
HW2

1 Likelihood function for linear regression
Consider the log likelihood for linear regression:

`(w, σ2) = N (y|Xw, σ2In) = (2πσ2)−n/2 exp
[
− 1

2σ2
(y −Xw)T (y −Xw)

]
(1)

Define

ŵ = (XT X)−1XT y (2)
s2 = (y −Xŵ)T (y −Xŵ) (3)

Show that

`(w, σ2) = (2πσ2)−n/2 exp
[
− s2

2σ2

]
exp

[
− 1

2σ2
(w − ŵ)T (XT X)(w − ŵ)

]
(4)

This expresses the log likelihood in terms how far w deviates from the OLS estimate ŵ (where distance is measured
using a Mahalanobis distance with weight matrix (XT X)−1). We will use this result when we discuss Bayesian
inference for linear regression.

2 Multiple-output linear regression
(Source: Jaakkola)
Multiple output linear regression, which is an example of a multiple response model, is just like “regular” linear
regression, except the output is a vector. (The term multivariate linear regression or multiple linear regression
refers to the case where the input is a vector; since this is nearly always the case in practice, we just call this linear
regression.) Hence we replace the weight vector with a weight matrix:

yi = W̃xi + εi (5)

where xi is a column vector of p inputs (covariates), yi is a column vector of q outputs (responses), and W̃ is a q × p
matrix. We assume the noise is uncorrelated, εi ∼ N (0, Iq).
Let Ỹ be a matrix whose columns are y1 to yn, and X̃ be a matrix whose columns are x1 to xn, and let E be a matrix
whose columns are ε1 to εn. Then we can write the above in matrix form as | |

y1 · · · yn

| |

 =

− w1 −
...

− wq −


 | |

x1 · · · xn

| |

 +

 | |
ε1 · · · εn

| |

 (6)

or
Ỹ = W̃X̃ + Ẽ (7)
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Since it is traditional to store the input examples xi along the rows of the design matrix, we define X = X̃
T

. Similarly,
we define Y = Ỹ

T
, E = Ẽ

T
and W = W̃

T
. With this, we get

Y = XW + E (8)

or − y1 −
· · ·

− yn −

 =

− x1 −
· · ·

− xn −

  | |
w1 · · · wq

| |

 +

− ε1 −
· · ·

− εn −

 (9)

1. Consider the objective

J(W) =
1
n

n∑
i=1

||yi − W̃xi||2 (10)

Show that the minimal least squares estimator is given by

Ŵ = (XT X)−1XT Y (11)

Hint: show that the objective decomposes into q independent single-output least squares problems.

2. Consider the following dataset where p = 1, q = 2 and n = 6:

x y
0 (−1,−1)T

0 (−1,−2)T

0 (−2,−1)T

1 (1, 1)T

1 (1, 2)T

1 (2, 1)T

If the input xi is transformed through a set of basis functions, φ(xi), we can write

Ŵ = (ΦT Φ)−1ΦT Y (12)

where Φ is the modified design matrix. For example, for xi ∈ {0, 1} we can use φ(0) = (1, 0)T and φ(1) =
(0, 1)T . Thus we encode the binary input as a 2-dimensional vector, so p = q = 2. Compute Ŵ from the above
data using this set of basis functions.

3 Deriving the offset term
Let

J(w, w0) = (y −Xw − w01n)T (y −Xw − w01n) (13)

By solving ∂
∂w0

J(w, w0) = 0, show that

ŵ0 = y − xT w (14)

where y = 1
n

∑n
i=1 yi and x = 1

n

∑n
i=1 xi.
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4 Sufficient statistics for linear regression
(Source: Jaakkola) Consider fitting the model ŷ = w0 + w1x using least squares. Unfortunately we did not keep the
original data, xi, yi, but we do have the following functions (statistics) of the data:

x =
1
n

n∑
i=1

xi (15)

y =
1
n

n∑
i=1

yi (16)

Cxx =
1
n

n∑
i=1

(xi − x)2 (17)

Cxy =
1
n

n∑
i=1

(xi − x)(yi − y) (18)

Cyy =
1
n

n∑
i=1

(yi − y)2 (19)

1. What are the minimal set of statistics that we need to estimate w1?

2. What are the minimal set of statistics that we need to estimate w0?

3. Suppose a new data point, xn+1, yn+1 arrives, and we want to update our sufficient statistics without looking at
the old data, which we have not stored. (This is useful for online learning.) We can do this for x as follows.

x(n+1) def=
1

n + 1

n+1∑
i=1

xi =
1

n + 1

(
nx(n) + xn+1

)
(20)

Show that this can be rewritten in a slightly “prettier” form as follows

x(n+1) = x(n) +
1

n + 1
(xn+1 − x(n)) (21)

This has the form: new estimate is old estimate plus correction. We see that the size of the correction diminishes
over time (i.e., as we get more samples).

4. Derive a similar recursive update equation for C
(n+1)
xy in terms of the new data, xn+1, yn+1, the old sufficient

statistics n, x(n), y(n), C
(n)
xy , and the newly computed means, x(n+1), y(n+1). Simplify as much as possible.

5 Linear regression on prostate cancer data (Matlab)
Consider the prostate cancer dataset discussed in [HTF01]. There are 8 continuous inputs and 1 continuous response,
namely lpsa, which stands for log of prostate-specific antigen. The (standardized) data is in the file prostate.mat
which contains the following variables (amongst others)

Listing 1: :
Name Size Bytes Class Attributes

Xtest 30x8 1920 double
Xtrain 67x8 4288 double
names 1x9 624 cell
ytest 30x1 240 double
ytrain 67x1 536 double

Fit a simple linear model ŷ(x) = w0+w1x1+. . .+w8x8 by maximum likelihood on the training set. What coefficients
w do you get? What is the mean squared error and its standard error on the test set? Turn in your numbers and code.
(You should get the same results as Table 1, left column.
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Term LS ridge

intercept 2.480 2.472
lcavol 0.676 0.366

lweight 0.303 0.228
age -0.141 -0.021
lbph 0.209 0.151
svi 0.304 0.207
lcp -0.287 0.039

gleason -0.021 0.044
pgg45 0.266 0.117

Test MSE 0.586 0.541
SE 0.184 0.170

Table 1: Coefficients and accuracy of least squares and ridge regression on the prostate cancer data. Based on Table 3.3 of [HTF01].
Produced by Exercise 5.
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