorial by Rabiner [150], the overview by Ephraim and
Merhav [57], the Bayesian networks-based discussion by Ghahramani [66], and the book by Cappe et al. [29].

2.1. General model

A hidden semi-Markov model (HSMM) is an extension of HMM by allowing the underlying process to be a semi-Markov
chain with a variable duration or sojourn time for each state. Therefore, in addition to the notation defined for the HMM,
the duration d of a given state is explicitly defined for the HSMM. State duration is a random variable and assumes an
integer value in the set D = {1,2, . . . , D}. The important difference between HMM and HSMM is that one observation per
state is assumed in HMM while in HSMM each state can emit a sequence of observations. The number of observations
produced while in state i is determined by the length of time spent in state i, i.e., the duration d. Now we provide a unified
description of HSMMs.

Assume a discrete-time Markov chain with the set of (hidden) states S = {1, . . . , M}. The state sequence is denoted by
S1:T � S1, . . . , ST , where St ∈ S is the state at time t . A realization of S1:T is denoted as s1:T . For simplicity of notation in
the following sections, we denote:

• St1:t2 = i – state i that the system stays in during the period from t1 to t2. In other words, it means St1 = i, St1+1 = i, . . . ,
and St2 = i. Note that the previous state St1−1 and the next state St2+1 may or may not be i.
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Fig. 1. General HSMM.

• S[t1:t2] = i – state i which starts at time t1 and ends at t2 with duration d = t2 − t1 + 1. This implies that the previous
state St1−1 and the next state St2+1 must not be i.

• S[t1:t2 = i – state i that starts at time t1 and lasts till t2, with S[t1 = i, St1+1 = i, . . . , St2 = i, where S[t1 = i means that
at t1 the system switched from some other state to i, i.e., the previous state st1−1 must not be i. The next state St2+1
may or may not be i.

• St1:t2] = i – state i that lasts from t1 to t2 and ends at t2 with St1 = i, St1+1 = i, . . . , St2] = i, where St2] = i means that
at time t2 the state will end and transit to some other state, i.e., the next state St2+1 must not be i. The previous state
St1−1 may or may not be i.

Based on these definitions, S[t] = i means state i starting and ending at t with duration 1, S[t = i means state i starting
at t , St] = i means state i ending at t , and St = i means the state at t being state i.

Denote the observation sequence by O 1:T � O 1, . . . , O T , where O t ∈ V is the observable at time t and V =
{v1, v2, . . . , v K } is the set of observable values. For observation sequence o1:T , the underlying state sequence is S1:d1] = i1,
S[d1+1:d1+d2] = i2, . . . , S[d1+···+dn−1+1:d1+···+dn = in , and the state transitions are (im,dm) → (im+1,dm+1), for m = 1, . . . ,n − 1,
where

∑n
m=1 dm = T , i1, . . . , in ∈ S , and d1, . . . ,dn ∈ D. Note that the first state i1 is not necessary starting at time 1

associated with the first observation o1 and the last state in is not necessary ending at time T associated with the last
observation oT . Detailed discussion about the censoring issues can be found in Section 2.2.1. Define the state transition
probability from (i,d′) → ( j,d) for i �= j by

a(i,d′)( j,d) � P [S[t+1:t+d] = j|S[t−d′+1:t] = i],
subject to

∑
j∈S\{i}

∑
d∈D a(i,d′)( j,d) = 1 with zero self-transition probabilities a(i,d′)(i,d) = 0, where i, j ∈ S and d,d′ ∈ D.

From the definition we can see that the previous state i started at t − d′ + 1 and ended at t , with duration d′ . Then it
transits to state j having duration d, according to the state transition probability a(i,d′)( j,d) . State j will start at t + 1 and
end at t + d. This means both the state and the duration are dependent on both the previous state and its duration. While
in state j, there will be d observations ot+1:t+d being emitted. Denote this emission probability by

b j,d(ot+1:t+d) � P [ot+1:t+d|S[t+1:t+d] = j]
which is assumed to be independent to time t . Let the initial distribution of the state be

π j,d � P [S[t−d+1:t] = j], t � 0, d ∈ D.

It represents the probability of the initial state and its duration before time t = 1 or before the first observation o1 obtained.
Then the set of the model parameters for the HSMM is defined by

λ �
{

a(i,d′)( j,d),b j,d(vk1:kd ),πi,d
}
,

where i, j ∈ S , d,d′ ∈ D, and vk1:kd represents vk1 . . . vkd ∈ V × · · · × V . This general HSMM is shown in Fig. 1.
The general HSMM is reduced to specific models of HSMM depending on the assumptions they made. For instance:

• If the state duration is assumed to be independent to the previous state, then the state transition probability can be
further specified as a(i,d′)( j,d) = a(i,d′) j p j(d), where

a(i,d′) j � P [S[t+1 = j|S[t−d′+1:t] = i] (1)
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is the transition probability from state i that has stayed for duration d′ to state j that will start at t + 1, and

p j(d) � P [St+1:t+d] = j|S[t+1 = j] (2)

is the probability of duration d that state j takes. This is the model proposed by Marhasev et al. [119].
• If a state transition is assumed to be independent to the duration of the previous state, then the state transition

probability becomes a(i,d′)( j,d) = ai( j,d) , where

ai( j,d) � P [S[t+1:t+d] = j|St] = i] (3)

is the transition probability that state i ended at t and transits to state j having duration d. This is the residential time
HMM (see Section 3.3 for details). In this model, a state transition for i �= j is (i,1) → ( j, τ ) and a self-transition is
assumed to be (i, τ ) → (i, τ − 1) for τ > 1, where τ represents the residential time of the state.

• If a self-transition is allowed and is assumed to be independent to the previous state, then the state transition proba-
bility becomes

a(i,d′)( j,d) = a(i,d′) j

d−1∏
τ=1

a jj(τ )
[
1 − a jj(d)

]
,

where a jj(d) � P [St+d+1 = j|S[t−d′+1:t] = i, S[t+1:t+d = j] = P [St+d+1 = j|S[t+1:t+d = j] is the self-transition probability
when state j has stayed for d time units, and 1 − a jj(d) = P [St+d] = j|S[t+1:t+d = j] is the probability state j ends with
duration d. This is the variable transition HMM (see Section 3.2 for details). In this model, a state transition is either
(i,d) → ( j,1) for i �= j or (i,d) → (i,d + 1) for a self-transition.

• If a transition to the current state is independent to the duration of the previous state and the duration is only condi-
tioned on the current state, then a(i,d′)( j,d) = aij p j(d), where aij � P [S[t+1 = j|St] = i] is the transition probability from
state i to j, with the self-transition probability aii = 0. This is the explicit duration HMM (see Section 3.1 for details).

Besides, the state duration distributions, p j(d), can be parametric or non-parametric. The detailed discussion on various
duration distributions can be found in Section 4.1. Similarly, the observation distributions b j,d(vk1:kd ) can be parametric or
non-parametric, discrete or continuous, and dependent or independent on the state durations. It can also be a mixture of
distributions. The detailed discussion on various observation distributions can be found in Section 4.2.

2.2. Inference

In this subsection we discuss the issues related to inference, including the forward–backward algorithm, calculation of
probabilities and expectations, maximum a posteriori (MAP) estimate of states, maximum likelihood estimate (MLE) of state
sequence, and constrained estimate of states.

2.2.1. The forward–backward algorithm
We define the forward variables for HSMM by:

αt( j,d) � P [S[t−d+1:t] = j,o1:t |λ]
and the backward variables by

βt( j,d) � P [ot+1:T |S[t−d+1:t] = j, λ].
Similar to deriving the formulas for the HMM (see e.g., Rabiner [150], Ephraim and Merhav [57]), it is easy to obtain the
forward–backward algorithm for a general HSMM:

αt( j,d) =
∑

i∈S\{ j}

∑
d′∈D

αt−d
(
i,d′) · a(i,d′)( j,d) · b j,d(ot−d+1:t), (4)

for t > 0,d ∈ D, j ∈ S , and

βt( j,d) =
∑

i∈S\{ j}

∑
d′∈D

a( j,d)(i,d′) · bi,d′(ot+1:t+d′) · βt+d′
(
i,d′), (5)

for t < T .
The initial conditions generally can have two different assumptions:

• The general assumption: assumes that the first state begins at or before observation o1 and the last state ends at or after
observation oT . In this case, we can assume that the process starts at −∞ and terminates at +∞. The observations out
of the sampling period [1, T ] can be any possible values, i.e., b j,d(·) = 1 for any j ∈ S,d ∈ D. Therefore, in the forward
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formula (4) b j,d(ot−d+1:t) is replaced with the marginal distribution b j,d(o1:t) if t − d + 1 � 1 and t � 1, and in the
backward formula (5) bi,d′(ot+1:t+d′ ) is replaced with bi,d′(ot+1:T ) if t + 1 � T and t + d′ � T . We then have the initial
conditions for the forward recursion formula given by (4) as follows:

ατ ( j,d) = P [S[τ−d+1:τ ] = j|λ] = π j,d, τ � 0, d ∈ D,

where {π j,d} can be the equilibrium distribution of the underlying semi-Markov process. Because, for t + d′ � T ,

P [S[t+1:t+d′] = i,ot+1:T |S[t−d+1:t] = j, λ] = a( j,d)(i,d′)bi,d′
(
oT

t+1

)
then from the backward recursion formula (5) we can see that βt+d′ (i,d′) = 1, for t + d′ � T . Therefore, the initial
conditions for the backward recursion formula given by (5) are as follows:

βτ (i,d) = 1, τ � T , d ∈ D.

If the model assumes that the first state begins at t = 1 and the last state ends at or after observation oT , it is a right-
censored HSMM introduced by Guedon [70]. Because this is desirable for many applications, it is taken as a basis for
an R package for analyzing HSMMs [23].

• The simplifying assumption: assumes that the first state begins at time 1 and the last state ends at time T . This is the
most popular assumption one can find in the literature. In this case, the initial conditions for the forward recursion
formula given by (4) are:

α0( j,d) = π j,d, d ∈ D,

ατ ( j,d) = 0, τ < 0, d ∈ D,

and the initial conditions for the backward recursion formula given by (5) are:

βT (i,d) = 1, d ∈ D,

βτ (i,d) = 0, τ > T , d ∈ D.

Note that the initial distribution of states can be assumed as π ′
j,d � P [S[1:d] = j|λ], which obviously equals

to
∑

i,d′ πi,d′a(i,d′)( j,d) . Therefore, the initial conditions for the forward recursion formula can also be αd( j,d) =
π ′

j,db j,d(o1:d), for d ∈ D.

2.2.2. Probabilities and expectations
After the forward variables {αt( j,d)} and the backward variables {βt( j,d)} are determined, all other probabilities of

interest can be computed. For instance, the filtered probability that state j started at t −d+1 and ends at t , with duration d,
given partial observed sequence o1:t can be determined by

P [S[t−d+1:t] = j|o1:t, λ] = αt( j,d)∑
j,d αt( j,d)

and the predicted probability that state j will start at t +1 and end at t +d, with duration d, given partial observed sequence
o1:t by

P [S[t+1:t+d] = j|o1:t, λ] =
∑

i �= j,d′ αt(i,d′)a(i,d′)( j,d)∑
i,d′ αt(i,d′)

.

These readily yield the filtered probability of state j ending at t , P [St] = j|o1:t, λ] = ∑
d P [S[t−d+1:t] = j|o1:t, λ], and the

predicted probability of state j starting at t + 1, P [S[t+1 = j|o1:t, λ] = ∑
d P [S[t+1:t+d] = j|o1:t, λ].

The posterior probabilities P [St = j|o1:T , λ], P [St = i, St+1 = j|o1:T , λ] and P [S[t−d+1:t] = j|o1:T , λ] for given entire obser-
vation sequence o1:T can be determined by the following equations

ηt( j,d) � P [S[t−d+1:t] = j,o1:T |λ] = αt( j,d)βt( j,d), (6)

ξt
(
i,d′; j,d

)
� P [S[t−d′+1:t] = i, S[t+1:t+d] = j,o1:T |λ] = αt

(
i,d′)a(i,d′)( j,d)b j,d(ot+1:t+d)βt+d( j,d),

ξt(i, j) � P [St] = i, S[t+1 = j,o1:T |λ] =
∑

d′∈D

∑
d∈D

ξt
(
i,d′; j,d

)
, (7)

γt( j) � P [St = j,o1:T |λ] =
∑
τ�t

D∑
d=τ−t+1

ητ ( j,d) (8)

and
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P [o1:T |λ] =
∑
j∈S

P [St = j,o1:T |λ] =
∑
j∈S

γt( j),

for d,d′ ∈ D, j ∈ S , i ∈ S\{ j} and t = 1, . . . , T , where ηt( j,d)/P [o1:T |λ] represents the probability of being in state j having
duration d by time t given the model and the observation sequence; ξt(i,d′; j,d)/P [o1:T |λ] the probability of transition at
time t from state i occurred with duration d′ to state j having duration d given the model and the observation sequence;
ξt(i, j)/P [o1:T |λ] the probability of transition at time t from state i to state j given the model and the observation se-
quence; γt( j)/P [o1:T |λ] the probability of state j at time t given the model and the observation sequence; and P [o1:T |λ]
the probability that the observed sequence o1:T is generated by the model λ. Obviously, the conditional factor P [o1:T |λ] is
common for all the posterior probabilities, which will be eliminated when the posterior probabilities are used in parameter
estimation. Therefore, it is often omitted for simplicity in the literature. Similarly, in the rest of this paper, we sometimes
will not explicitly mention this conditional factor in calculating the posterior probabilities by ηt( j,d), ξt(i,d′; j,d), ξt(i, j),
and γt( j).

In considering the following identity

P [St:t+1 = j,o1:T |λ] = P [St = j,o1:T |λ] − P [St] = j,o1:T |λ],
P [St:t+1 = j,o1:T |λ] = P [St+1 = j,o1:T |λ] − P [S[t+1 = j,o1:T |λ]

we have a recursive formula for calculating γt( j):

γt( j) = γt+1( j) + P [St] = j,o1:T |λ] − P [S[t+1 = j,o1:T |λ] = γt+1( j) +
∑

i∈S\{ j}

[
ξt( j, i) − ξt(i, j)

]
. (9)

Denote P [o1:T |λ] by L in the following expressions. Then using the forward and backward variables, one can compute
various expectations [60]:

(a) The expected number of times state i ends before t: 1
L

∑
t′�t

∑
j∈S\{i} ξt′ (i, j); The expected number of times state i

starts at t or before: 1
L

∑
t′�t−1

∑
j∈S\{i} ξt′ ( j, i).

(b) Expected total duration spent in state i: 1
L

∑
t γt(i).

(c) Expected number of times that state i occurred with observation ot = vk: 1
L

∑
t γt(i)I(ot = vk), where the indicator

function I(x) = 1 if x is true and zero otherwise.

(d) Estimated average observable values of state i:
∑

t γt (i)ot∑
t γt (i) .

(e) Probability that state i was the first state: 1
L γ1(i).

(f) Expected total number of times state i commenced: 1
L

∑
t

∑
j∈S\{i} ξt( j, i) or terminated: 1

L

∑
t

∑
j∈S\{i} ξt(i, j). For the

simplifying assumption for the boundary conditions described in the last subsection, we have
∑T −1

t=0
∑

j∈S\{i} ξt( j, i) =∑T
t=1

∑
j∈S\{i} ξt(i, j).

(g) Estimated average duration of state i:
∑

t
∑

d ηt (i,d)d∑
t
∑

d ηt (i,d)
.

2.2.3. MAP and MLE estimate of states
The maximum a posteriori (MAP) estimate of state St given a specific observation sequence o1:T can be obtained [60] by

maximizing γt( j) given by (8), i.e.,

ŝt = arg max
i∈S

{
γt(i)

}
.

If we choose ηt(i,d) of (6), instead of γt(i), as the MAP criterion, we obtain the joint MAP estimate of the state that ends
at time t and the duration of this state, when a specific sequence o1:T is observed:

(ŝt , d̂t) = arg max
(i,d)

ηt(i,d). (10)

Viterbi algorithms are the most popular dynamic programming algorithms for the maximum likelihood estimate (MLE)
of state sequence of HMMs. There exist the similar algorithms for the HSMM [115,151,35,26]. Define the forward variable
for the extended Viterbi algorithm by

δt( j,d) � max
s1:t−d

P [s1:t−d, S[t−d+1:t] = j,o1:t |λ] = max
i∈S\{ j}, d′∈D

{
δt−d

(
i,d′)a(i,d′)( j,d)b j,d(ot−d+1:t)

}
, (11)

for 1 � t � T , j ∈ S , d ∈ D. δt( j,d) represents the maximum likelihood that the partial state sequence ends at t in state
j of duration d. Record the previous state that δt( j,d) selects by Ψ (t, j,d) � (t − d, i∗,d∗), where i∗ is the previous state
survived, d∗ its duration, and (t − d) its ending time. Ψ (t, j,d) is determined by letting
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(
i∗,d∗) = arg max

i∈S\{ j}, d′∈D

{
δt−d

(
i,d′)a(i,d′)( j,d)b j,d(ot−d+1:t)

}
.

Now the maximum likelihood state sequence can be determined by finding the last state that maximizes the likelihood. For
the general assumption of the boundary conditions on page 5, the last ML state is(

t1, j∗1,d∗
1

) = arg max
t�T
i∈S

d�t−T +1, d∈D

δt(i,d),

or, for the simplifying assumption of the boundary conditions, t1 = T and(
j∗1,d∗

1

) = arg max
i∈S
d∈D

δT (i,d).

Trace back the state sequence by letting(
t2, j∗2,d∗

2

) = Ψ
(
t1, j∗1,d∗

1

)
,

. . .(
tn, j∗n,d∗

n

) = Ψ
(
tn−1, j∗n−1,d∗

n−1

)
,

until the first state S1 is determined, where S1 = j∗n and ( j∗n,d∗
n), . . . , ( j∗1,d∗

1) is the maximum likelihood state sequence.
If the state duration density function is log-convex parametric, which is fulfilled by the commonly used parametric

functions, Bonafonte et al. [17] empirically showed that the computational complexity can be reduced to about 3.2 times of
the conventional HMM. If the model is a left–right HSMM or the particular state sequence, i1, . . . , in , is given, then only the
optimal segmentation of state durations needs to be determined. This is accomplished by simply rewriting (11) as [109,110]

δt(im,d) = max
d′∈D

{
δt−d

(
im−1,d′)a(im−1,d′)(im,d)bim,d(ot−d+1:t)

}
,

for 1 � m � n, 1 � t � T , d ∈ D.

2.2.4. Constrained estimate of states
As discussed in the previous subsections, the posterior probabilities P [St = j|o1:T , λ], P [St = i, St+1 = j|o1:T , λ] and

P [S[t−d+1:t] = j|o1:T , λ] for given entire observation sequence o1:T are determined by the forward–backward algorithm, and
are used for the computation of various expectations and the MAP estimation of states. These posterior probabilities can be
interpreted as the probabilities that the path taken (a random variable) passes through the constraint states for the given
observation sequence o1:T . For example, P [S[t−d+1:t] = j,o1:T |λ] = αt( j,d)βt( j,d) counts for all the paths that pass through
the constraint state j during the constraint period of t − d + 1 to t , where αt( j,d) is given by (4) and βt( j,d) by (5). This is
useful for the confidence calculation in the state estimation. The confidence can be simply defined as

max
j,d

αt( j,d)βt( j,d)
/∑

j′,d′
αt

(
j′,d′)βt

(
j′,d′),

where arg max j,d αt( j,d)βt( j,d) is used for the MAP estimate of the state as given by (10). Calculating the confidence over
every t , one can find out in practice when the errors are most likely to occur in the state estimation.

Now we compute the posterior probability P [st+1:t+k|o1:T , λ] corresponding to a segment of k observations. It is expected
useful in some applications. For example, this probability can be used to estimate the confidence of an individual field
of words for information extraction [41]. It can also be used for computing some expectations, which can be used for
estimating the states corresponding to the segment of k observations.

If one assumes that the first state of the subsequence st+1:t+k starts at t + 1 and the last state ends at t + k, i.e.,
st+1:t+k = ( j1,d1) . . . ( jn,dn), s.t. d1 + · · · + dn = k, it is easy to compute the posterior probability by

P [st+1:t+k,o1:T |λ] = αt+d1( j1,d1)

[
n∏

m=2

a( jm−1,dm−1)( jm,dm)b jm,dm (oτm−1+1:τm)

]
βt+k( jn,dn),

where τm = t + d1 + · · · + dm . When n = 1 the equation is reduced to (6). If we release the condition that the first state of
the subsequence starts at t + 1 or the one that the last state of the subsequence ends at t +k, the computation can be done
by allowing the first state duration d � d1 and the last state duration d′ � dn .

A simple way for computing the posterior probability of a segment is modifying the forward–backward algorithm to con-
form the constraints. Similar to the constrained forward–backward algorithm for a CRF (conditional random field) proposed
by Culotta and McCallum [41], the forward–backward formulas given by (4) and (5) for the HSMM can be modified. Let
αt′ ( j,d) = 0 and βt′ ( j,d) = 0 when t + 1 � t′ � t +k and j �= st′ , where st′ ∈ st+1:t+k is a constraint that each path must pass
through and st+1:t+k is the constraint subpath. If we further constrain that the first state of the constraint subpath starts at
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t + 1, we must let αt′ ( j,d) = 0 and βt′ ( j,d) = 0 when t + 1 � t′ � t + k and t′ − d + 1 < t + 1. Similarly, if we constrain that
the last state of the constraint subpath ends at t +k, we let αt′ ( j,d) = 0 and βt′ ( j,d) = 0 when t + 1 � t′ −d + 1 � t +k and
t′ > t + k. Using this modified forward recursion, we obtain α′

T ( j,d). Let L′ = P [st+1:t+k,o1:T |λ] = ∑
j∈S

∑
d∈D α′

T ( j,d) be
the constrained lattice, the set of all paths that conform to the constraints st+1:t+k . Then the posterior probability is yielded
by L′/L, where L = P [o1:T |λ]. Obviously, the probabilities given by (6) to (8) can be computed using the modified forward
recursion as well.

2.3. Estimation

In the preceding problems, such as the forward–backward algorithm, MAP and ML estimation of states, we assumed that
the set of model parameters λ is given. If λ is unknown, we need to learn about λ from the observations o1:T : λ is initially
estimated and then re-estimated so that the likelihood function L(λ) = P [o1:T |λ] increases and converges to its maximum
value. If the system is slowly varying (i.e., non-stationary), the model parameters λ may need to be updated adaptively.
Such training and updating process is referred to as parameter re-estimation.

2.3.1. Parameter estimate of HSMM
For the parameter estimation/re-estimation problem, there is no known analytical method to find the λ that maximizes

the likelihood function. Thus, some iterative procedure must be employed.
The model parameters λ can be re-estimated using the expectations. For instance,

1) the initial distribution π̂ j,d can be updated by ηt( j,d)/
∑

j,d ηt( j,d) for t � 0,
2) the transition probabilities â(i,d′)( j,d) by

∑
t ξt(i,d′; j,d)/

∑
j �=i,d

∑
t ξt(i,d′; j,d), and

3) the observation probabilities b̂ j,d(vk1:kd ) by
∑

t[ηt( j,d) · I(ot+1:t+d = vk1:kd )]/
∑

t ηt( j,d), where I(ot+1:t+d = vk1:kd ) = 1
if ot+1 = vk1 , . . . ,ot+d = vkd and zero otherwise.

Except these parameters for the general HSMM, parameters for other HSMMs can be estimated as well, such as

i) the transition probabilities âi j by
∑

t ξt(i, j)/
∑

j �=i

∑
t ξt(i, j),

ii) the duration probabilities p̂ j(d) of state j by
∑

t ηt( j,d)/
∑

d

∑
t ηt( j,d),

iii) the observation probabilities b̂ j(vk) by
∑

t[γt( j) · I(ot = vk)]/∑
t γt( j), and

iv) the initial distribution π̂ j by γ0( j)/
∑

j γ0( j).

Those probability mass function or probability density function satisfy:
∑

j,d π̂ j,d = 1,
∑

d p̂ j(d) = 1,
∑

j �=i,d â(i,d′)( j,d) = 1,∑
j �=i âi j = 1,

∑
vk1 ,...,vkd

b j,d(vk1:kd ) = 1, and
∑

vk
b j(vk) = 1.

The re-estimation procedure:

a) Assume an initial model parameter set λ0;
b) For given model parameter set λk , use the forward–backward formulas (4) and (5) to compute the forward and

backward variables {αt( j,d)} and {βt( j,d)}. Then use the forward and backward variables to compute the related prob-
abilities ηt( j,d), ξt(i,d′; j,d), ξt(i, j) and γt( j) by (6) through (9). Finally re-estimate the model parameters to get
λ̂k+1;

c) Let λk+1 = λ̂k+1, k + +, and go back to step b);
d) Repeat b) and c) until the likelihood L(λk) = P [o1:T |λk] converges to a fixed point.

2.3.2. Order estimate of HSMM
In the re-estimation algorithms discussed above, the number of hidden states, M , the maximum length of state duration,

D , the number of observable values, K , and the length of the observation sequence, T , are usually assumed known in the
context of applications. However, the learning issues when the order of an HSMM is unknown is sometimes particularly
important in practice. A detailed discussion on the order estimate of HMMs can be found in Ephraim and Merhav [57,
Section VIII], and the issues of overfitting and model selection in Ghahramani [66, Section 7]. However, the order estimate
of HSMMs is somewhat different from that of HMMs, because HSMMs have variable durations. Therefore, for an HSMM we
must estimate both the number of states, M , and the maximum length of state durations, D .

In fact, some special HSMMs can be described by a dynamic Bayesian network (DBN) using a directed graphical model.
For simplicity, one usually assumes the observations are conditionally independent, i.e.,

b j,d(ot+1:t+d) = P [ot+1:t+d|S[t+1:t+d] = j] =
t+d∏

τ=t+1

b j(oτ ), (12)

where b j(vk) � P [ot = vk|St = j]. To easily identify when a segment of states starts, one usually further assumes a state
transition is independent to the previous state duration. This is just the assumption made for the explicit duration HMM and
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the residential time HMM, as described on page 3. The conditional probability distribution (CPD) function for the explicit
duration HMM is [126]:

P [St = j|St−1 = i, Rt−1 = τ ] =
{

aij if τ = 1 (transition),

I(i = j) if τ > 1 (decrement),

P
[

Rt = τ ′|St = j, Rt−1 = τ
] =

{
p j(τ

′) if τ = 1 (transition),

I(τ ′ = τ − 1) if τ > 1 (decrement),

and for the residential time HMM

P
[

Q t = (
j, τ ′)|Q t−1 = (i, τ )

] =
{

ai( j,τ ′) if τ = 1 (transition),

I(τ ′ = τ − 1) if τ > 1 (decrement)

where Rt is the remaining duration of state St , Q t = ( j, τ ) represents St = j and Rt = τ , and the self-transition probability
ai(i,τ ′) = 0 as defined in the beginning of this section. The indicator function I(x) = 1 if x is true and zero otherwise. Several
DBNs for HSMMs are presented in Murphy [126].

As discussed in Ghahramani [66], a Bayesian approach to learning treats all unknown quantities as random variables.
These unknown quantities comprise the number of states, the parameters, and the hidden states. By integrating over both
the parameters and the hidden states, the unknown quantities can be estimated. For the explicit duration HMM, the number
of states, M , and the maximum length of state durations, D , can be determined after St and Rt , for t = 1 to T , are estimated.
For the residential time HMM, after the set of hidden states that Q t can take and the transition probabilities are estimated,
the values of M and D can be determined by checking the transition probabilities of P [qt |qt−1], where qt is the estimated
hidden state of Q t . Obviously from the CPDs, P [qt |qt−1] = 1 represents a self-transition, and P [qt |qt−1] < 1 a state transition.
Therefore, by counting the number of consecutive self-transitions we can determine the maximum duration of states, D ,
and then determine the number of HSMM states, M .

Sometimes, one uses a simple method to find out the order of an HSMM by trying various values of M and D . Denote
λ(M,D) as the model parameter with assumed order M and D . The maximum likelihood estimate of λ(M,D) is

λ̂(M,D) = arg max
λ(M,D)

log P
[
o1:T |λ(M,D)

]
,

which can be determined using the re-estimation algorithms discussed in this subsection for given M and D . Then the
order estimators given in Ephraim and Merhav [57] can be used in the selection of the model order. For instance, the order
estimator proposed by Finesso [61] can be used as the objective function for the selection of the model order:

(M̂, D̂) = min

{
arg min

M,D�1

{
− 1

T
log P

[
o1:T |λ̂(M, D)

] + 2c2
M D

log T

T

}}
,

where cM D = M D(M D + K −2) is a penalty term that favors simpler models over more complex models, T the total number
of observations, and K the total number of values that an observation can take.

In fact, we can alternatively use an undirected graphical model to describe the HSMMs and to learn the unknown
quantities, such as semi-Markov conditional random fields (semi-CRFs) introduced by Sarawagi and Cohen [161]. In this
model, the assumption that the observations are conditional independent is not needed.

2.4. EM algorithm and online estimation

Using the theory associated with the well-known EM (expectation–maximization) algorithm [42], it can be proved that
the re-estimation procedure for the HSMMs increases the likelihood function of the model parameters. However, these
algorithms require the backward procedures and the iterative calculations, and so are not practical for online learning.
A few of online algorithms for HSMM have been developed in the literature, including an adaptive EM algorithm by Ford
et al. [62], an online algorithm based on recursive prediction error (RPE) techniques by Azimi et al. [9,11], and recently a
recursive maximum likelihood estimation (RMLE) algorithm by Squire and Levinson [168].

2.4.1. Re-estimation vs. EM algorithm
Let λ represent the complete set of the model parameters to be estimated in the re-estimation procedure. The purpose is

to find maximum likelihood estimates of the model parameter set λ such that the likelihood function P [o1:T |λ] is maximized
for given o1:T .

Let us consider two a posteriori probabilities (APPs) of the state sequence variable s1:T = s1, . . . , sT , given an instance
of the observation sequence o1:T ; one under model parameter λ and the other under its improved version λ′ . Denote
L(λ) � P [o1:T |λ] as the likelihood function of the model parameter λ. Following the discussion given in Ferguson [60], an
auxiliary function is defined as a conditional expectation [121]

Q
(
λ,λ′) � E

[
log P

[
s1:T ,o1:T |λ′]|o1:T , λ

] =
∑

T

P [s1:T ,o1:T |λ] log P
[
s1:T ,o1:T |λ′].
s1:T ∈S
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Because

Q (λ,λ′) − Q (λ,λ)

L(λ)
� log

L(λ′)
L(λ)

,

if Q (λ,λ′) > Q (λ,λ), then L(λ′) > L(λ). This implies that the best choice of λ′ (for given λ) is found by solving the maxi-
mization problem of Q (λ,λ′). Therefore, by iterating the expectation step (E-step) and the maximization step (M-step), as in
the expectation–maximization (EM) algorithm, an optimum λ′ can be found. In fact, EM algorithm holds in a more general
setting than HSMMs.

Instead of using the forward–backward algorithms for the E-step and the re-estimate formulas for the M-step, Krish-
namurthy and Moore [92] use the EM algorithm to directly re-estimate the model parameters. In this case, the unknowns
are the model parameters λ as well as the state sequence s1:T . When the order of the model is large, the computational
amount involved in the re-estimate is huge. To reduce this computational amount, MCMC sampling is used for approximate
re-estimate [46,47]. MCMC sampling is a general methodology for generating samples from a desired probability distribution
function and the obtained samples are used for various types of inference. Therefore, MCMC sampling can also be used in
the estimation of the state sequence and the model parameters. MCMC sampling draws samples of the unknowns from their
posteriors so that the posteriors can be approximated using these samples. The prior distributions of all the unknowns are
required to specify before applying the MCMC sampling methods. The emission probabilities and the durations of various
states are often modelled using some parametric distributions.

2.4.2. Forward algorithm for online estimation
Define the maximum log-likelihood of the observation sequence o1:t as [168]

Lt(λ) � max
n

max
d1:n

d1+···+dn=t

log P [o1:t,d1:n|λ] = max
n

L(n)
t (λ)

where d1:n denotes d1, . . . ,dn with dk ∈ D, and

L(n)
t (λ) � max

d1:n
d1+···+dn=t

log P [o1:t,d1:n|n, λ].

By maximizing Lt(λ) with respect to λ = {aij,bi(vk), pi(d),πi}, the set of model parameters λ̂ can be re-estimated [168].
Signal modelling using HSMM proposed by Azimi et al. [9–11] is a different online estimation algorithm. The state St of

the signal at time t is assumed to take its values from the set {e1, . . . , eM} where ei is an M × 1 vector with unity as the
ith element and zeros elsewhere. In this case, the state at time t is appropriate to be denoted using an M × 1 vector, i.e.,
st ∈ {e1, . . . , eM}.

Define the log-likelihood of the observations up to time t given λ [9,11]:

lt(λ) � log P [o1:t |λ] =
t∑

τ=1

log P [oτ |o1:τ−1, λ] =
t∑

τ=1

xτ (λ),

where xt+1(λ) � log P [ot+1|o1:t, λ]. Denote the estimate of the Hessian matrix by Rt � ∂2

∂λ2 lt(λ), and the gradient of xt(λ)

with respect to λ by ψt � ∂
∂λ

xt(λ), then the model parameters can be updated using λ̂ = λ + εt+1 · R−1
t+1 · ψt+1, where εt+1

is a step size.
A sequential online learning of HMM state duration using quasi-Bayes (QB) estimate was presented in Chien and Huang

[36,37], in which the Gaussian, Poisson, and gamma distributions were investigated to characterize the duration models.

2.5. Implementation

It is well known that the joint probabilities associated with observation sequence often decay exponentially as the
sequence length increases. The implementation of the forward–backward algorithms by programming in a real computer
would suffer a severe underflow problem. This subsection considers the issues related to the practical implementation of
the algorithms.

A general heuristic method to solve the underflow problem is to re-scale the forward–backward probabilities by mul-
tiplying a large factor whenever an underflow is likely to occur [106,40]. However, the scale factors cannot guarantee the
backward variables being bounded or immunizing from the underflow problem, as pointed out by Murphy [126].

If the forward–backward algorithm is implemented in the logarithmic domain, like the MAP and Viterbi algorithms
used for turbo-decoding in digital communications, then the multiplications become additions and the scaling becomes
unnecessary [20]. In fact, the logarithmic form of the extended Viterbi algorithm can be considered as an approximation to
that of the forward–backward algorithm.

The notion of posterior probabilities is used to overcome the underflow problem involved in the recursive calculation
of the joint probabilities of observations [68,202]. This is similar to the standard HMM. The HMM’s forward–backward
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algorithms can automatically avoid the underflow problem by replacing the joint probabilities with conditional ones [45,6].
The refined forward–backward algorithm for the HSMM becomes robust against the underflow problem, without increasing
the computational complexity.

In notion of posterior probabilities, the forward variables are redefined [202] using the predicted probabilities by

ᾱt( j,d) � P [S[t−d+1:t] = j|o1:t−d, λ],
and the backward variables by

β̄t( j,d) � P [ot−d+1:T |S[t−d+1:t] = j, λ]
P [ot−d+1:T |o1:t−d, λ] .

Denote

b̄ j,d(ot−d+1:t) � b j,d(ot−d+1:t)
P [ot−d+1:t |o1:t−d, λ] .

We have αt( j,d) = P [o1:t−d|λ]ᾱt( j,d)b j,d(ot−d+1:t) and β̄t( j,d)P [ot−d+1:T |o1:t−d, λ] = b j,d(ot−d+1:t)βt( j,d). Then the
forward–backward formulas (4) and (5) become

ᾱt( j,d) =
∑

i∈S\{ j}

∑
d′∈D

ᾱt−d
(
i,d′)b̄i,d′

(
ot−d

t−d−d′+1

)
a(i,d′)( j,d), (13)

and

β̄t( j,d) = b̄ j,d(ot−d+1:t)
∑

i∈S\{ j}

∑
d′∈D

a( j,d)(i,d′)β̄t+d′
(
i,d′). (14)

The probability P [o1:t |λ] can be determined by

P [o1:t |λ] =
∑
j∈S

∑
d∈D

P [S[t−d+1:t] = j,o1:t |λ] =
∑
j∈S

∑
d∈D

P [o1:t−d|λ]ᾱt( j,d)b j,d(ot−d+1:t),

and P [ot−d+1:t |o1:t−d, λ] by P [o1:t |λ]/P [o1:t−d|λ].
After the forward–backward variables are determined, the probabilities defined by (6) through (9) can be yielded, such

as

ηt( j,d)

P [o1:T |λ] = ᾱt( j,d)β̄t( j,d)

and

ξt(i,d′; j,d)

P [o1:T |λ] = ᾱt
(
i,d′)bi,d′(ot−d′+1:t)a(i,d′)( j,d)β̄t+d( j,d).

If we denote ᾱ′
t( j,d) = ᾱt( j,d)b j,d(ot−d+1:t) and β̄ ′

t+1( j,d) = β̄t+d( j,d), then the forward recursion (13) becomes

ᾱ′
t( j,d) = b̄ j,d(ot−d+1:t)

∑
i∈S\{ j}

∑
d′∈D

ᾱ′
t−d

(
i,d′)a(i,d′)( j,d),

and the backward recursion (14) becomes

β̄ ′
t( j,d) = b̄ j,d(ot:t+d−1)

∑
i∈S\{ j}

∑
d′∈D

β̄ ′
t+d

(
i,d′)a( j,d)(i,d′).

That is, the backward recursion is symmetric to the forward one in the time reversed form. This can potentially reduce
the requirement for the silicon area on a chip if the backward logic module uses the forward one. A symmetric forward–
backward algorithm for the residential time model was introduced by Yu and Kobayashi [199].

3. Conventional models

As pointed out in the last section on page 3, the general HSMM is reduced to the conventional models when specific
assumptions are made on the dependency of states and durations. This section overviews three conventional models, includ-
ing the explicit duration HMM, variable transition HMM and residential time HMM. These models have fewer parameters
and lower computational complexity than the general model. They are the HSMMs often found in the literature.



226 S.-Z. Yu / Artificial Intelligence 174 (2010) 215–243
3.1. Explicit duration HMM

Ferguson [60] was the first to consider the HSMM, which he called an “HMM with variable duration.” Since then a
number of studies have been reported on the subject. See for example, Mitchell and Jamieson [123], Yu and Kobayashi
[199,202] and references therein.

The explicit duration hidden Markov model assumes that a state transition is independent to the duration of the previous
state, i.e., a(i,d′)( j,d) = ai( j,d) , without self-transitions, i.e., ai(i,d) = 0. The state duration is assumed to be dependent on the
current state and independent to the previous state. That is, state j will last for duration variable d according to the
conditional probability p j(d), as defined in (2). Therefore, we have a(i,d′)( j,d) = aij p j(d) with aii = 0, for i, j ∈ S,d ∈ D,
where aij � P [S[t = j|St−1] = i] is the state transition probability from state i to state j. It also assumes the “conditional
independence” of outputs as defined in (12). Due to all those independent assumptions, the explicit duration HMM is one
of the most simple models among all the HSMMs. Therefore, it is the most popular HSMM in applications.

Replace a(i,d′)( j,d) with aij p j(d), b j,d(ot+1:t+d) with
∏t+d

τ=t+1 b j(oτ ), βt( j,d) with βt( j) � P [ot+1:T |St] = i, λ] in the general

forward–backward formulas (4) and (5), and define αt( j) � P [St] = j,o1:t |λ] = ∑
d∈D αt( j,d). Then we readily obtain the

forward–backward formulas for the explicit duration HMM [60]:

αt( j) =
∑
d∈D

α∗
t−d( j)p j(d)ut( j,d), (15)

α∗
t ( j) � P [S[t+1 = j,o1:t |λ] =

∑
i∈S\{ j}

αt(i)aij, (16)

for j ∈ S , t = 1, . . . , T , and

β∗
t ( j) � P [ot+1:T |S[t+1 = j, λ] =

∑
d∈D

p j(d)ut+d( j,d)βt+d( j), (17)

βt( j) =
∑

i∈S\{ j}
a jiβ

∗
t (i), (18)

for j ∈ S , t = T − 1, . . . ,0, where

ut( j,d) �
t∏

τ=t−d+1

b j(oτ ). (19)

The forward variable αt( j) represents the joint probability that state j ends at t and the partial observation sequence is
o1:t , and α∗

t ( j) the joint probability that state j starts at t + 1 and the partial observation sequence is o1:t . The backward
variable βt( j) represents the conditional probability that given state i ending at t , the future observation sequence is ot+1:T ,
and β∗

t ( j) the conditional probability that given state j starting at t + 1 the future observation sequence is ot+1:T .
The boundary conditions use the simplifying assumption described on page 5, i.e., α0(i) = πi and ατ (i) = 0 for τ < 0,

and βT (i) = 1 and βτ (i) = 0 for all τ > T , i ∈ S , where πi is the initial distribution of state i.

3.1.1. Computational complexity
From (19), we can see that ut( j,d) for j ∈ S , d ∈ D, given t require O (M D2/2) multiplications, and the forward–

backward formulas (16), (15), (18) and (17) require extra O (M2 + M D) multiplications. Therefore, the computational
complexity of the explicit duration HMM is O ((M2 + M D + M D2)T ). The storage requirement is O (M2 + M D + M K + MT ),
where K is the total number of observable values that O t can take. Due to the computational complexity is high, the ex-
plicit duration HMM is not appropriate to be applied in some applications when D is large. To reduce this computational
complexity, the key is to reduce the computational complexity of ut( j,d). Levinson [107] suggested a recursive method that
can calculate the product more efficiently, i.e.,

ut( j,d) =
t∏

τ=t−d+1

b j(oτ ) = ut( j,d − 1) · b j(ot−d+1) (20)

with ut( j,1) = b j(ot), which requires O (M D) multiplications. This recursive method was also used by Mitchell et al. [124].
However, in their method D recursive steps must be performed at every t . Therefore, the total number of recursive steps
required in their method increases by a factor of D compared with the Ferguson algorithm [60]. In fact, a better way to
reduce both the computational complexity and the total number of recursive steps is letting

ut( j,d) = ut−1( j,d − 1) · b j(ot) (21)

which can be implemented in parallel manner and has no need to retrieve previous observation probabilities b j(ot−d+1).
This idea was realized in a parallel implementation of the explicit duration HMM for spoken language recognition on a
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hardware architecture in Mitchell et al. [122]. The computational load p j(d) · ut( j,d) can also be reduced by approximation
such as segmental beam pruning and duration pruning as proposed by Russell [154]. It shows that they can combine to give
a 95% reduction in segment probability computations at a cost of a 3% increase in phone error rate.

3.2. Variable transition HMM

In this model, an HSMM is realized in the HMM framework, including the 2-vector HMM [93], the duration-dependent
state transition model [179,181,180], the inhomogeneous HMM [151], and the non-stationary HMM [164,46,47]. These ap-
proaches take the vector (i,d) as an HMM state, where i is one of the HSMM states and d sojourn time since entering the
state. The explicit duration HMM can also be expressed in this model by letting the triples (i, w,d) to be HMM states, where
d is a duration and w a counter, 1 � w � d, which indicates the number of observations produced so far while in state i
[60]. In addition to the state and its sojourn time, Pieczynski et al. [144] added the observation as the third component. This
makes it possible to generalize the model to the triplet Markov chain [144–147,98–101,2]. The constraints among the three
components are released in the triplet Markov chain model and the components are extended to be general processes. The
price is the loss of physical meaning in the sense of hidden semi-Markov process. One has to add some constraints back
on the triplet Markov chain and re-define the meaning of the three processes when it is applied for the HSMM. The triplet
Markov chain model can be further generalized to be a non-stationary fuzzy Markov chain by letting the underlying Markov
chain be a fuzzy Markov random chain [158].

Compared with the explicit duration HMM, this model assumes the state transition is dependent on the state duration,
and hence it is more suitable for describing inhomogeneous or non-stationary hidden Markov processes. This makes it useful
for some applications that cannot be modelled by a homogeneous process.

A state transition is allowed only for either (i,d) → ( j,1), for i �= j, or (i,d) → (i,d+1) for self-transitions. It assumes the
“conditional independence” of outputs as given by (12). The boundary conditions use the simplifying assumption described
on page 5. The state transition probability from state i to state j given that the sojourn time in state i at time t is d is
defined by [151,93]

aij(d) � P [St+1 = j|S[t−d+1:t = i],
subject to

∑
j∈S aij(d) = 1, for i, j ∈ S , d ∈ D, where the self-transition with probability aii(d) > 0 can occur. We note that

aij(d) is different from a(i,d) j defined by (1). The latter does not allow self-transition. We have aij(d) = (1 − aii(d))a(i,d) j .
It is not straightforward to derive the forward–backward formulas for the variable transition HMM from the general ones

given by (4) and (5) because a(i,d)( j,d′) = aij(d)
∏d′−1

τ=1 a jj(τ )[1 − a jj(d′)]/[1 − aii(d)]. Instead, they are easy to derive from the
definitions of the forward variables α̌t( j,d) and the backward variables β̌t( j,d) [151,93], i.e.,

α̌t( j,d) � P [S[t−d+1:t = j,o1:t |λ] =
{∑

d′∈D
∑

i∈S\{ j} α̌t−1(i,d′)aij(d′)b j(ot), d = 1,

α̌t−1( j,d − 1)a jj(d − 1)b j(ot), d > 1
(22)

for j ∈ S , d ∈ D, t = 2, . . . , T , and

β̌t( j,d) � P [ot+1:T |S[t−d+1:t = j, λ] =
∑

i∈S\{ j}
a ji(d)β̌t+1(i,1)bi(ot+1) + a jj(d)β̌t+1( j,d + 1)b j(ot+1) (23)

for j ∈ S , d ∈ D, t = T − 1, . . . ,1. The forward variable α̌t( j,d) represents the joint probability that the sojourn time in state
j at time t is d and the partial observation sequence is o1:t . The backward variable β̌t( j,d) is the conditional probability
that the future observation sequence is ot+1:T given that the sojourn time in state j at time t is d.

The boundary conditions are α̌1( j,1) = π jb j(o1), α̌1( j,d) = 0 for d > 1 and β̌T ( j,d) = 1, for j ∈ S , d ∈ D. Similar to the
forward recursion formula, a Viterbi algorithm for the inhomogeneous HMM can be readily obtained by replacing the sum∑

d′∈D
∑

i∈S\{ j} of (22) with the maximum operations maxd′∈D maxi∈S\{ j} , as did in Ramesh and Wilpon [151] and Deng
and Aksmanovic [44].

Though the super state space of the pairwise process (i,d) is S × D in the order of M D , the computational complexity
is O ((M D + M2 D)T ), where M is the number of HSMM states, D the maximum duration of any HSMM state and K the
total number of observable values. The storage requirement is O (M2 D + M K + M + M DT ). Compared with O ((M2 + M D +
M D2)T ) of the explicit duration HMM, the computational complexity of the variable transition HMM is higher when the
order of the state space is higher, and is lower when the maximum length of the state durations is smaller. However, its
space complexity is definitely higher than O (M2 + M D + M K + MT ) of the explicit duration HMM.

The variable transition HMM and the explicit duration HMM have different assumptions for their models. However,
the model parameters of the variable transition HMM can be expressed by those of the explicit duration HMM [47,11].
Reversely, the model parameters of the explicit duration HMM can be expressed by those of the variable transition HMM,
i.e., pi(d) = ∏d−1

τ=1 aii(τ ) · [1 − aii(d)] and aij = aij(d)/[1 − aii(d)]. The model [119] defined by (1) and (2) can be considered
as a combination of the variable transition HMM and the explicit duration HMM. Therefore, it is more general.
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3.3. Residential time HMM

The residential time HMM [199] assumes a state transition is either (i,1) → ( j, τ ) for i �= j or (i, τ ) → (i, τ − 1) for a
self-transition with τ > 1, where τ is the residential time of state i. The state transition probabilities are assumed to be
independent to the duration of the previous state. The residential time HMM also assumes the “conditional independence”
of outputs as yielded by (12). The boundary conditions use the simplifying assumption described on page 5. Therefore, this
model is useful in the application areas when the residential time that the current state will stay in the future is of interest.
This is useful for predicting the residential time of the current state. It is contrast to the variable transition HMM which
concerns the sojourn time that the current state has been stayed in the past.

As defined by (3), the state transition probability from state i to state j that will have residential time τ is ai( j,τ ) �
P [S[t:t+τ−1] = j|St−1] = i] for i �= j, with

∑
j∈S\{i}

∑
τ∈D ai( j,τ ) = 1. The self-transition probability from (i, τ ) to (i, τ − 1) is

P [St+1:t+τ−1] = i|St:t+τ−1] = i] = 1, for τ > 1. Therefore, the general forward–backward formulas given by (4) and (5) can
be reduced to the ones for the residential time HMM. Instead, we derive the formulas directly from the definitions of the
forward and backward variables. Define the forward variable and backward variable by [199]

ᾰt(i, τ ) � P [St:t+τ−1] = i,o1:t |λ]
and

β̆t(i, τ ) � P [ot+1:T |St:t+τ−1] = i, λ].
The forward variable ᾰt(i, τ ) is the joint probability that the partial observation sequence is o1:t and the current state i will
stay for the next τ steps and end at t + τ − 1. The backward variable β̆t(i, τ ) is the conditional probability that the future
observations will be ot+1:T given the current state i that has τ steps of remaining time.

The following forward and backward recursion formulas can be readily obtained:

ᾰt(i, τ ) = ᾰt−1(i, τ + 1)bi(ot) +
∑

j∈S\{i}
ᾰt−1( j,1)a j(i,τ )bi(ot), (24)

for i ∈ S , τ ∈ D, t = 1, . . . , T , and

β̆t(i, τ ) = bi(ot+1)β̆t+1(i, τ − 1), τ > 1, (25)

β̆t(i,1) =
∑

j∈S\{i}

∑
τ�1

ai( j,τ )b j(ot+1)β̆t+1( j, τ ), (26)

for i ∈ S , τ ∈ D, t = T − 1, . . . ,1. The boundary conditions are ᾰ0(i,1) = πi , ᾰ0(i, τ ) = 0 for τ > 1, and β̆T (i,1) = 1,
β̆T (i, τ ) = 0 for τ > 1.

3.3.1. Computational complexity
The computational complexity involved in the residential time HMM is in the same order of the variable transition HMM.

However, it can be reduced significantly if the state duration is assumed to be independent to the previous state. In this
case, we have ai( j,τ ) = aij p j(τ ). From the definition of α∗

t (i) given by (16) and the definition of β∗
t ( j) given by (17), we

have

α∗
t−1(i) = P [S[t = i,o1:t−1|λ] =

∑
j∈S\{i}

ᾰt−1( j,1)a ji (27)

and

β∗
t ( j) = P [ot+1:T |S[t+1 = j] = b j(ot+1)

∑
τ∈D

p j(τ )β̆t+1( j, τ ). (28)

Then the forward formula (24) and the backward formula (26) are reduced to [199]

ᾰt(i, τ ) = ᾰt−1(i, τ + 1)bi(ot) + α∗
t−1(i)pi(τ )bi(ot) (29)

and

β̆t(i,1) =
∑

j∈S\{i}
aijβ

∗
t ( j). (30)

Now the forward recursion is given by (27) and (29), and the backward recursion by (28), (30) and (25).
In this case, computing the forward variables α∗

t−1(i) for all i requires O (M2) steps, and ᾰt(i, τ ) for all i and τ requires

extra O (M D) steps. Similarly, computing the backward variables β∗
t ( j) for all j requires O (M D) steps, and β̆t(i,1) for
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all i requires extra O (M2) steps. Hence, the total number of computation steps for evaluating the forward and backward
variables is O ((M D + M2)T ). This computational complexity is much lower than those of the explicit duration HMM and
the variable transition HMM.

Because the backward variables β̆t(i, τ ) and the probabilities ηt(i, τ ), ξt(i, j) and γt(i) do not have to be stored for
estimate of the model parameters {p j(τ ),aij,bi(ot),πi}, and only the forward variables ᾰt(i,1) and α∗

t−1(i) for all i and
t need to be stored, with the storage requirement of O (MT ). Therefore, the storage requirement for the residential time
HMM is O (M2 + M D + M K + MT ), similar to the explicit duration HMM.

The Matlab code for the forward–backward algorithm is quite simple which can be found from the website
http://sist.sysu.edu.cn/~syu/. An R package for analyzing hidden semi-Markov models can be found in Bulla et al. [23].

4. Specific modelling issues

This section discusses the issues related to the duration distributions, the observation distributions, variants of the
HSMMs and the relationship with standard HMMs.

4.1. Different duration distributions

The choice of distribution family for the state duration is central to the use of the HSMM [56]. So far, we have discussed
the general distribution of state duration, where pi(d) is non-parametric. In some applications, a parametric distribution
may be preferred so that only a few parameters that specify the selected distribution functions are required to be estimated.
This subsection presents exponential family distributions, convex monotonic distributions, and discrete Coxian distributions
of duration. A uniform distribution of duration can be found in Hongeng and Nevatia [79]. More complex duration models
can be found in Ostendorf et al. [136], and a discussion on the capacity and complexity of duration modelling techniques
can be found in Johnson [86]. Besides, the state duration distributions can be taken into account in the Viterbi algorithm as
in Burshtein [25,26], Yoma and McInnes [195] and Yoma and Sanchez [196], where the state duration distributions can be
estimated efficiently for a left–right HMM.

4.1.1. Exponential family distribution of duration
The state duration can be modelled by Poisson [155], Gaussian [5] and gamma distributions [107]. All these distributions

belong to the exponential family [107,123]. The probability density function (pdf) or probability mass function (pmf) for the
duration of state j belonging to the exponential family can be expressed as [123]

p j(d) = 1

B(θ j)
ξ(d)exp

(
−

P∑
p=1

θ j,p S p(d)

)

where P is the number of natural parameters, θ j,p is the pth natural parameter for state j and θ j = [θ j,1, . . . , θ j,P ], S p(d)

and ξ(d) are sufficient statistic, and B(θ j) is a normalizing term. Since HSMMs are discrete-time stochastic processes, a pmf
is used rather than a pdf. For simplicity, the pmf is obtained by letting

B(θ j) =
D∑

d=1

ξ(d)exp

(
−

P∑
p=1

θ j,p S p(d)

)
.

According to Ferguson [60], the new duration parameters for state j can be found by maximizing

f (θ j) �
D∑

d=1

p̂ j(d) log p j(d)

subject to the constraint
∑D

d=1 p j(d) = 1, where {p̂ j(d)} is the non-parametric probability mass function estimated by the
re-estimation formulas, and

∑D
d=1 p̂ j(d) = 1. Since the exponential family is log-concave, the global maximum can be found

by setting the derivative equal to zero, yielding the maximum likelihood equations [123]

∂

∂θ j,p
f (θ j) =

D∑
d=1

p̂ j(d)

[
−∂ log B(θ j)

∂θ j,p
− S p(d)

]
= 0

where, for the pmf,

−∂ log B(θ j)

∂θ j,p
=

D∑
d=1

p j(d)S p(d).

Therefore, the new duration parameters can be found by solving the following equations:

http://sist.sysu.edu.cn/~syu/
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D∑
d=1

p j(d)S p(d) =
D∑

d=1

p̂ j(d)S p(d), p = 1, . . . , P .

The MAP estimation of the mean and variance of Gaussian and gamma distributions of state durations for a left–right
HMM can be found in Yoma and Sanchez [196].

4.1.2. Convex monotonic distributions
For the explicit duration HMM, the extended Viterbi algorithm for HSMM given by (11) becomes

δt( j) = max
d∈D

max
i∈S\{ j}

{
δt−d(i)aij p j(d)

t∏
t′=t−d+1

b j(ot′)

}
, (31)

for 1 � t � T , j ∈ S , where δt( j) � maxs1:t−1 P [s1:t−1, St] = j,o1:t |λ]. Tweed et al. [178] find that if p j(d) is concave monotonic,
i.e.,

C1 p j(d1) � C2 p j(d2) �⇒ C1 p j(d1 + τ ) � C2 p j(d2 + τ ),

for τ > 0 and arbitrary constants C1 and C2, then

δt−d1(i1)ai1 j p j(d1)

t∏
t′=t−d1+1

b j(ot′) � δt−d2(i2)ai2 j p j(d2)

t∏
t′=t−d2+1

b j(ot′)

�⇒ δt−d1(i1)ai1 j p j(d1 + τ )

t+τ∏
t′=t−d1+1

b j(ot′) � δt−d2(i2)ai2 j p j(d2 + τ )

t+τ∏
t′=t−d2+1

b j(ot′) (32)

for d1 > d2 and any τ > 0. This means that for given state j if the longer segmentation has a lower probability, then it
will always have a lower probability as both segmentations are further extended [178]. This fact can be used to reduce the
number of items in (31). That is, if (32) is satisfied, then δt−d1 (i1) can never give optimal solutions in the future and the
index (t − d1, i1) can be removed from the jth set, Q ( j), for state j. Therefore, there exits t∗

0 = min(t−d1)∈Q ( j)(t − d1) such
that (t0, i1) /∈ Q ( j), for any t0 < t∗

0, i1 ∈ S . This implies that Q ( j) is a queue that only older ones can be discarded. The
newer items (t, i), i ∈ S , are pushed into the queue after δt( j) for all j ∈ S are determined by

δt( j) = max
(t0,i)∈Q ( j)

{
δt0(i)aij p j(t − t0)

t∏
t′=t0+1

b j(ot′)

}
,

for 1 � t � T , j ∈ S , where for simplicity it assumes D � T .

4.1.3. Discrete Coxian distribution of duration
A discrete Coxian distribution of duration is an extension of the non-parametric distribution of duration for a conven-

tional HSMM that the duration distribution is pi(d), for given state i ∈ S .
Denote the discrete Coxian distribution by Cox(μ, θ), where μ = μ1, . . . ,μN and θ = θ1, . . . , θN are parameters [54,55].

A left-to-right Markov chain with N states (phases) is used to describe Cox(μ, θ). Each phase n has the self-transition
probability Ann = 1 − θn , 0 < θn � 1, n ∈ {1, . . . , N} and the duration of geometric distribution Xn ∼ Geom(θn). If the left-to-
right Markov chain starts from phase n with initial probability μn , then Xn + · · · + XN is the duration of the left-to-right
Markov chain, for 0 � μn � 1,

∑
n μn = 1.

In this case, the state duration distribution, pi(d), of the HSMM becomes Cox(μ(i), θ (i)) with d = Xn + · · · + XN , for
i ∈ S , where μ(i) and θ(i) are the Coxian parameter set for the HSMM state i. When θ

(i)
n = 1 for all n, it reduces to the

conventional duration distribution of HSMM with Xn ≡ 1, pi(d) = μ
(i)
N−d+1, D = N .

Obviously, (i,n) can be considered as an HMM state, where i ∈ S is the state of the HSMM and n ∈ {1, . . . , N} is the
phase of the Coxian distribution. Therefore, the traditional forward–backward algorithm for HMM can be applied for the
model parameter re-estimation and state sequence estimation.

An HMM state (i,n) can transit to (i,n) with self-transition probability A(i)
nn = 1−θ

(i)
n for any n, (i,n +1) with probability

A(i)
n,n+1 = θ

(i)
n for n < N , or ( j,n′) with probability aijμ

( j)
n′ for n = N , where A(i)

nm, θ
(i)
n ,μ

(i)
n are parameters for state i. The

computational complexity is O (M2NT ).
A modification of this model is assuming that the left-to-right Markov chain of each HSMM state always starts from

phase 1 and ends at any phase n. Then the forward algorithm can be expressed as

αt
[
(i,n),d

] =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑
j∈S

∑N
n′=1

∑
d∈D αt−1[( j,n′),d′]p j(d′)a jibi,1(ot), n = 1, d = 1,

αt−1[(i,1),d − 1]A(i)
1,1bi,1(ot), n = 1, d > 1,

0, n > 1, d = 1,∑n′ α [(i,n′),d − 1]A(i) b (o ), n > 1, d > 1
n =n−1 t−1 n′n i,n t
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where pi(d) is the duration probability, bi,n(ot) the observation probability, A(i)
n′n the transition probability from phase (i,n′)

to (i,n), and αt[(i,n),d] the forward variable at time t when the state is i, the phase is n, and the duration of state i is d
[182,183,166]. The Viterbi version of this forward formula can be straightforward by replacing the

∑
with max as shown

in Kwon and Un [97] and Peng et al. [141].
Another modification of the model is allowing the Markov chain of each HSMM state is not necessary to be left-to-right.

That is, the transition probability from phase n to any phase m is allowed, with Anm � 0, for n �= m and n,m ∈ {1, . . . , N}.
This is called “extended HMM” in Russell and Cook [156]. In this case, the Markov chain of each HSMM state is in fact
a series-parallel network of geometric processes. Based on Coxian theory, the overall duration pdf of the series-parallel
network can construct any discrete pdf with rational z-transform [182,18,183].

4.2. Different observation distributions

This subsection presents various observation distributions that have been used in applications.

4.2.1. Parametric distribution of observations
The observation variable O t is usually assumed as a discrete variable with finite alphabet |V | = K . In some applications,

however, a parametric distribution with possibly infinite support may be required or preferred. For instance, the probability
distribution bi(vk) may be represented as a Poisson distribution. In some other applications, the observation variable O t

may be treated as a continuous variable, e.g., Gaussian random variable. In such cases the number of model parameters can
be reduced substantially [60].

For example, if the probability density function bi(vk), for vk = 0,1, . . . ,∞, is Poisson with mean μi , i.e., bi(k) =
μk

i e−μi /k!, then the parameter μi can be re-estimated by μ̂i = ∑
k b̂i(k)k, or equivalently,

μ̂i =
∑T

t=1 γt(i)ot∑
i

∑T
t=1 γt(i)

.

A similar result can be obtained by directly maximizing the likelihood function P [o1:T |λ] [108].
For the continuous random variable O t = vk , the probability distribution b j(vk) should then be replaced by a probability

density function. More generally, the observation distribution b j(vk) of any state j is often represented by a mixture of
distributions such as Gaussian distributions [137]. For a given state j, the probability density function that state j produces
an observation vk can then be written as [83]

b j(vk) =
N∑

n=1

p jn f jn(vk)

where N denotes the number of the mixture probability density functions, { f jn(vk)}, and
∑N

n=1 p jn = 1. A linear mixed
models for the observation distribution can be found in Chaubert-Pereira et al. [30].

4.2.2. Segmental model
Usually the observation distributions are assumed to be dependent on the states. The segmental model [92,157,63,87,43,

74,136,138,78,203,64,1] extend them to be dependent on the states as well as the state durations.
Suppose there is a sequence of distribution regions corresponds to the sequence of observations for a given state. Then

the observation probabilities are defined by bi,d(ot) � P [ot |S[t−d+1:t = i], where bi,d(·) denotes the dth distribution region of
given state i, for d = 1, . . . , D . {bi,d(·)} can be a set of model regions or a continuum of distributions via trajectory sampling.
An instance of the continuum of distributions is

bi,d(ot) = 1√
2πσi

exp
−(ot − cd−1

i μi)
2

2σ 2
i

,

where ci , μi , σi are the parameters of the Gaussian distribution. This model was called “exponentially decay state” by
Krishnamurthy and Moore [92]. An application in detection of shape anomalies can be found in Z. Liu et al. [114].

More generally, the observation probabilities can be defined by b(τ )

i,d (ot+d) � P [ot+d|S[t+1:t+τ ] = i], for d = 1, . . . , τ , where
τ is given and denotes the length of the segment or the duration of state i, ot+d is the dth observation of the segment
ot+1:t+τ , and b(τ )

i,d (·) the dth distribution region for given state i and the length τ . According to this definition, b(τ1)

i,d (ot+d)

may different from b(τ2)

i,d (ot+d) if τ1 �= τ2. For instance, Kim and Smyth [89] use the segmental HMM in waveform modelling,
which models the rth segment of observations of length τ , or = ot+1:t+τ , generated by state i, as a linear function of time

or = ai + cixr + er, er ∼ Nτ

(
0,σ 2 Iτ

)
where ai and ci are regression coefficients for the intercept and slope of the waveform, respectively. xr is a τ × 1 vector
representing discrete time values. er a τ ×1 vector of Gaussian noise with variance σ 2 for each component. If random effects



232 S.-Z. Yu / Artificial Intelligence 174 (2010) 215–243
are added to the segment distribution to model parameter variability across waveforms, then the regression coefficients can
be ai ∼ N(āi, σ

2
i ) and ci ∼ N(c̄i, σ

2
i ) [89].

Generally, extra-segmental variability associated with a state i can be characterized by a probability density function gi
called the state target PDF [157,77]. A target distribution bi(·) is chosen according to gi [7]. Then the joint probability of the
segment ot+1:t+τ and a particular target bi(·) given state i is given by [157]:

P [ot+1:t+τ ,bi|S[t+1:t+τ ] = i] = gi(bi)

τ∏
d=1

bi(ot+d).

Therefore, P [ot+1:t+τ |S[t+1:t+τ ] = i] = ∑
bi

P [ot+1:t+τ ,bi |S[t+1:t+τ ] = i].
If the distribution regions {b(τ )

i,d (·)} are given, then it is a deterministic distribution mappings that associate the dth obser-

vation ot+d , for d = 1, . . . , τ , in the τ -length segment ot+1:t+τ with the dth specific region b(τ )

i,d (·); otherwise, it is a dynamic
distribution mappings, which can be implemented using dynamic programming to find the maximum likelihood mapping
that associate the segment ot+1:t+τ to a fixed number of regions. If we still assume that observations are conditionally
independent given the segment length, i.e.,

P [ot+1:t+τ |S[t+1:t+τ ] = i] =
τ∏

d=1

b(τ )

i,d (ot+d)

then a segment model with an unconstrained dynamic mapping is equivalent to an HMM network [103]. A detailed discus-
sion of segmental models can be found in Ostendorf et al. [136].

An extension of the segmental model is defining the observation distributions to be dependent on both the state and its
substates [97]. This model is in fact a special case of the original HSMM if we define a complex state that includes both the
state and its substate.

4.2.3. Event sequence model
Thoraval et al. [175], Thoraval [176] and Faisan et al. [58,59] introduced a hidden semi-Markov event sequence model

(HSMESM), which is a special instance of hidden semi-Markov model for the modelling and analysis of event-based random
processes. At a given time t there may be an event ot = vk observed, with an occurring probability 1 − est , or a null
observation (missing observation) ot = φ with missing probability est , where st is the state at time t . Therefore, the modified
observation probabilities in the case that there exist missing observations, denoted by b+

i (ot), are given by

b+
i (ot) = (1 − ei)bi(ot) · I(ot ∈ V) + ei · I(ot /∈ V), i ∈ S,

where V is the set of observable events, and I(x) = 1 if x is true and zero otherwise.
This event sequence model is called “state-dependent observation misses” by Yu and Kobayashi [200] because the null

observation φ is treated as one of the observable, i.e., the full set of observations is φ ∪ V . They classify patterns of obser-
vation misses into five types, where except the state-dependent observation misses, the other four types are as follows:

a) Output-dependent observation misses: the probability that a given ot becomes “null” depends on the output value ot

itself. For instance, when the output is too weak (in comparison with noise) at time t , such output may not be observed. In
this case, the “output-dependent miss probability” is defined by e(vk) = P [φ|vk]. Then the probability for a null observation
ot = φ is

∑
k bi(vk)e(vk).

b) Regular observation misses: the outputs {ot} are observed only at predetermined epochs. Regular or periodic sam-
pling is a typical example. The rest of {ot} will be missed, and such portion will be considerable, if the sampling is done
infrequently. In this case, the observation probability for a null observation ot = φ is

∑
k bi(vk) = 1.

c) Random observation misses: the outputs {ot} are observed at randomly chosen instants. Such observation pattern may
apply, when the measurement is costly or we are not interested in keeping track of state transitions so closely. In this case,
some outputs may become “null” observations randomly. If the sampling probability is 1 − e, then the modified observation
probability is b+

i (ot) = I(ot ∈ V )(1 − e)bi(ot) + I(ot /∈ V )e.
d) Miss match between multiple observation sequences: multiple observation sequences are associated with the hidden

state sequence, and these observations may not be synchronized to each other. For instance, two sequences {ot} and {qt}
are available as the outputs of an HSMM state sequence, but there exits some random delay τ between the two output
sequences. Therefore, the observations we can obtain at time t are ot and qt−τ though the emissions of a given state at
time t are ot and qt . In this case, delay τ has to be estimated by maximizing the joint likelihood of the two observation
sequences.

4.3. Variants of HSMM

This subsection discusses the extension of HSMMs, which includes switching HSMM, multi-channel HSMM, and adaptive
factor HSMM.
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4.3.1. Switching HSMM
A switching hidden semi-Markov model is defined as the concatenation of many HSMMs, with model parameter sets

λ1, . . . , λ|Q ∗| , each initiated by a different “switching” state q ∈ Q ∗ , where the set of states Q ∗ defines a Markov chain,
as described in Duong et al. [54] and Phung et al. [142,143]. A two stage inhomogeneous HMM was proposed by Sitaram
and Sreenivas [165] to capture the variabilities in speech for phoneme recognition. The first stage models the acoustic and
durational variabilities for all distinct sub-phonemic segments and the second for the whole phoneme.

Assumes at each time step the computational complexity is Cq for computing the forward–backward variables of the
qth HSMM. Because the current state sequence of the qth HSMM may start at any time step before t , the computational
complexity for the qth HSMM is in the order of O (t2Cq). Therefore, the total computational complexity for the switching

HSMM is O (T 3 ∑|Q ∗|
q=1 Cq +|Q ∗|2), where T is the total length of the observation sequence. This means the switching HSMM

is applicable only for short observation sequences.

4.3.2. Multi-channel HSMM
Multi-channel HSMM was proposed to model multiple interacting processes [129]. In contrast to the basic HSMM that a

process has a single state at any instant, this extension generalizes the HSMM state to be a vector S t = [S(1)
t , . . . , S(C)

t ] rep-
resenting the states of multiple processes. Each of the processes, say process c, has an observation sequence, O (c) , produced
by a hidden semi-Markov state sequence, S(c)

[1:d1], . . . , S(c)
[T −dn+1:T ] , taking values in S (c) , with a set of model parameters, λ(c) ,

where T is the length of each of the observation sequences. Though this model can be realized in the framework of inho-
mogeneous HMM, the state space will be MC . To reduce the complexity of the model, some simplifying assumptions should
be made for the transition probabilities. Assume P [st+1,dt+1|st ,dt , λ], and the observation probabilities, P [ot |st , λ], where
dt = [d(1)

t , . . . ,d(C)
t ] and d(c)

t is the duration having been spent in state s(c)
t by time t . ot = [o(1)

t , . . . ,o(C)
t ] is the observation

vector at time t . Usually, each channel is allowed to evolve independently, i.e.,

P [st+1,dt+1|st,dt, λ] =
C∏

c=1

P
[
s(c)

t+1,d(c)
t+1|st,dt, λ

]
and

P [ot |st, λ] =
C∏

c=1

P
[
o(c)

t |s(c)
t , λ

]
.

To further simplify the expressions, P [s(c)
t+1,d(c)

t+1|st ,dt , λ] is approximated by [129]

P
[
s(c)

t+1,d(c)
t+1|st,dt, λ

] ∼
C∏

c′=1

P
[
s(c)

t+1,d(c)
t+1|s(c′)

t ,d(c′)
t , λ

]
or

P
[
s(c)

t+1,d(c)
t+1|st,dt, λ

] =
C∑

c′=1

θc,c′ P
[
s(c)

t+1,d(c)
t+1|s(c′)

t ,d(c′)
t , λ

]
,

where θc,c′ is the weight.

According to this simplified assumption, the current state-duration pair s(c)
t+1,d(c)

t+1 is dependent on the previous state-

duration pair s(c′)
t ,d(c′)

t . There are M D current state-duration pairs for given c and M D previous state-duration pairs for
given c′ . Therefore, the computational complexity for evaluating the forward or backward variables at each time step is
O (M2 D2C2).

4.3.3. Adaptive factor HSMM
Adaptive factor HSMM is assumed to have variable model parameters for its parametric distributions of observation

and/or state durations. For instance, the parameters of the observation distributions bi(vk) and the duration distribu-
tions pi(d) can be changed with time or in different situations. For example, the mean μi of bi(vk) given state i is
changed for different speakers, such that for the f th speaker the mean becomes a( f )

i + c( f )
i μi , for f = 1, . . . , F , where

{a( f )
i , c( f )

i } are adaptive factor, μi the common parameters for all speakers, and F the total number of speakers. Let

O ( f ) = (o( f )
1 ,o( f )

2 , . . . ,o( f )
T f

) be the f th observation sequence of length T f , for f = 1, . . . , F , λ be the set of the common

parameters of the HSMM, and Λ = {Λ(1), . . . ,Λ(F )} be the set of the adaptive factors, where μi ⊂ λ and (a( f )
i , c( f )

i ) ⊂ Λ( f ) .
Then the model parameters can be jointly estimated by

{λ̂, Λ̂} = arg max
λ,Λ

P
[

O (1), . . . , O (F )|λ,Λ
] = arg max

λ,Λ

F∏
P
[

O ( f )|λ,Λ( f )].

f =1
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Specific examples for the joint estimate of the model parameters are given in Yamagishi and Kobayashi [189] and Yamazaki
et al. [192], where o( f )

t , a( f )
i and μi are vectors, and c( f )

i is a matrix.

4.4. HSMM vs. HMM

HSMM can be considered as an extension of an HMM. Therefore, the HMM can be reversely considered as a special
case of the HSMM, in considering that the duration distributions of HMM states are implicitly geometric. This subsection
discusses the relationship between HSMM and the conventional HMM. A discussion about both HMM and HSMM can also
be found in Kobayashi and Yu [91].

A hybrid HMM/HSMM proposed by Guedon [71,72] can be viewed as a special case of the HSMM where the occupancy
distributions of some states are constrained to be geometric distributions while others are still generally distributed.

4.4.1. HSMM using HMM algorithms
In some application areas, such as speech recognition, one often uses HMM algorithms to estimate HSMM parameters to

obtain benefits from both the small computational complexity of HMM algorithms and the explicit duration expression of
HSMM states. As discussed in the last subsection, HMM implicitly has a geometric distribution that limits its capability in
many applications whose duration is not geometrically distributed.

Duration estimation using HMM algorithms. After the optimum state sequence, i∗1i∗2 . . . i∗T = ( j∗1,d∗
1) . . . ( j∗N ,d∗

N ), is found via
the ordinary Viterbi algorithm or the Baum–Welch algorithm [13], based on the current HMM parameters {πi,aij,bi(vk)},

where
∑N

n=1 d∗
n = T and N � T , i∗t , j∗n ∈ S , d∗

n ∈ D, the model parameters π̂i , âi j , b̂i(vk), and p̂i(d) (for HSMM) can be
estimated [36] by letting

ηt(i,d) = I
(

j∗n = i
) · I

(
d∗

n = d
) · I

(
n∑

k=1

d∗
k = t

)
,

ξt(i, j) = I
(
i∗t = i

) · I
(
i∗t+1 = j

)
,

and

γt(i) = I
(
i∗t = i

)
,

where ηt(i,d), ξt(i, j) and γt(i) are defined by (6), (7) and (9), and I(x) = 1 if x is true and zero otherwise. Then the model
parameters âi j , b̂i(vk), p̂i(d), and π̂i can be re-estimated. The re-estimated model parameters can be used to produce a new
segmentation from which new sets of parameters are obtained until the model converges.

Certainly, the optimum state sequence, i∗1i∗2 . . . i∗T = ( j∗1,d∗
1) . . . ( j∗N ,d∗

N ), can also be found via the extended Viterbi algo-
rithm for the HSMM [138,195,196], as discussed in Section 2.2.3, and then the model parameters are similarly re-estimated.

The estimated duration probabilities can be applied to modify the scores in the Viterbi algorithm on each departure
from a state. This approach is non-optimal but can be ensured that the resulting state segmentation sequence is at least
reasonable according to the duration specifications. During the recognition phase, the distance metric used in the Viterbi
algorithm is modified as [150]:

δt( j) = max
d∈D

max
i∈S

{
δt−d(i)aij

[
p j(d)

]α t∏
τ=t−d+1

b j(oτ )

}
,

for 2 � t � T , j ∈ S , where α is a modification factor, which is usually assumed as 1. A similar modification to the forward
algorithm of HMM was given in Hanazawa et al. [73]. With state duration-dependent transition probabilities the recursion
in Viterbi algorithm becomes [179]

δt
(

j,d j
t

) = max
i∈S

{
δt−1

(
i,di

t−1

)
aij

(
di

t−1

)
b j(ot)

}
,

for j ∈ S , 2 � t � T , where aij(di
t) denotes the probability of a transition from state i to state j of the model, given that

state i has been in the current state for di
t consecutive time units. d j

t denotes the current residency duration of state j.

d j
t = d j

t−1 + 1 if the state does not change and d j
t = 1 otherwise.

A modification to the conventional Viterbi algorithm suggested by Lee and Rabiner [104] is letting:

δt(i) = bi(ot)max
{
δt−1(i)aii, max

j∈S\{i}
δt−1( j)p j

(
d j

t−1

)
a ji

}
.

The problem of this algorithm is obviously that it gives preference to the first case that there is no state change. To rectify
this situation Preez [149] suggested a modified recursion by letting
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δt(i) = bi(ot)δt−1(i)aii, di
t = di

t−1 + 1

if δt−1(i)aii
∑

d�di
t−1

pi(d) > max j∈S\{i} δt−1( j)p j(d
j
t−1)a ji ; otherwise di

t = 1 and

δt(i) = bi(ot) max
j∈S\{i}

δt−1( j)p j
(
d j

t−1

)
a ji .

Another way of using {pi(d)} in the Viterbi algorithm is through introducing temporal constraints in the HMM, that is,
let [194]

aii =
∑D

d=τ+1 pi(d)∑D
d=τ pi(d)

,

aij = pi(τ )∑D
d=τ pi(d)

where τ is the duration of a given state i.

Bounded state durations. It is possible to implement upper and lower bounds on duration without specific probabilistic
modelling [67,181,90,102]. The bounded state durations can be estimated in the training phase [102] or after the training
phase by finding the global minimum and maximum durations for each state [67,90]. Following the definitions in the
previous sections, which define αt( j) � P [St] = j,o1:t |λ] and αt( j,d) � P [S[t−d+1:t] = j,o1:t |λ], Laurila [102] yields

αt+1( j,1) =
∑

i∈S\{ j}
αt(i)aijb j(ot+1),

αt+1( j,d + 1) = αt( j,d)a jjb j(ot+1),

and

αt+1( j) =
Dmax∑

d=Dmin

αt+1( j,d),

where Dmin and Dmax are the bounds of the state durations. The bounded state duration model resulted in quite loose state
duration constraints and were not effective enough in the recognition phase.

5. Applications of HSMM

The HSMM has been applied to thirty areas, such as human activity recognition [38,55,56,79,80,119,120,128–131,140,
197,200,205,206], handwriting recognition or printed text recognition [4,15,16,27,32–35,95,96,163], network traffic charac-
terization and anomaly detection [105,111,116,117,139,153,172,177,187,188,198,201], speech recognition [31,39,67,76,107,
127,137,148,152,155], speech synthesis [125,132–134,169–171,186,189–192,204], functional MRI brain mapping [58,59,174–
176], electrocardiograph (ECG) [53,85,84,174], recognition of human genes in DNA [19,24,94,173], language identification
[118], ground target tracking [88], document image comparison and classification at the spatial layout level [81,82], change-
point/end-point detection for semi-conductor manufacturing [64,65], protein structure prediction [8,12,162], the analysis of
branching and flowering patterns in plants [69–72], rain events time series model [3,159,160], satellite propagation chan-
nel modelling [112], event recognition in videos [79], mobility tracking in cellular networks [120,197,200], Internet traffic
modelling [198], image segmentation [21,98,184], semantic learning for a mobile robot [167], symbolic plan recognition
[54], terrain modelling [185], adaptive cumulative sum test for change detection in non-invasive mean blood pressure trend
[193], equipment prognosis [14,48–51,75], financial time series modelling [22], classification of music [113], remote sensing
[147], and prediction of particulate matter in the air [52].

Among those applications, the major applications include speech recognition, speech synthesis, human activity recogni-
tion, handwriting recognition, network traffic modelling & anomaly detection, and functional MRI brain mapping.

5.1. Human activity recognition

How to learn and recognize human activities of daily living (ADL) is an important research issue in building a perva-
sive and smart environment. Yu and Kobayashi [200] proposed an explicit duration HMM for missing data and multiple
observation sequences, and applied the model into mobility tracking in wireless networks [120,197]. Hongeng and Nevatia
[79], Hongeng et al. [80] and Zhang et al. [206] applied HSMM for recognizing events in a video surveillance. Pavel et al.
[140] used the model in unobtrusive assessment of mobility. Marhasev et al. [119] used a non-stationary HSMM in activity
recognition. Niwase et al. [131] used the HSMM in human walking motion synthesis.

Different from the usual application of HSMM, Duong et al. [54–56] introduced a two-layered extension of HSMM for
modelling the ADL. In this model, sequences of major activities of human daily routine, such as making breakfast, eating
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breakfast, going to work, coming back home, are modelled by a Markov chain, with each state representing a major activity.
For a given major activity, atomic activities such as spending time at the cupboard, stove, fridge, or moving between these
designated places, are described by a hidden semi-Markov model. Each HSMM state represents an atomic activity and its
duration represents the atomic action time.

Similarly, Zhang et al. [205] used a layered HSMM in an intelligent surveillance system deployed in parking lots. Chung
and Liu [38] applied a hierarchical context hidden Markov model for behavior understanding from video streams in a
nursing center. The two-layered HSMM has been discussed in Section 4.3.1 “Switching HSMM” of this paper. A three-layered
variable transition hidden Markov model was introduced by Natarajan and Nevatia [130] for representing the composite
actions at the top-most layer, the primitive actions at the middle layer and the body pose transitions at the bottom-most
layer.

As an extension to the layered HSMM, Natarajan and Nevatia [128] proposed a hierarchical multi-channel HSMM.
A multi-channel HSMM is used to model multiple interacting processes, which has been discussed in Section 4.3.2 “Multi-
channel HSMM.” As a special case of multi-channel HSMM, a coupled HSMM is used for continuous sign-language recogni-
tion in Natarajan and Nevatia [129].

5.2. Handwriting recognition

In the application of HSMM in handwriting recognition, the 26 letters in the alphabet are defined as 26 different states
of an HSMM, and the number of subcharacter symbols in a letter as the duration of the state. For instance, “B” has three
subcharacter symbols and “P” has two. Therefore, the key problem is to develop a segmentation algorithm to translate
the 2-D image of written text into a 1-D sequence of subcharacter symbols. The 1-D sequence is used as the observation
sequence of the HSMM.

Chen et al. [32,33,35] proposed a robust segmentation algorithm based on mathematical morphology and used a mixture
Gaussian distribution to model the subcharacter symbol probability distribution for each state. The Viterbi algorithm given
by (11) is used in finding the best path of states for the recognition of letters or words [34,35,95,96,27,28,15]. Senior et al.
[163] compared normal, gamma and Poisson distributions to the original histogram of lexeme durations. They found that
the Poisson distribution most closely matched the desired distribution, giving improved performance over the un-smoothed
histogram. The other distributions did not perform as well.

5.3. Network traffic characterization and anomaly detection

In this application, the HSMM is applied to characterize the network traffic. Measurements of real traffic often indicate
that a significant amount of variability is present in the traffic observed over a wide range of time scales, exhibiting self-
similar or long range dependent characteristics [105]. Such characteristics can have a significant impact on the performance
of networks and systems [177,139]. Therefore, better understanding of the nature of network traffic is critical to the proper
design and implementation of servers and anomaly detection systems for network security purpose. A major advantage of
using an HSMM is the capability of capturing various statistical properties of the traffic, including the long-range dependence
[198]. They can also be used together with, for example, matrix-analytic methods to obtain analytically tractable solutions
to queueing-theoretic models of server performance [153].

In this application, the observation sequence {ot} represents the number of user requests, packets, bytes, connections,
etc., arriving in the tth second, or the interarrival time between requests or packets. The observation sequence is character-
ized as a discrete-time random process modulated by an underlying (hidden state) semi-Markov process. The hidden state
represents the density of traffic or mass of active users.

Using the model parameters of the HSMM trained by the normal behavior, one can detect anomaly embedded in the
network behavior according to its likelihood or entropy against the model [201,111,116,117,187,188].

5.4. Speech recognition and speech synthesis

In this application, observation vectors are obtained by extracting features from the speech signal through a spectral
and/or temporal analysis. The observation vectors can be used to train the HSMMs which characterize various speech units.
Speech units can be linguistically based sub-word units such as phones and acoustic units, whole word units, and units
which contain a group of words. Each unit is characterized by an HSMM whose states can be considered as its distinct
sounds (e.g., phonemes, syllables). A lot of applications of HSMM in speech recognition can be found in the literature,
such as Levinson [107], Codogno and Fissore [39], Nakagawa and Hashimoto [127], Gu et al. [67], Ratnayake et al. [152],
Hieronymus et al. [76] and Oura et al. [137]. The applications in speech synthesis can be found in Zen et al. [204], Yamagishi
and Kobayashi [189,191], Yamagishi et al. [190], Yamazaki et al. [192], Tachibana et al. [169–171], Nose et al. [132–134],
Moore and Savic [125] and Wu et al. [186].

To associate time with model states, a left–right model of HSMM is usually assumed. The number of states can be
selected to correspond roughly to the number of sounds (e.g., phonemes) within the unit, or to the average number of
observations in a spoken version of the speech unit. The output probability b j(vk) of any state j is often represented
by a mixture of Gaussian distributions with a diagonal covariance matrix [137]. The duration distribution of state j is



S.-Z. Yu / Artificial Intelligence 174 (2010) 215–243 237
usually assumed as a parametric one such as Gaussian distribution [137], Poisson distribution [155], and gamma distribution
[107,39]. The uniform distribution with lower and upper bounding parameters was also applied, which inhibited a state
occupying too few or too many speech frames [67].

The model parameters can be trained by the re-estimation algorithms for an HSMM. But in fact in the area of speech
recognition, they are often estimated using the Viterbi algorithms, as discussed in Section 4.4.1.

5.5. Functional MRI brain mapping

Applying an HSMM in functional magnetic resonance imaging (fMRI) brain mapping is to reveal components of interest
in the fMRI data, as did in Faisan et al. [58,59], Thoraval [176] and Thoraval et al. [175,174]. This enables the model to
automatically detect neural activation embedded in a given set of fMRI signals. It allows to enrich brain mapping with
activation lag mapping, activation mode visualizing, and hemodynamic response function analysis. The three problems of
HRF (the hemodynamic response function) shape variability, neural event timing, and fMRI response linearity can be solved
by the model.

In this application, the sequence of hemodynamic response onsets (HROs) observed in the fMRI signal is used as the
observation sequence, which is usually composed of events mixed with missing observations (null). A left–right Markov
chain is selected for the hidden process of task-induced neural activations. The state index i reflects the order of appearance
of the event in the chain. The chain is registered temporally with a sequence of discrete time OFF–ON blocks. The probability
that the first observation at the start time tl of state i is otl is denoted as bi(otl ). The inter-state duration distributions are
specified as one-dimensional gaussians. At time t during the transition time interval from state i to state j, the probability
of missing an observation is 1 − ei j and having an observed event ot = el is ei j with the observation probability bij(el). All
observation distributions are specified as one-dimensional gaussians.

6. Conclusions and remarks

The issues related to a general HSMM include (a) the forward–backward algorithm; (b) the computation of the pre-
dicted/filtered/smoothed probabilities, expectations and the likelihood of observations; (c) the MAP estimate of states and
the MLE estimate of state sequence by extended Viterbi algorithm; (d) the parameter estimate/update and the order esti-
mate of the model; (e) the implementation of the forward–backward algorithms.

By introducing certain assumptions and some constraints on the state transitions, the general HSMM becomes the tradi-
tional explicit duration HMM, variable transition HMM, or residential time HMM. Those conventional models have different
capability in modelling applications. They also have different computational complexity and memory requirement involved
in the forward–backward algorithms and the model estimate, as shown in the following table:

The model Complexity Mem. for F–B Mem. for estimate
E. D. HMM O ((M2 + M D2)T ) O (MT ) O (M2 + M D + M K + MT )

V. T. HMM O ((M2 D)T ) O (M DT ) O (M2 D + M K + M DT )

R. T. HMM O ((M D + M2)T ) O (MT ) O (M2 + M D + M K + MT )

where M is the number of hidden states, D the maximum duration between successive state transitions, K the number of
observable values, and T the period of the observation data. However, the three models are interchangeable to each other
if we express the state transition probabilities and the state duration distributions of one model with the parameters of the
other one.

The state duration distributions and the observation distributions can be non-parametric or parametric dependent on the
specific preference of the applications. Among the parametric distributions, the most popular ones are the exponential family
distribution, such as Poisson, exponential, Gaussian, and the mixture of Gaussian distributions. The Coxian distribution of
duration can represent any discrete pdf, and the underlying series-parallel network also reveals the structure of different
HSMMs.

Observations are usually assumed to be dependent on states that produce them and are conditionally independent to
each other for given states. However, the segmental model assumes the observations to be dependent not only on the
emission state but also on the state duration.

The variants of HSMM include switching HSMM, multi-channel HSMM, and adaptive factor HSMM, which are suitable
for the applications that cannot be described by a homogenous process. In considering that the duration of an HMM state is
geometric, it is possible to use the algorithms of HSMMs for the HMM, which show different forms from the conventional
Baum–Welch algorithm and the Viterbi algorithm.

There are three methods that can be used for overcoming the underflow problem embedded in the implementation of
the forward–backward algorithms for the HSMMs. Among those three methods, the posterior notion performs best because
the heuristic scaling cannot guarantee the backward variables from underflow and the logarithmic formulation cannot be
very accurate based on the lookup table.

It has proved that the iterative re-estimation procedure of the model parameters using the expectations is equivalent
to the EM algorithm. It maximizes the likelihood function for given observations. In a non-stationary situation, the model
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parameters have to be updated online with time or with the increase of observation sequence length. Therefore, the re-
estimation algorithms based on the forward–backward algorithms become unsuitable. Instead, one should use the online
algorithms for the realtime update of the model parameters, which are usually done by maximizing the likelihood functions.
Sometimes, to reduce the computation amount required in the re-estimation of the HSMM parameters, non-maximum
likelihood estimator is used. For instance, the Viterbi algorithms or the forward–backward algorithms for the HMM are used
to estimate the state duration distributions for the HSMMs. The method is splitting the states into segments.

The HSMMs have been applied in thirty areas. More and more papers are published in the literature. The number of
papers published in each five years, which are cited in this survey, is listed in the following table:

Years 1980–1984 1985–1989 1990–1994 1995–1999 2000–2004 2005–2008
No. of papers 3 16 29 35 38 77

We note that there are about one hundred papers (mainly in speech recognition) that use the HSMMs but do not
contribute to the theory or algorithm of the HSMMs are not cited in this paper.
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