CS540 Machine learning L9 Bayesian statistics

Last time

- Naïve Bayes
- Beta-Bernoulli

Outline

- Bayesian concept learning
- Beta-Bernoulli model (review)
- Dirichlet-multinomial model
- Credible intervals

Bayesian concept learning

Based on Josh Tenenbaum's PhD thesis (MIT BCS 1999)

"Concept learning" (binary classification) from positive and negative examples

"healthy levels"

Concepu rearinilig roon possulve onily
 avamnlac

"healthy levels"

Human learning vs machine learning/ statistics

- Most ML methods for learning "concepts" such as "dog" require a large number of positive and negative examples
- But people can learn from small numbers of positive only examples (look at the doggy!)
- This is called "one shot learning"

Everyday inductive leaps

How can we learn so much about . . .

- Meanings of words
- Properties of natural kinds
- Future outcomes of a dynamic process
- Hidden causal properties of an object
- Causes of a person's action (beliefs, goals)
- Causal laws governing a domain
. . . from such limited data?

The Challenge

- How do we generalize successfully from very limited data?
- Just one or a few examples
- Often only positive examples
- Philosophy:
- Induction called a "problem", a "riddle", a "paradox", a "scandal", or a "myth".
- Machine learning and statistics:
- Focus on generalization from many examples, both positive and negative.

The solution: Bayesian inference

- Bayes' rule:

$$
P(H \mid D)=\frac{P(H) P(D \mid H)}{P(D)}
$$

- Various compelling (theoretical and experimental) arguments that one should represent one's beliefs using probability and update them using Bayes rule

Bayesian inference: key ingredients

- Hypothesis space H
- Prior p(h)
- Likelihood p(D|h)
- Algorithm for computing posterior $p(h \mid D)$

$$
p(h \mid d)=\frac{p(d \mid h) p(h)}{\sum_{h^{\prime} \in H} p\left(d \mid h^{\prime}\right) p\left(h^{\prime}\right)}
$$

The number game

1 random "yes" example:

4 random "yes" examples:

- Learning task:
- Observe one or more examples (numbers)
- Judge whether other numbers are "yes" or "no".

The number game

Examples of
"yes" numbers

60

60801030
multiples of 10
even numbers

60635659 numbers "near" 60

60

60801030

60525755

Diffuse similarity

Rule:
"multiples of 10 "
Focused similarity: numbers near 50-60

60

60801030

Diffuse similarity

Rule:
"multiples of 10 "
Focused similarity: numbers near 50-60

Some phenomena to explain:

- People can generalize from just positive examples.
- Generalization can appear either graded (uncertain) or all-or-none (confident).

Bayesian model

- H: Hypothesis space of possible concepts:
- $X=\left\{x_{1}, \ldots, x_{n}\right\}: n$ examples of a concept C.
- Evaluate hypotheses given data using Bayes' rule:

$$
p(h \mid X)=\frac{p(X \mid h) p(h)}{\sum_{h^{\prime} \in H} p\left(X \mid h^{\prime}\right) p\left(h^{\prime}\right)}
$$

- $p(h)$ ["prior"]: domain knowledge, pre-existing biases
- $p(X \mid h)$ ["likelihood"]: statistical information in examples.
- $p(h \mid X)$ ["posterior"]: degree of belief that h is the true extension of C.

Hypothesis space

- Mathematical properties (~50):
- odd, even, square, cube, prime, ...
- multiples of small integers
- powers of small integers
- same first (or last) digit
- Magnitude intervals (~5000):
- all intervals of integers with endpoints between 1 and 100
- Hypothesis can be defined by its extension

$$
h=\{x: h(x)=1, x=1,2, \ldots, 100\}
$$

Likelihood p(X|h)

- Size principle: Smaller hypotheses receive greater likelihood, and exponentially more so as n increases.

$$
\begin{aligned}
p(X \mid h) & =\left[\frac{1}{\operatorname{size}(h)}\right]^{n} \text { if } x_{1}, \ldots, x_{n} \in h \\
& =0 \text { if any } x_{i} \notin h
\end{aligned}
$$

- Follows from assumption of randomly sampled examples (strong sampling).
- Captures the intuition of a representative sample.

Example of likelihood

- $X=\{20,40,60\}$
- H1 = multiples of $10=\{10,20, \ldots, 100\}$
- $\mathrm{H} 2=$ even numbers $=\{2,4, \ldots, 100\}$
- $\mathrm{H} 3=$ odd numbers $=\{1,3, \ldots, 99\}$
- $\mathrm{P}(\mathrm{X} \mid \mathrm{H} 1)=1 / 10$ * $1 / 10$ * $1 / 10$
- $p(X \mid H 2)=1 / 50 * 1 / 50 * 1 / 50$
- $P(X \mid H 3)=0$

Size principle

Size principle

Data slightly more of a coincidence under h_{1}

Size principle

Data much more of a coincidence under h_{1}

Prior p(h)

- $X=\{60,80,10,30\}$
- Why prefer "multiples of 10 " over "even numbers"?
- Size principle (likelihood)
- Why prefer "multiples of 10 " over "multiples of 10 except 50 and 20"?
- Prior
- Cannot learn efficiently if we have a uniform prior over all 2^{100} logically possible hypotheses

Need for prior (inductive bias)

- Consider all $2^{2^{2}}=16$ possible binary functions on 2 binary inputs
Boolean functions.

x_{1}	x_{2}	h_{1}	h_{2}	h_{3}	h_{4}	h_{5}	h_{6}	h_{7}	h_{8}	h_{9}	h_{10}	h_{11}	h_{12}	h_{13}	h_{14}	h_{15}	h_{16}
0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
0	1	0	0	0	0	γ	γ	χ	χ	0	0	0	0	1	1	1	1
1	0	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
1	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1

- If we observe ($x_{1}=0, x_{2}=1, y=0$), this removes $h_{5}, h_{6}, h_{7}, h_{8}, h_{13}, h_{14}, h_{15}, h_{16}$
- Still leaves exponentially many hypotheses!
- Cannot learn efficiently without assumptions (no free lunch theorem)

Hierarchical prior

Computing the posterior

- In this talk, we will not worry about computational issues (we will perform brute force enumeration or derive analytical expressions).

$$
p(h \mid X)=\frac{p(X \mid h) p(h)}{\sum_{h^{\prime} \in H} p\left(X \mid h^{\prime}\right) p\left(h^{\prime}\right)}
$$

Generalizing to new objects

Given $p(h \mid X)$, how do we compute the probability that C applies to some new stimulus y ?

$$
p(y \in C \mid X)
$$

Posterior predictive distribution

Posterior predictive distribution

Compute the probability that C applies to some new object y by averaging the predictions of all hypotheses h, weighted by $p(h \mid X)$
(Bayesian model averaging):

$$
p(y \in C \mid X)=\sum_{h \in H} \underbrace{p(y \in C \mid h)}_{=\left[\begin{array}{l}
1 \text { if } y \in h \\
0 \text { if } y \notin h
\end{array}\right.} p(h \mid X)
$$

Examples: 16

Examples:
16
8
2
64

Examples:
16
23
19
20

+ Examples Human generalization Bayesian Model

60

60801030

60525755

16

168264

16231920

Rules and exemplars in the number game

- Hyp. space is a mixture of sparse (mathematical concepts) and dense (intervals) hypotheses.
- If data supports mathematical rule (eg $\mathrm{X}=\{16,8,2,64\}$), we rapidly learn a rule ("aha!" moment), otherwise (eg $X=\{6,23,19,20\}$) we learn by similarity, and need many examples to get sharp boundary.

Summary of the Bayesian approach

1. Constrained hypothesis space H
2. Prior $\mathrm{p}(\mathrm{h})$
3. Likelihood $p(X \mid h)$
4. Hypothesis (model) averaging:

$$
p(y \in C \mid X)=\sum_{h} p(y \in C \mid h) p(h \mid X)
$$

MAP (maximum a posterior) learning

- Instead of Bayes model averaging, we can find the mode of the posterior, and use it as a plug-in.

$$
\begin{aligned}
\hat{h} & =\arg \max _{h} p(h \mid X)=\arg \max _{h} p(X \mid h) p(h) \\
p(y \in C \mid X) & =p(y \in C \mid \hat{h})
\end{aligned}
$$

- As $\mathrm{N} \rightarrow \infty$, the posterior peaks around the mode, so MAP and BMA converge

$$
\left.p(y \in C \mid X)=\sum_{h} p(y \in C \mid h) p(h \mid X) \rightarrow \sum_{h} p(y \in C \mid h) \delta(h, \hat{h})\right)=p(y \in C \mid \hat{h})
$$

- Cannot explain transition from similarity-based (broad posterior) to rule-based (narrow posterior)

Maximum likelihood learning

- $\mathrm{ML}=$ no prior, no averaging.
- Plug-in the MLE for prediction:

$$
\begin{aligned}
\hat{h} & =\underset{h}{\arg \max _{K}(X \mid h)} \\
p(y \in C \mid X) & =p(y \in C \mid \hat{h})
\end{aligned}
$$

- $X=\{16\}$-> $h=$ "powers of 4 " $X=\{16,8,2,64\}$-> h= "powers of 2".
- So predictive distribution gets broader as we get more data, in contrast to Bayes.
- ML is initially very conservative.

Large sample size behavior

- As the amount of data goes to $\infty, \mathrm{ML}, \mathrm{MAP}$ and BMA all converge to the same solution, since the likelihood overwhelms the prior, since $p(X \mid h)$ grows with N, but $p(h)$ is constant.
- If truth is in the hypothesis class, all methods will find it; thus they are consistent estimators.

Beta-Bernoulli model

$$
\begin{aligned}
p(\theta \mid \mathcal{D}) & \propto p(\mathcal{D} \mid \theta) p(\theta) \\
& =p(\mathcal{D} \mid \theta) \operatorname{Beta}\left(\theta \mid \alpha_{0}, \alpha_{1}\right) \\
& =\left[\theta^{N_{1}}(1-\theta)^{N_{0}}\right]\left[\theta^{\alpha_{1}-1}(1-\theta)^{\alpha_{0}-1}\right] \\
& =\theta^{N_{1}+\alpha_{1}-1}(1-\theta)^{N_{0}+\alpha_{0}-1} \\
& \propto \operatorname{Beta}\left(\theta \mid N_{1}+\alpha_{1}, N_{0}+\alpha_{0}\right)
\end{aligned}
$$

Sequential updating

Prior predictive density

$$
\begin{aligned}
p(x) & =\int p(x \mid \theta) p(\theta) d \theta \\
& =\int_{0}^{1} \operatorname{Bin}(x \mid \theta, m) \operatorname{Beta}\left(\theta \mid \alpha_{0}, \alpha_{1}\right) d \theta \\
& \stackrel{\text { def }}{=} B \underset{\substack{\text { proror pedidive }}}{B b\left(x \mid \alpha_{0}, \alpha_{1}, m\right)=\frac{B\left(x+\alpha_{1}, m-x+\alpha_{0}\right)}{B\left(\alpha_{1}, \alpha_{0}\right)}\binom{m}{x}}
\end{aligned}
$$

Posterior predictive density

$$
\begin{aligned}
p(x \mid \mathcal{D}) & =\int p(x \mid \theta) p(\theta \mid \mathcal{D}) d \theta \\
& =\int_{0}^{1} \operatorname{Bin}(x \mid \theta, m) \operatorname{Beta}\left(\theta \mid \alpha_{0}^{\prime}, \alpha_{1}^{\prime}\right) d \theta \\
& \stackrel{\text { def }}{=} B b\left(x \mid \alpha_{0}^{\prime}, \alpha_{1}^{\prime}, m\right)=\frac{B\left(x+\alpha_{1}^{\prime}, n-x+\alpha_{0}^{\prime}\right)}{B\left(\alpha_{1}^{\prime}, \alpha_{0}^{\prime}\right)}\binom{m}{x}
\end{aligned}
$$

Plugin approximation

$$
\begin{aligned}
p(x \mid \mathcal{D}) & =\int p(x \mid \theta) \delta_{\hat{\theta}}(\theta) d \theta=p(x \mid \hat{\theta}) \\
& =\operatorname{Bin}(x \mid \hat{\theta}, m)
\end{aligned}
$$

Posterior predictive

$$
\begin{aligned}
E[x] & =m \frac{\alpha_{1}^{\prime}}{\alpha_{0}^{\prime}+\alpha_{1}^{\prime}} \\
\operatorname{Var}[x] & =\frac{m \alpha_{0}^{\prime} \alpha_{1}^{\prime}}{\left(\alpha_{0}^{\prime}+\alpha_{1}^{\prime}\right)^{2}} \frac{\left(\alpha_{0}^{\prime}+\alpha_{1}^{\prime}+m\right)}{\alpha_{0}^{\prime}+\alpha_{1}^{\prime}+1}
\end{aligned}
$$

- If $m=1, X$ in $\{0,1\}, E[x \mid D]=p(x=1 \mid D)=a 1(a 1+a 0)$

$$
\begin{aligned}
p(x=1 \mid \mathcal{D}) & =\int_{0}^{1} p(x=1 \mid \theta) p(\theta \mid \mathcal{D}) d \theta \\
& =\int_{0}^{1} \theta \operatorname{Beta}\left(\theta \mid \alpha_{1}^{\prime}, \alpha_{0}^{\prime}\right) d \theta=E[\theta \mid \mathcal{D}]=\frac{\alpha_{1}^{\prime}}{\alpha_{0}^{\prime}+\alpha_{1}^{\prime}}
\end{aligned}
$$

Laplace's rule of succession

$$
p(x=1 \mid \mathcal{D})=\frac{N_{1}+1}{N_{1}+N_{0}+2}
$$

Summary of beta-Bernoulli model

- Prior $p(\theta)=\operatorname{Beta}\left(\theta \mid \alpha_{1}, \alpha_{0}\right)=\frac{1}{B\left(\alpha_{1}, \alpha_{0}\right)} \theta^{\alpha_{1}-1}(1-\theta)^{\alpha_{0}-1}$
- Likelihood $p(D \mid \theta)=\theta^{N_{1}}(1-\theta)^{N_{0}}$
- Posterior

$$
p(\theta \mid D)=\operatorname{Beta}\left(\theta \mid \alpha_{1}+N_{1}, \alpha_{0}+N_{0}\right)
$$

- Posterior predictive

$$
p(X=1 \mid D)=\frac{\alpha_{1}+N_{1}}{\alpha_{1}+\alpha_{0}+N}
$$

Dirichlet-multinomial model

- $\mathrm{X}_{\mathrm{i}} \sim \operatorname{Mult}(\theta, 1), \mathrm{p}\left(\mathrm{X}_{\mathrm{i}}=\mathrm{k}\right)=\theta_{\mathrm{k}}$
- Prior $p(\theta)=\operatorname{Dir}\left(\theta \mid \alpha_{1}, \ldots, \alpha_{K}\right) \propto \prod_{k=1}^{K} \theta_{k}^{\alpha_{k-1}}$
- Likelihood $p(D \mid \theta)=\prod \theta_{k}^{N_{k}}$
- Posterior $p(\theta \mid D)=\operatorname{Dir}\left(\theta \mid \alpha_{1}+N_{1}, \ldots, \alpha_{K}+N_{K}\right)$
- Posterior predictive $p(X=k \mid D)=\frac{\alpha_{k}+N_{k}}{\sum_{k^{\prime}} \alpha_{k^{\prime}}+N_{k^{\prime}}}$

Dirichlet

$(20,20,20)$

(2,2,2)

(20,2,2)

Summarizing the posterior

- If $p(\theta \mid D)$ is too complex to plot, we can compute various summary statistics, such as posterior mean, mode and median

$$
\begin{aligned}
\hat{\theta}_{\text {mean }} & =E[\theta \mid \mathcal{D}] \\
\hat{\theta}_{M A P} & =\arg \max _{\theta} p(\theta \mid \mathcal{D}) \\
\hat{\theta}_{\text {median }} & =t p(\theta>t \mid \mathcal{D})=0.5
\end{aligned}
$$

Bayesian credible intervals

- We can represent our uncertainty using a posterior credible interval

$$
p(\ell \leq \theta \leq u \mid D) \geq 1-\alpha
$$

- We set

$$
\ell=F^{-1}(\alpha / 2), u=F^{-1}(1-\alpha / 2)
$$

Example

- We see 47 heads out of 100 trials.
- Using a Beta(1,1) prior, what is the 95% credible interval for probability of heads?

```
S = 47; N = 100; a = S+1; b = (N-S)+1; alpha = 0.05;
l = betainv(alpha/2, a, b);
u = betainv(1-alpha/2, a, b);
CI = [l,u]
    0.3749 0.5673
```

