CS540 Machine learning L8

Announcements

- Linear algebra tutorial by Mark Schmidt, 5:30 to 6:30 pm today, in the CS X-wing 8th floor lounge (X836).
- Move midterm from Tue Oct 14 to Thu Oct 16 ?
- Hw3sol handed out today
- Change in order

Last time

- Multivariate Gaussians
- Eigenanalysis
- MLE
- Use in generative classifiers

This time

- Naïve Bayes classifiers
- Bayesian parameter estimation I: Beta-Binomial model

Bayes rule for classifiers

$$
p(y=c \mid x)=\frac{p(x \mid y=c) p(y=c)}{\sum_{c^{\prime}} p\left(x \mid y=c^{\prime}\right) p\left(y=c^{\prime}\right)}
$$

Class prior

- Let $\left(Y_{1}, . ., Y_{C}\right) \sim \operatorname{Mult}(\pi, 1)$ be the class prior.

$$
P\left(y_{1}, \ldots, y_{C} \mid \pi\right)=\prod_{c=1}^{C} \pi_{c}^{I\left(y_{c}=1\right)} \quad \sum_{c=1}^{C} \pi_{c}=1
$$

- Since $\sum_{c} Y_{c}=1$, only one bit can be on. This is called a 1-of-C encoding. We can write $Y=c$ instead.

$$
\begin{aligned}
& \mathrm{Y}=2 \equiv\left(\mathrm{Y}_{1}, \mathrm{Y}_{2}, \mathrm{Y}_{3}\right)=(0,1,0) \\
& P(y \mid \pi)=\prod_{c=1}^{C} \pi_{c}^{I(y=c)}=\pi_{y}
\end{aligned}
$$

- e.g., $p(m a n)=0.7, p(w o m a n)=0.1$, $p($ child $)=0.2$

Correlated features

- Height and weight are not independent

Fitting the model

- Fit each class conditional density separately

$$
\begin{aligned}
\boldsymbol{\mu}_{c} & =\frac{1}{n_{c}} \sum_{i=1}^{n} I\left(y_{i}=c\right) \mathbf{x}_{i}=\frac{1}{n_{c}} \sum_{i: y_{i}=c} \mathbf{x}_{i} \\
\boldsymbol{\Sigma}_{c} & =\frac{1}{n_{c}} \sum_{i=1}^{n} I\left(y_{i}=c\right)\left(\mathbf{x}_{i}-\boldsymbol{\mu}_{c}\right)\left(\mathbf{x}_{i}-\boldsymbol{\mu}_{c}\right)^{T} \\
n_{c} & =\sum_{i=1}^{n} I\left(y_{i}=c\right)
\end{aligned}
$$

$$
\pi_{c}=\frac{n_{c}}{n}
$$

Ignoring the correlation...

- If $X_{j} \in R$, we can use product of 1d Gaussians

$$
X_{j} \mid y=c \sim N\left(\mu_{\mathrm{jc}}, \sigma_{\mathrm{jc}}\right)
$$

$$
p(x \mid y=c)=\prod_{j=1}^{d} \frac{1}{\sqrt{2 \pi \sigma_{j c}^{2}}} \exp \left(-\frac{1}{2 \sigma_{j c}^{2}}\left(x_{j}-\mu_{j c}\right)^{2}\right)
$$

$$
\boldsymbol{\Sigma}_{c}=\left(\begin{array}{ccc}
\sigma_{1 c}^{2} & \ldots & 0 \\
& \ddots & \\
0 & \ldots & \sigma_{d c}^{2}
\end{array}\right)
$$

Document classification

- Let $Y \in\{1, \ldots, C\}$ be the class label and $x \in\{0,1\}^{d}$
- eg $\mathrm{Y} \in\{$ spam, urgent, normal\}, $x_{i}=I($ word i is present in message)
- Bag of words model

Binary features (multivariate Bernoulli)

- Let $X_{i} \mid y=c \sim \operatorname{Ber}\left(\mu_{i c}\right)$ so $p\left(X_{i}=1 \mid y=c\right)=\mu_{i c}$

$$
p(\mathbf{x} \mid y=c, \boldsymbol{\mu})=\prod_{j=1}^{d} \mu_{j c}^{I\left(x_{j}=1\right)}\left(1-\mu_{j c}\right)^{I\left(x_{j}=0\right)}
$$

Word freq for class 2

Fitting the model

$$
\begin{aligned}
& \mu_{j c}=\frac{1}{n_{c}} \sum_{i=1}^{n} I\left(y_{i}=c\right) I\left(x_{i j}=1\right)=\frac{n_{j c}}{n_{c}} \\
& n_{j c}=\sum_{i=1}^{n} I\left(y_{i}=c, x_{i j}=1\right)
\end{aligned}
$$

Class posterior

- Bayes rule

$$
\begin{aligned}
& \text { es rule } \\
& p(y=c \mid x)=\frac{p(y=c) p(x \mid y=c)}{p(x)}=\frac{\pi_{c} \prod_{i=1}^{d} \theta_{i c}^{I\left(x_{i}=1\right)}\left(1-\theta_{i c}\right)^{I\left(x_{i}=0\right)}}{p(x)}
\end{aligned}
$$

- Since numerator and denominator are very small number, use logs to avoid underflow

$$
\log p(y=c \mid x)=\log \pi_{c}+\sum_{i=1}^{d} I\left(x_{i}=1\right) \log \theta_{i c}+I\left(x_{i}=0\right) \log \left(1-\theta_{i c}\right)-\log p(x)
$$

- How compute the normalization constant?

$$
\log p(x)=\log \left[\sum_{c} p(y=c, x)\right]=\log \left[\sum_{c} \pi_{c} f_{c}\right]
$$

Log-sum-exp trick

- Define

$$
\begin{aligned}
\log p(x) & =\log \left[\sum_{c} \pi_{c} f_{c}\right] \\
b_{c} & =\log \pi_{c}+\log f_{c} \\
\log p(x) & =\log \sum_{c} e^{b_{c}}=\log \left[\left(\sum_{c} e^{b_{c}}\right) e^{-B} e^{B}\right] \\
& =\log \left[\left(\sum_{c} e^{b_{c}-B}\right) e^{B}\right]=\left[\log \left(\sum_{c} e^{b_{c}-B}\right)\right]+B \\
B & =\max _{c} b_{c}
\end{aligned}
$$

$$
\log \left(e^{-120}+e^{-121}\right)=\log \left(e^{-120}\left(e^{0}+e^{-1}\right)\right)=\log \left(e^{0}+e^{-1}\right)-120
$$

- In Matlab, use Minke's function $S=\operatorname{logsumexp}(b)$

$$
\begin{aligned}
& \text { logjoint }=\log (\text { prior })+\text { counts * } \log (\text { theta })+(1-\text { counts }) * \log (1-\text { theta }) ; \log p(y=c, x) \\
& \text { logpost }=\log j o i n t-\operatorname{logsumexp}(\text { logjoint }) \\
& \log p(y=c \mid x)
\end{aligned}
$$

Missing features

- Suppose the value of x_{1} is unknown
- We can simply drop the term $\mathrm{p}\left(\mathrm{x}_{1} \mid \mathrm{y}=\mathrm{C}\right)$.

$$
\begin{aligned}
& =\sum_{x_{1}} p\left(y=c, x_{1}, x_{2: d}\right) \\
& =\sum_{x_{1}} p(y=c) \prod_{j=1}^{d} p\left(x_{j} \mid y=c\right)
\end{aligned}
$$

$$
=p(y=c)\left[\sum_{x_{1}} p\left(x_{1} \mid y=c\right)\right] \prod_{j=2}^{d} p\left(x_{j} \mid y=c\right)
$$

$$
=p(y=c) \prod_{j=2}^{d} p\left(x_{j} \mid y=c\right)
$$

- This is a big advantage of generative classifiers over discriminative classifiers

Form of the class posterior

- We can derive an analytic expression for $p(y=c \mid x)$ that will be useful later.

$$
\begin{aligned}
p(Y=c \mid x, \theta, \pi) & =\frac{p(x \mid y=c) p(y=c)}{\sum_{c^{\prime}} p\left(x \mid y=c^{\prime}\right) p\left(y=c^{\prime}\right)} \\
& =\frac{\exp [\log p(x \mid y=c)+\log p(y=c)]}{\sum_{c^{\prime}} \exp \left[\log p\left(x \mid y=c^{\prime}\right)+\log p\left(y=c^{\prime}\right)\right]} \\
& =\frac{\exp \left[\log \pi_{c}+\sum_{i} I\left(x_{i}=1\right) \log \theta_{i c}+I\left(x_{i}=0\right) \log \left(1-\theta_{i c}\right)\right]}{\sum_{c^{\prime}} \exp \left[\log \pi_{c^{\prime}}+\sum_{i} I\left(x_{i}=1\right) \log \theta_{i, c^{\prime}}+I\left(x_{i}=0\right) \log \left(1-\theta_{i c}\right)\right]}
\end{aligned}
$$

Form of the class posterior

- From previous slide

$$
p(Y=c \mid x, \theta, \pi) \quad \propto \quad \exp \left[\log \pi_{c}+\sum_{i} I\left(x_{i}=1\right) \log \theta_{i c}+I\left(x_{i}=0\right) \log \left(1-\theta_{i c}\right)\right]
$$

- Define

$$
\begin{aligned}
x^{\prime} & =\left[1, I\left(x_{1}=1\right), I\left(x_{1}=0\right), \ldots, I\left(x_{d}=1\right), I\left(x_{d}=0\right)\right] \\
\beta_{c} & =\left[\log \pi_{c}, \log \theta_{1 c}, \log \left(1-\theta_{1 c}\right), \ldots, \log \theta_{d c}, \log \left(1-\theta_{d c}\right)\right]
\end{aligned}
$$

- Then the posterior is given by the softmax function

$$
p(Y=c \mid x, \beta)=\frac{\exp \left[\beta_{c}^{T} x^{\prime}\right]}{\sum_{c^{\prime}} \exp \left[\beta_{c^{\prime}}^{T} x^{\prime}\right]}
$$

Discriminative vs generative

- Discriminative: $p(y \mid x, t h e t a)$
- Generative: $p(y, x \mid t h e t a)$

Logisitic regression vs naïve Bayes

size of training set

	Discriminative	Generative
Easy to 7 t?	No	Yes
Can handle basis function expansion?	Yes	No
Fit classes separately?	No	Yes
Handle missing data?	No	Yes
Best for	Large sample size	Small sample size

Sparse data problem

- Consider naïve Bayes for binary features.

	Spam	Ham
Limited	1	2
Time	10	9
Offer	0	0
Total	Ns	Nh

$X=$ "you will receive our limited time offer if you send us $\$ 1 \mathrm{M}$ today"

$$
p(\mathbf{x} \mid y=S)=\left(1 / N_{s}\right)\left(10 / N_{s}\right)\left(0 / N_{s}\right)=0
$$

MLE overfits the data

Outline

- Bayes: what/why?
- Bernoulli

Fundamental principle of Bayesian statistics

- In Bayesian stats, everything that is uncertain (e.g., $\theta)$ is modeled with a probability distribution.
- We incorporate everything that is known (e.g., D) is by conditioning on it, using Bayes rule to update our prior beliefs into posterior beliefs.

Posterior probability

Likelihood

$$
p(h \mid d)=\frac{p(d \mid h) p(h)^{\prime}}{\sum_{h^{\prime} \in H} p\left(d \mid h^{\prime}\right) p\left(h^{\prime}\right)}
$$

Bayesian inference = Inverse probability theory

In praise of Bayes

- Bayesian methods are conceptually simple and elegant, and can handle small sample sizes (e.g., one-shot learning) and complex hierarchical models without overfitting.
- They provide a single mechanism for answering all questions of interest; there is no need to choose between different estimators, hypothesis testing procedures, etc.
- They avoid various pathologies associated with orthodox statistics.
- They often enjoy good frequentist properties.

Why isn't everyone a Bayesian?

- The need for a prior.
- Computational issues.

The need for a prior

- Bayes rule requires a prior, which is considered "subjective".
- However, we know learning without assumptions is impossible (no free lunch theorem).
- Often we actually have informative prior knowledge.
- If not, it is possible to create relatively "uninformative" priors to represent prior ignorance.
- We can also estimate our priors from data (empirical Bayes).
- We can use posterior predictive checks to test goodness of fit of both prior and likelihood.

Computational issues

- Computing the normalization constant requires integrating over all the parameters

$$
p(\theta \mid D)=\frac{p(\theta) p(D \mid \theta)}{\int p\left(\theta^{\prime}\right) p\left(D \mid \theta^{\prime}\right) d \theta^{\prime}}
$$

- Computing posterior expectations requires integrating over all the parameters

$$
E f(\Theta)=\int f(\theta) p(\theta \mid D) d \theta
$$

Approximate inference

- We can evaluate posterior expectations using Monte Carlo integration

$$
E f(\Theta)=\int f(\theta) p(\theta \mid D) d \theta \approx \frac{1}{N} \sum_{s=1}^{N} f\left(\theta^{s}\right) \quad \text { where } \theta^{s} \sim p(\theta \mid D)
$$

- Generating posterior samples can be tricky
- Importance sampling
- Particle filtering
- Markov chain Monte Carlo (MCMC)
- There are also deterministic approximation methods
- Laplace
- Variational Bayes
- Expectation Propagation

Conjugate priors

- For simplicity, we will mostly focus on a special kind of prior which has nice mathematical properties.
- A prior $p(\theta)$ is said to be conjugate to a likelihood $p(D \mid \theta)$ if the corresponding posterior $p(\theta \mid D)$ has the same functional form as $p(\theta)$.
- This means the prior family is closed under Bayesian updating.
- So we can recursively apply the rule to update our beliefs as data streams in (online learning).
- A natural conjugate prior means $p(\theta)$ has the same functional form as $p(D \mid \theta)$.

Example: coin tossing

- Consider the problem of estimating the probability of heads θ from a sequence of N coin tosses, $\mathrm{D}=$ $\left(X_{1}, \ldots, X_{N}\right)$
- First we define the likelihood function, then the prior, then compute the posterior. We will also consider different ways to predict the future.
- MLE is

$$
\hat{\theta}=\frac{N_{1}}{N}
$$

- Suffers from sparse data problem

Black swan paradox

- Suppose we have seen $N=3$ white swans. What is the probability that swan X_{N+1} is black?
- If we plug in the MLE, we predict black swans are impossible, since $N_{b}=N_{1}=0, N_{w}=N_{0}=3$

$$
\hat{\theta}_{M L E}=\frac{N_{b}}{N_{b}+N_{w}}=\frac{0}{N}, p\left(X=b \mid \hat{\theta}_{M L E}\right)=\hat{\theta}_{M L E}=0
$$

- However, this may just be due to sparse data.
- Below, we will see how Bayesian approaches work better in the small sample setting.

The beta-Bernoulli model

- Consider the probability of heads, given a sequence of N coin tosses, $\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{N}}$.
- Likelihood

$$
p(D \mid \theta)=\prod_{n=1}^{N} \theta^{X_{n}}(1-\theta)^{1-X_{n}}=\theta^{N_{1}}(1-\theta)^{N_{0}}
$$

- Natural conjugate prior is the Beta distribution

$$
p(\theta)=B e\left(\theta \mid \alpha_{1}, \alpha_{0}\right) \propto \theta^{\alpha_{1}-1}(1-\theta)^{\alpha_{0}-1}
$$

- Posterior is also Beta, with updated counts

$$
p(\theta \mid D)=B e\left(\theta \mid \alpha_{1}+N_{1}, \alpha_{0}+N_{0}\right) \propto \theta^{\alpha_{1}-1+N_{1}}(1-\theta)^{\alpha_{0}-1+N_{0}}
$$

Just combine the exponents in θ and (1- θ) from the prior and likelihood

The beta distribution

- Beta distribution $p\left(\theta \mid \alpha_{1}, \alpha_{0}\right)=\frac{1}{B\left(\alpha_{1}, \alpha_{0}\right)} \theta^{\alpha_{1}-1}(1-\theta)^{\alpha_{0}-1}$
- The normalization constant is the beta function

$$
B\left(\alpha_{1}, \alpha_{0}\right)=\int_{0}^{1} \theta^{\alpha_{1}-1}(1-\theta)^{\alpha_{0}-1} d \theta=\frac{\Gamma\left(\alpha_{1}\right) \Gamma\left(\alpha_{0}\right)}{\Gamma\left(\alpha_{1}+\alpha_{0}\right)}
$$

$$
E[\theta]=\frac{\alpha_{1}}{\alpha_{1}+\alpha_{0}}
$$

$a=2.00, b=3.00$

$a=1.00, b=1.00$

$a=8.00, b=4.00$

Updating a beta distribution

- Prior is Beta(2,2). Observe 1 head. Posterior is Beta(3,2), so mean shifts from $2 / 4$ to $3 / 5$.

- Prior is Beta(3,2). Observe 1 head. Posterior is Beta(4,2), so mean shifts from $3 / 5$ to $4 / 6$.

Setting the hyper-parameters

- The prior hyper-parameters α_{1}, α_{0} can be interpreted as pseudo counts.
- The effective sample size (strength) of the prior is $\alpha_{1}+\alpha_{0}$.
- The prior mean is $\alpha_{1} /\left(\alpha_{1}+\alpha_{0}\right)$.
- If our prior belief is p (heads) $=0.3$, and we think this belief is equivalent to about 10 data points, we just solve

$$
\alpha_{1}+\alpha_{0}=10, \frac{\alpha_{1}}{\alpha_{1}+\alpha_{0}}=0.3
$$

Posterior mean

- Let $\mathrm{N}=\mathrm{N}_{1}+\mathrm{N}_{0}$ be the amount of data, and $M=\alpha_{0}+\alpha_{1}$ be the amount of virtual data.
The posterior mean is a convex combination of prior mean α_{1} / M and MLE $\mathrm{N}_{1} / \mathrm{N}$

$$
\begin{aligned}
E\left[\theta \mid \alpha_{1}, \alpha_{0}, N_{1}, N_{0}\right] & =\frac{\alpha_{1}+N_{1}}{\alpha_{1}+N_{1}+\alpha_{0}+N_{0}}=\frac{\alpha_{1}+N_{1}}{N+M} \\
& =\frac{M}{N+M} \frac{\alpha_{1}}{M}+\frac{N}{N+M} \frac{N_{1}}{N} \\
& =w \frac{\alpha_{1}}{M}+(1-w) \frac{N_{1}}{N}
\end{aligned}
$$

$w=M /(N+M)$ is the strength of the prior relative to the total amount of data
We shrink our estimate away from the MLE towards the prior (a form of regularization).

MAP estimation

- It is often easier to compute the posterior mode (optimization) than the posterior mean (integration).
- This is called maximum a posteriori estimation.

$$
\hat{\theta}_{M A P}=\arg \max _{\theta} p(\theta \mid D)
$$

- This is equivalent to penalized likelihood estimation.

$$
\hat{\theta}_{M A P}=\arg \max _{\theta} \log p(D \mid \theta)+\log p(\theta)
$$

- For the beta distribution,

$$
M A P=\frac{\alpha_{1}-1}{\alpha_{1}+\alpha_{0}-2}
$$

Posterior predictive distribution

- We integrate out our uncertainty about θ when predicting the future (hedge our bets)

$$
p(X \mid D)=\int p(X \mid \theta) p(\theta \mid D) d \theta
$$

- If the posterior becomes peaked

$$
p(\theta \mid D) \rightarrow \delta(\theta-\hat{\theta})
$$

we get the plug-in principle.

$$
p(x \mid D)=\int p(x \mid \theta) \delta(\theta-\hat{\theta}) d \theta=p(x \mid \hat{\theta})
$$

Sifting property of delta functions

Posterior predictive distribution

- Let $\alpha_{i}{ }^{\prime}=$ updated hyper-parameters.
- In this case, the posterior predictive is equivalent to plugging in the posterior mean parameters

$$
\begin{aligned}
p(X=1 \mid D) & =\int_{0}^{1} p(X=1 \mid \theta) p(\theta \mid D) d \theta \\
& =\int_{0}^{1} \theta \operatorname{Beta}\left(\theta \mid \alpha_{1}^{\prime}, \alpha_{0}^{\prime}\right) d \theta=E[\theta]=\frac{\alpha_{1}^{\prime}}{\alpha_{0}^{\prime}+\alpha_{1}^{\prime}}
\end{aligned}
$$

- If $\alpha_{0}=\alpha_{1}=1$, we get Laplace's rule of succession (add one smoothing)

$$
p\left(X=1 \mid N_{1}, N_{0}\right)=\frac{N_{1}+1}{N_{1}+N_{0}+2}
$$

Solution to black swan paradox

- If we use a $\operatorname{Beta}(1,1)$ prior, the posterior predictive is

$$
p\left(X=1 \mid N_{1}, N_{0}\right)=\frac{N_{1}+1}{N_{1}+N_{0}+2}
$$

so we will never predict black swans are impossible.

- However, as we see more and more white swans, we will come to believe that black swans are pretty rare.

Summary of beta-Bernoulli model

- Prior $p(\theta)=\operatorname{Beta}\left(\theta \mid \alpha_{1}, \alpha_{0}\right)=\frac{1}{B\left(\alpha_{1}, \alpha_{0}\right)} \theta^{\alpha_{1}-1}(1-\theta)^{\alpha_{0}-1}$
- Likelihood $p(D \mid \theta)=\theta^{N_{1}}(1-\theta)^{N_{0}}$
- Posterior $p(\theta \mid D)=\operatorname{Beta}\left(\theta \mid \alpha_{1}+N_{1}, \alpha_{0}+N_{0}\right)$
- Posterior predictive $p(X=1 \mid D)=\frac{\alpha_{1}+N_{1}}{\alpha_{1}+\alpha_{0}+N}$

