CS540 Machine learning

L3




Announcements

* Linear algebra tutorial by Mark Schmidt, 5:30 to
6:30 pm today, in the CS X-wing 8th floor lounge
(X836).

 Move midterm from Tue Oct 14 to Thu Oct 167
 Hwa3sol handed out today
 Change in order



* Multivariate Gaussians

e Eigenanalysis

e MLE

e Use In generative classifiers



 Nalve Bayes classifiers

« Bayesian parameter estimation |. Beta-Binomial
model



Bayes rule for classifiers

: Class-conditional density Class prior
Class posterior
/ o
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Class prior

o Let (Yy,..,Ye) ~ Mult(mt, 1) be the class prior.

P(y1,...,yc|m) = ng(yczl) Srot

» Since 2. Y.=1, only one bit can be on. This is
called a 1-of-C encoding. We can write Y=c

instead.  v= = (v,,v,,Y,) = (0,1,0)

P(y|n) = H Wf(y c) _

e e.g., p(man)=0.7, p(woman)—O.l, 0 =
p(child)=0.2 0y




Correlated features

« Height and weight are not independent

red = famals, blueg=mals

] ) a5 70 75 ao



Fitting the model

e Fit each class conditional density separately

pe = %;I(yizc)xiznic > ox

1:Y;=cC

1 n
Se = =3I = Ok — ) (xi — )"
€ i=1

Ne = Z I(yz — C)
1=1



Ignoring the correlation...

* It X; € R, we can use product of 1d Gaussians
ley:C - N(ujm O; c)

d
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Document classification

¢ LetY €{1,...,C} be the class label and x € {0,1}¢
e eg Y € {spam, urgent, normal},
X; = I(word I Is present in message)

e Bag of words model

1 2 3 4 5 6 7
Words = {john, mary, sex, money, send, meeting, unk}

“John sent money to Mary after the meeting about money” , ______=nnaset
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Binary features (multivariate Bernoulli)
Let Xj|ly=c ~ Ber(l;) 50 p(Xi=1]y=c) =

I(z;=1) I(x;=0)
p(xly =c,p) = |hﬁ (1 — pje) ™™
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Fitting the model

n

1
Hje = n—zf(inC)I(wijZ ) =
€ =1

N

n

Nje = Zl(yz =c,x;; = 1)

1=1



Class posterior

¢ ayes rule T )
p(y = clz) = ply =c)p(zly =c) . HZ L 0: (1—6;,)

p(x) - p(z)
e Since numerator and denominator are very small
number, use Iogs to avoid underflow

log p(y = c|z) = log . + ZI = 1)log 6 + I(2; = 0)log(1 — 6;.) — log p(=)

« How compute the normalization constant?

log p(z) = log Zp )] = log[z mefel



Log-sum-exp trick

e Define
logp(z) = log[» mcfe]

b. = logm.+ log f.

logp(z) = logZebc = log [(Z ebc)eBeB]
= log [(Z ebCB)eB] = [log(z ele=5)

B = maxb,

+ B

log(e= ™ + e 1?!) =log (e (e” + 7)) =log(e” + ) — 120

e |[n Matlab, use Minka’s function S =logsumexp(b)

logjoint = log(prior) + counts * log(theta) + (1-counts) * log(1-theta); Loj ,9/734, ac)
logpost = logjoint — logsumexp(logjoint) lo; sly=cf M)



Missing features

* Suppose the value of x; Is unknown
 We can szmpl% {og th& term |)o(x1|y =C).

ply =c = C, T2

ZP Yy = ¢,T1,T2:.d)

= D ply=c) Hp(iv ly =

= ply=aR_p@ly=e)]]] plily =0
= ply=0) [] plz;ly =

 This Is a big advantage of generative classifiers
over discriminative classifiers



Form of the class posterior

 We can derive an analytic expression for p(y=c|x)
that will be useful later.

p(zly = c)ply = ¢)
2 Plaly = c)ply = ¢)
___expllogp(z|y = ¢) +log p(y = ¢)]
> e expllogp(zly = ') +log p(y = ¢')]
exp [logm. + > . I(x; = 1)log0;c + I(x; = 0)log(1l — 6;.)]
Yooexpllogme + > I(x; =1)logl; o + I(x; = 0)log(1l — 0;.)]

p(Y =c|zx,0,7) =




Form of the class posterior

 From previous slide
p(Y =c|z,0,7) x exp |logm.+ Z I(z; =1)logf;. + I(x; = 0)log(1l — QZ-C)]
* Define
' = [17[(331:1)7[(331:0)77I($d:1)71(wd20)]
ﬂc — [log Te, log 9107 log(l — 916)7 st log edca log(l — edc)]

 Then the posterior is given by the softmax function

exp|BL 2’|

p(Y — C|£C,ﬂ) — Z , eXp[ﬁj:x/]




Discriminative vs generative

o Discriminative: p(y|x,theta)
o Generative: p(y,X|theta)




Logisitic regression vs naive Bayes

test error

size of training set

Discriminative Generative
Easy toqt? No Yes
Can handle basis function expansion? Yes No
Fit classes separately? No Yes
Handle missing data? No Yes

Best for Large sample size

Small sample size



Sparse data problem

e Consider naive Bayes for
binary features.

Spam Ham
Limited | 1 2
X = *you will receive our limited time offer if
Time 10 9 you send us $1M today”
Offer 0 0
Total Ns Nh

(1/Ns)(1O/NS)(O/NS) =0

MLE overfits the data

p(x|y = S)



e Bayes: what/why?
 Bernoulli



Fundamental principle of Bayesian statistics

* |In Bayesian stats, everything that is uncertain (e.g.,
0) is modeled with a probability distribution.

 We incorporate everything that is known (e.g., D) Is
by conditioning on Iit, using Bayes rule to update
our prior beliefs into posterior beliefs.

Posterior Likelihood Prior
probability \ | " probability
o(hd) = p(d | h) p(h)
> p(d[h)p(h)
h'OH

Bayesian inference = Inverse probability theory



In praise of Bayes

« Bayesian methods are conceptually simple and
elegant, and can handle small sample sizes (e.g.,
one-shot learning) and complex hierarchical
models without overfitting.

 They provide a single mechanism for answering all
guestions of interest; there iIs no need to choose
between different estimators, hypothesis testing
procedures, etc.

 They avoid various pathologies associated with
orthodox statistics.

 They often enjoy good frequentist properties.




Why isn't everyone a Bayesian?

 The need for a prior.
e Computational issues.



The need for a prior

e Bayes rule requires a prior, which is considered
“subjective”.

 However, we know learning without assumptions is
Impossible (no free lunch theorem).

e Often we actually have informative prior knowledge.

e If not, it Is possible to create relatively
“uninformative” priors to represent prior ignorance.

 We can also estimate our priors from data
(empirical Bayes).

 We can use posterior predictive checks to test
goodness of fit of both prior and likelihood.




Computational issues

 Computing the normalization constant requires
Integrating over all the parameters

p(0)p(D]0)
6|D
plOID) = [ p(6")p(D|0")do’
 Computing posterior expectations requires
Integrating over all the parameters

/f p(6|D)do




Approximate inference

 We can evaluate posterior expectations using
Monte Carlo integration

/f p(0|D)db ~ — Zf (0°) where 6° ~ p(6|D)

s=1
« Generating posterior samples can be tricky
— Importance sampling
— Particle filtering
— Markov chain Monte Carlo (MCMC)

 There are also deterministic approximation
methods
— Laplace
— Variational Bayes
— EXpectation Propagation



Conjugate priors

« For simplicity, we will mostly focus on a special kind
of prior which has nice mathematical properties.

e A prior p(9) is said to be conjugate to a likelihood
pP(D|0) if the corresponding posterior p(6|D) has the
same functional form as p(9).

e This means the prior family is closed under
Bayesian updating.

e S0 we can recursively apply the rule to update our
beliefs as data streams in (online learning).

A natural conjugate prior means p(0) has the same
functional form as p(D|0).




Example: coin tossing

e Consider the problem of estimating the probability

of heads 6 from a sequence of N coin tosses, D =
(X1, ooy X\)

* First we define the likelihood function, then the
prior, then compute the posterior. We will also
consider different ways to predict the future.

e MLEis N1
0 = —
N

« Suffers from sparse data problem



Black swan paradox

e Suppose we have seen N=3 white swans. What is
the probability that swan Xy, 1s black?

 |f we plug In the MLE, we predict black swans are
Impossible, since N,=N;=0, N,=N,=3

Ny, 0

— — p(X =100 —0 —0
N, + N, N’ p( | MLE) MLE

OrviLE =

 However, this may just be due to sparse data.

« Below, we will see how Bayesian approaches work
better in the small sample setting.



The beta-Bernoulli model

e Consider the probability of heads, given a
sequence of N coin tosses, X, ..., Xy-

e Likelihood

N
p(DIo) = [] 6% (1 —6)' X = oM (1 — )
n=1

 Natural conjugate prior is the Beta distribution
p(0) = Be(f|a1, ag) oc 91 71(1 — §)*—!
e Posterior Is also Beta, with updated counts

p(0|D) = Be(fay + N1, a9 + Nog) oc §21 71N (1 — g)o—1+No

Just combine the exponents in 8 and (1-8) from the prior and likelihood



The beta distribution

 Beta distribution  ,4a;, aq) = = L pa-iq — gyoo-
a1 Oz

e The normalization constant IS the beta function

' ['(aq)I' (o)

B — [ 911 —g)o—1gp =
(@1, 00) /o (1-9) T'(ag + o)
E[@] _ ! 1 0.5
al _|_ ao DD 0.5 q nﬂ 0.5 1

0] 0.5 1 0] 0.5 1



Updating a beta distribution

e Prioris Beta(2,2). Observe 1 head. Posterior is
Beta(3,2), so mean shifts from 2/4 to 3/5.

plB)=Be(2,2) pix=1/8) pio)x=1)=Be(3,2)
2

o]
1 ] 05 1 o] 0.5 1

* Prior is Beta(3,2). Observe 1 head. Posterior Is
Beta(4,2), so mean shifts from 3/5 to 4/6.

pib)=Be(2,2) plx=1[8) plBjx=1)=Ba(4,2)
2 2

1.5 1.5 1.5

1 1 1




Setting the hyper-parameters

The prior hyper-parameters a,, a, can be
Interpreted as pseudo counts.

The effective sample size (strength) of the prior Is
a,+0,.
The prior mean is a,/(a,+0,).

If our prior belief is p(heads) = 0.3, and we think
this belief is equivalent to about 10 data points, we
just solve

a1
4] -+ 871)

= 0.3

a1 + g = 10,



Posterior mean

* Let N=N; + N, be the amount of data, and
M=a,+a, be the amount of virtual data.

The posterior mean Is a convex combination of prior

mean a,/M and MLE N,/N

a1 + Ny a1 + Ny
E\6 N1, N, = =
9]0, o, N1, No) a1 F Ny +ap+ Ny N+M
M Oé1+ N N1
N+MM N+MN

o3 Ny
— w2 (] — w2
wap T -w)g

w = M/(N+M) is the strength of the prior relative to the total amount of data

We shrink our estimate away from the MLE towards
the prior (a form of regularization).



MAP estimation

|t Is often easier to compute the posterior mode
(optimization) than the posterior mean (integration).

 This Is called maximum a posteriori estimation.

Orr4p = arg max p(0| D)

e This Is equivalent to penalized likelihood
estimation.

Orrap = arg maxlog p(D|6) + logp(6)
 For the beta distribution,

vap— 91— 1

C¥1—|—C¥0—2



Posterior predictive distribution

 We Integrate out our uncertainty about 6 when
predicting the future (hedge our bets)

p(X|D) = / p(X|0)p(0|D)do

* |f the posterior becomes peakew:w |

p(0|D) — §(6 — 6)
we get the plug-in principle.

p(x|D) = / p(210)6(0 — 6)do = p(z|d)

Sifting property of delta functions



Posterior predictive distribution

* Let o, = updated hyper-parameters.

 |n this case, the posterior predictive Is equivalent to
nlugging In the posterior mean parameters

p(X =1|D) = / p(X = 110)p(6D)d#

a

/ /
0 +

1
/ 6 Beta(f|ay, ap)df = E[0] =
0

» If a,=0,=1, we get Laplace’s rule of succession
(add one smoothing)

N, +1
p(X = 1|Ny, Ny) = !

N1+ Ny + 2




Solution to black swan paradox

 If we use a Beta(1,1) prior, the posterior predictive

IS
N; +1

Ny + Ng +2

p(X = 1|N1, No) =

so we will never predict black swans are
Impossible.

e However, as we see more and more white swans,
we will come to believe that black swans are pretty
rare.



Summary of beta-Bernoulli model

: 1
Drior p(0) = Beta(0|ay, ap) = Blay.o0)

_ikelihood »(D|9) = 6™ (1 — g)™o

Posterior r(0|D) = Beta(0|ai + N1, g + No)
a1 + Ny
a; +ag+ N

9&1—1(1 . 9)@0—1

Posterior predictive p(X =1|D) =




