
CS540 Spring 2010: homework 8

1 Variational Bayes for univariate Gaussian
The goal of this exercise is to reproduce Figure 1. Also, derive an expression for the lower bound L(q), and check that
the algorithm monotonically increases it. Turn in your math, code and plots.
To solve this, read sec 12.4 of my chapter on variational inference. These notes are not finished, but should contain
enough information for you to solve this problem. If you want to read more, you can either wait until my notes are
finished (by Sunday 28th), or you can read chapter 10 of [Bis06], which I have posted on the class web page (the
online posting calls it “chapter 5”, since it is an old version), or you can read chapter 33 of [Mac03], which is available
online at http://www.inference.phy.cam.ac.uk/mackay/itila.

2 Forwards vs reverse KL divergence
(Source: Exercise 33.7 of [Mac03]) Consider a factored approximation q(x, y) = q(x)q(y) to a joint distribution
p(x, y). Show that to minimize the forwards KL

KL (p||q) =
∑
xy

p(x, y) log
p(x, y)
q(x, y)

(1)

we should set q(x) = p(x) and q(y) = p(y), i.e., the optimal approximation is a product of marginals
Now consider the reverse KL

KL (q||p) =
∑
xy

q(x, y) log
q(x, y)
p(x, y)

(2)

and the following joint distribution, where the rows represent y and the columns x.
x

1 2 3 4
1 1/8 1/8 0 0
2 1/8 1/8 0 0
3 0 0 1/4 0
4 0 0 0 1/4

Show that KL (q||p) for this p has three distinct minima. Identify those minima and evaluate KL (q||p) at each of
them. What is the value of KL (q||p) if we set q(x, y) = p(x)p(y)?

3 Multi-task regression with mixture of Gaussians prior
Multi-task learning refers to solving multiple related (supervised) learning problems. For example, consider fitting
multiple straight lines, all of which are assumed to have a similar slope, but may have different intercepts. This is
illustrated in Figure 2(a). We can fit each line separately, but when there is a lot of noise and/or there is very little data,
we can do better by fitting all the lines simultaneously, and exploiting the fact that there slopes are similar. We can do
this using the following hierarchical model: we assume wt ∼ N (µ,Σ), where wt are the regression parameters for
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Figure 1: Factored variational approximation to the Gaussian-Gamma distribution. (a) Initial guess. (b) After updating qµ. (c)
After updating qλ. (d) At convergence. Source: Figure 10.4 of [Bis06]. See also Figure 33.4 of [Mac03]. According to Figure 24.1
of [Mac03], the data has N = 5 points, a mean of x = 1, and S2 =

∑
i(xi − x)2 = 1. However, you are free to define your own

data. It is not clear what the prior parameters were; try a few until the plot looks somewhat similar.
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Figure 2: (a) 5 different but related linear regression models in 1d. Notice how all lines have the same slope. (b) Mean squared
error on the test set vs the size of training set for two different models: fitting each line separately, or using a common Gaussian
prior. (c) Same as (b) but in D = 50 dimensions and with T = 25 tasks. Made by multitaskRegDemo.
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Figure 3: Fit for each line for N ∈ {3, 6, 9} where each model is fit separately. Made by multitaskRegDemo.
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Figure 4: Fit for each line for N ∈ {3, 6, 9} where all the models are fit jointly. Notice how the estimates are closer to the truth
(Figure 2(b)) than when fitting separately, even for small sample sizes. In particular, all liens are encouraged to be parallel. Made
by multitaskRegDemo.

task t, t = 1 : T . We can then use empirical Bayes to estimate the common slope µ, and the degree of heterogeneity
amongst the lines, Σ. Once µ,Σ have been estimated, we can compute a MAP estimate of each line separately using

(ŵt, b̂t, σ̂
2
t ) = arg max

[
N∏

i=1

N (yit|bt + wT
t xi, σ

2
t )

]
N (wt|µ,Σ) (3)

where bt is the bias or offset for task t. This is a bit like ridge regression, except instead of shrinking towards 0, we
shrink towards the common mean. (In this model, we assumed each task had the same input, so we wrote xi instead
of xit, but it is straightforward to generalize the technique.)
In Figure 2(b), we see that pooled estimated gives improved performance over estimating each line separately. Fig-
ures 3 and 4 show the individual lines for different training set sizes for the separate and pooled techniques. We see
that the pooled technique forces the lines to be nearly parallel (the strength of this force being determined by Σ, which
is currently set by hand), which results in better predictive accuracy. Figure 2(c) shows that this improvement is even
more dramatic in higher dimensional settings.
A real world application of this is conjoint analysis, which is widely used in business and marketing [LDGY96,
AEP08]. In this setting, the goal is to figure out which aspects of a product customers like. This is usually assessed
by presenting to a small number N of products to a large number T of customers, and asking them to rate the product.
Thus xi is the feature vector describing product i, yit is the rating of customer t for product i, and wt are the parameter
of customer t’s prediction function.
It is not always reasonable to assume all customers are alike. Similarly, it is not always reasonable to assume all
straightlines will have similar slopes. Figure 5(a) illustrates some data where there are two kinds of lines, sloping up
and down. If we pool all the parameters on this kind of data, the performance is worse than not using pooling, as
illustrated in Figure 5(b-c). The reason is that the inductive bias of our prior is wrong.
A simple solution to this is to use a mixture model as prior. (A fancier technique is to use a non-parametric prior, such
as a Dirichlet process mixture model.) Such flexible priors can provide robustness against prior mis-specification. The
model can be defined as follows. For each task, we have a latent variable zt ∈ {1, . . . ,K} specifying which cluster it
belongs to. If zt = k, we assume wt is generated from the k’th Gaussian:

p(wt|zt = k,θ) = N (wt|µk,Σk) (4)
p(zt = k|θ) = πk (5)

See Figure 6.
The goal of this exercise is to figure out how to fit this model using EM. Derive the E and M steps, and then implement
them. Add your code to the multitaskRegDemo file as a third method. Run the demo and plot the results; try
K ∈ {1, 5, 10}mixture components. (TheK = 1 case should give qualitatively similar results to the heuristic pooling
code that I wrote.) You may need to use priors to regularize the problem. Turn in your math, code and plots. (Plots are
only printed for the first random seed, but the program tries 3 seeds just to check that differences are not accidental.)
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Figure 5: Same as Figure 2, except the regression parameters are sampled from a mixture of Gaussians. Notice how some lines
slope down and some slope up. In this case, fitting assuming all the model parameters come from a common Gaussian hurts
performance. Made by multitaskRegDemo.

Figure 6: Model for multi-task regression where the regression weights are drawn from a mixture of Gaussians. See text for details.
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Hint: let the parameters (to be point-estimated) be θ = (µ1:K ,Σ1:K ,b1:T ,σ
2
1:T ). Then the complete data log

likelihood is given by

log p(D, z1:T ,w1:T |θ) =
∑

t

{∑
k

I(zt = k) (log πk + logN (wt|µk,Σk)) +
∑

i

logN (yit|bt + xT
i wt, σ

2
t )

}
(6)

One can take expectations of this using the usual iterated expectation trick and exploiting the fact that if zt is known,
the posterior p(wt|zt = k,D,θ) is just a Gaussian. In more detail, define f(zt,wt) as one term in the above sum. We
have

E
[
f(Zt,wt)|D,θold

]
=

∑
k

p(zt = k|D,θold)E
[
f(Zt = k,wt)|D,θold

]
(7)

So marginalizing out zt means that p(wt|D,θ) is a mixture of K Gaussians, from which we can compute the mean
and covariance; from this we can compute the expected sufficient statistics need to update µk and Σk.
Hint 2: if the above method is too complicated for you, you can use hard-clustering for the zt’s (treat them as part of
θt). This should simplify the problem somewhat.
Hint 3: if this is still too complicated for you, just solve the K = 1 case (i.e., using a single Gaussian prior, not a
mixture). This should give performance similar to my heuristic pooling code, but may work better, since I hard-code
the value of Σ, whereas using EM to estimate it should work better (assuming a suitable regularizer on Σ!)
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