
CS540 Machine learning
L8



Announcements

• Linear algebra tutorial by Mark Schmidt, 5:30 to 
6:30 pm today, in the CS X-wing 8th floor lounge 
(X836). 

• Move midterm from Tue Oct 14 to Thu Oct 16?

• Hw3sol handed out today
• Change in order



Last time

• Multivariate Gaussians

• Eigenanalysis
• MLE

• Use in generative classifiers



This time

• Naïve Bayes classifiers
• Bayesian parameter estimation I: Beta-Binomial 

model



Bayes rule for classifiers

p(y = c|x) =
p(x|y = c)p(y = c)∑
c′ p(x|y = c

′)p(y = c′)

Class prior
Class posterior

Class-conditional density

Normalization constant



Class prior

• Let (Y1,..,YC) ~ Mult(π, 1) be the class prior.

• Since ∑c Yc=1, only one bit can be on. This is 
called a 1-of-C encoding. We can write Y=c 
instead.

• e.g., p(man)=0.7, p(woman)=0.1,
p(child)=0.2

C∑

c=1

πc = 1

P (y|π) =
C∏

c=1

πI(y=c)c = πy

P (y1, . . . , yC |π) =
C∏

c=1

πI(yc=1)c

Y=2  ≡ (Y1,Y2,Y3) = (0,1,0)



Correlated features

• Height and weight are not independent



Fitting the model

• Fit each class conditional density separately

µc =
1

nc

n∑

i=1

I(yi = c)xi =
1

nc

∑

i:yi=c

xi

Σc =
1

nc

n∑

i=1

I(yi = c)(xi − µc)(xi − µc)
T

nc =

n∑

i=1

I(yi = c)

πc =
nc
n



Ignoring the correlation…

• If Xj ∈ R, we can use product of 1d Gaussians

Xj|y=c ~ N(µjc, σjc)

p(x|y = c) =

d∏

j=1

1
√
2πσ2jc

exp(−
1

2σ2jc
(xj − µjc)

2)

Σc =






σ21c . . . 0
.. .

0 . . . σ2dc








Document classification

• Let Y ∈ {1,…,C} be the class label and x ∈ {0,1}d

• eg Y ∈ {spam, urgent, normal},

xi = I(word i is present in message)

• Bag of words model

Words = {john, mary, sex, money, send, meeting, unk}

“John sent money to Mary after the meeting about money”

[1, 1, 0, 2, 0, 1]

1      2       3       4          5        6          7

1     7        4         2      7           6           7      4

“john sent money mary after meeting about money”

[1, 1, 0, 1, 0, 1] 

Stop word removal

Tokenization

Word counting

Thresholding (binarization)



Binary features (multivariate Bernoulli)

• Let Xi|y=c ~ Ber(µic) so p(Xi=1|y=c) = µic

p(x|y = c,µ) =

d∏

j=1

µ
I(xj=1)
jc (1− µjc)

I(xj=0)



Fitting the model

µjc =
1

nc

n∑

i=1

I(yi = c)I(xij = 1) =
njc
nc

njc =
n∑

i=1

I(yi = c, xij = 1)



Class posterior

• Bayes rule

• Since numerator and denominator are very small 
number, use logs to avoid underflow

• How compute the normalization constant?

log p(y = c|x) = log πc +

d∑

i=1

I(xi = 1) log θic + I(xi = 0) log(1− θic)− log p(x)

p(y = c|x) =
p(y = c)p(x|y = c)

p(x)
=
πc
∏d
i=1 θ

I(xi=1)
ic (1− θic)

I(xi=0)

p(x)

log p(x) = log[
∑

c

p(y = c, x)] = log[
∑

c

πcfc]



Log-sum-exp trick

• Define

• In Matlab, use Minka’s function

log(e−120 + e−121) = log
(
e−120(e0 + e−1)

)
= log(e0 + e−1)− 120

S = logsumexp(b)

log p(x) = log[
∑

c

πcfc]

bc = log πc + log fc

log p(x) = log
∑

c

ebc = log

[

(
∑

c

ebc)e−BeB

]

= log

[

(
∑

c

ebc−B)eB

]

=

[

log(
∑

c

ebc−B)

]

+B

B = max
c
bc

logjoint = log(prior) + counts * log(theta) + (1-counts) * log(1-theta);
logpost = logjoint – logsumexp(logjoint)



Missing features

• Suppose the value of x1 is unknown
• We can simply drop the term p(x1|y=c).

• This is a big advantage of generative classifiers 
over discriminative classifiers

p(y = c|x2:d) ∝ p(y = c, x2:d)

=
∑

x1

p(y = c, x1, x2:d)

=
∑

x1

p(y = c)

d∏

j=1

p(xj |y = c)

= p(y = c)[
∑

x1

p(x1|y = c)]

d∏

j=2

p(xj |y = c)

= p(y = c)
d∏

j=2

p(xj |y = c)



Form of the class posterior

• We can derive an analytic expression for p(y=c|x) 
that will be useful later.

p(Y = c|x, θ, π) =
p(x|y = c)p(y = c)∑
c′ p(x|y = c

′)p(y = c′)

=
exp[log p(x|y = c) + log p(y = c)]∑
c′ exp[log p(x|y = c

′) + log p(y = c′)]

=
exp [log πc +

∑
i I(xi = 1) log θic + I(xi = 0) log(1− θic)]∑

c′ exp [log πc′ +
∑

i I(xi = 1) log θi,c′ + I(xi = 0) log(1− θic)]



Form of the class posterior

• From previous slide

• Define

• Then the posterior is given by the softmax function

p(Y = c|x, θ, π) ∝ exp

[

log πc +
∑

i

I(xi = 1) log θic + I(xi = 0) log(1− θic)

]

x′ = [1, I(x1 = 1), I(x1 = 0), . . . , I(xd = 1), I(xd = 0)]

βc = [log πc, log θ1c, log(1− θ1c), . . . , log θdc, log(1− θdc)]

p(Y = c|x, β) =
exp[βTc x

′]
∑

c′ exp[β
T
c′x

′]



Discriminative vs generative

• Discriminative: p(y|x,theta)
• Generative: p(y,x|theta)



Logisitic regression vs naïve Bayes

Discriminative Generative
Easy to �t? No Yes

Can handlebasis function expansion? Yes No
Fit classesseparately? No Yes
Handlemissing data? No Yes

Best for Large sample size Small samplesize



Sparse data problem

• Consider naïve Bayes for 
binary features.

NhNsTotal

00Offer

910Time

21Limited

HamSpam

p(x|y = S) = (1/Ns)(10/Ns)(0/Ns) = 0

X = “you will receive our limited time offer if 
you send us $1M today”

MLE overfits the data



Outline

• Bayes: what/why?

• Bernoulli



Fundamental principle of Bayesian statistics

• In Bayesian stats, everything that is uncertain (e.g., 
θ) is modeled with a probability distribution.

• We incorporate everything that is known (e.g., D) is 
by conditioning on it, using Bayes rule to update 
our prior beliefs into posterior beliefs.

∑
∈′

′′
=

Hh

hphdp

hphdp
dhp

)()|(

)()|(
)|(

Posterior
probability

Likelihood Prior
probability

Bayesian inference = Inverse probability theory



In praise of Bayes

• Bayesian methods are conceptually simple and 
elegant, and can handle small sample sizes (e.g., 
one-shot learning) and complex hierarchical 
models without overfitting.

• They provide a single mechanism for answering all 
questions of interest; there is no need to choose 
between different estimators, hypothesis testing 
procedures, etc.

• They avoid various pathologies associated with 
orthodox statistics.

• They often enjoy good frequentist properties.



Why isn’t everyone a Bayesian?

• The need for a prior.

• Computational issues.



The need for a prior

• Bayes rule requires a prior, which is considered 
“subjective”.

• However, we know learning without assumptions is 
impossible (no free lunch theorem).

• Often we actually have informative prior knowledge.
• If not, it is possible to create relatively 

“uninformative” priors to represent prior ignorance.

• We can also estimate our priors from data 
(empirical Bayes).

• We can use posterior predictive checks to test 
goodness of fit of both prior and likelihood.



Computational issues

• Computing the normalization constant requires 
integrating over all the parameters

• Computing posterior expectations requires 
integrating over all the parameters

p(θ|D) =
p(θ)p(D|θ)∫
p(θ′)p(D|θ′)dθ′

Ef(Θ) =

∫
f(θ)p(θ|D)dθ



Approximate inference

• We can evaluate posterior expectations using 
Monte Carlo integration

• Generating posterior samples can be tricky
– Importance sampling
– Particle filtering
– Markov chain Monte Carlo (MCMC)

• There are also deterministic approximation 
methods
– Laplace
– Variational Bayes
– Expectation Propagation

Ef(Θ) =

∫
f(θ)p(θ|D)dθ ≈

1

N

N∑

s=1

f(θs) where θs ∼ p(θ|D)



Conjugate priors

• For simplicity, we will mostly focus on a special kind 
of prior which has nice mathematical properties.

• A prior p(θ) is said to be conjugate to a likelihood 
p(D|θ) if the corresponding posterior p(θ|D) has the 
same functional form as p(θ).

• This means the prior family is closed under 
Bayesian updating.

• So we can recursively apply the rule to update our 
beliefs as data streams in (online learning).

• A natural conjugate prior means p(θ) has the same 
functional form as p(D|θ).



Example: coin tossing

• Consider the problem of estimating the probability 
of heads θ from a sequence of N coin tosses, D = 
(X1, …, XN)

• First we define the likelihood function, then the 
prior, then compute the posterior. We will also 
consider different ways to predict the future.

• MLE is

• Suffers from sparse data problem

θ̂ =
N1
N



Black swan paradox

• Suppose we have seen N=3 white swans. What is 
the probability that swan XN+1 is black?

• If we plug in the MLE, we predict black swans are 
impossible, since Nb=N1=0, Nw=N0=3

• However, this may just be due to sparse data. 
• Below, we will see how Bayesian approaches work 

better in the small sample setting.

θ̂MLE =
Nb

Nb +Nw
=
0

N
, p(X = b|θ̂MLE) = θ̂MLE = 0



The beta-Bernoulli model

• Consider the probability of heads, given a 
sequence of N coin tosses, X1, …, XN.

• Likelihood

• Natural conjugate prior is the Beta distribution

• Posterior is also Beta, with updated counts

p(D|θ) =
N∏

n=1

θXn(1− θ)1−Xn = θN1(1− θ)N0

p(θ) = Be(θ|α1, α0) ∝ θ
α1−1(1− θ)α0−1

p(θ|D) = Be(θ|α1 +N1, α0 +N0) ∝ θ
α1−1+N1(1− θ)α0−1+N0

Just combine the exponents in θ and (1-θ) from the prior and likelihood



The beta distribution

• Beta distribution

• The normalization constant is the beta function 
p(θ|α1, α0) =

1

B(α1, α0)
θα1−1(1− θ)α0−1

E[θ] =
α1

α1 + α0

B(α1, α0) =

∫ 1

0

θα1−1(1− θ)α0−1dθ =
Γ(α1)Γ(α0)

Γ(α1 + α0)



Updating a beta distribution

• Prior is Beta(2,2). Observe 1 head. Posterior is 
Beta(3,2), so mean shifts from 2/4 to 3/5.

• Prior is Beta(3,2). Observe 1 head. Posterior is 
Beta(4,2), so mean shifts from 3/5 to 4/6.



Setting the hyper-parameters

• The prior hyper-parameters α1, α0 can be 
interpreted as pseudo counts.

• The effective sample size (strength) of the prior is 
α1+α0.

• The prior mean is α1/(α1+α0).
• If our prior belief is p(heads) = 0.3, and we think 

this belief is equivalent to about 10 data points, we 
just solve

α1 + α0 = 10,
α1

α1 + α0
= 0.3



Posterior mean

• Let N=N1 + N0 be the amount of data, and
M=α0+α1 be the amount of virtual data.

The posterior mean is a convex combination of prior 
mean α1/M and MLE N1/N 

We shrink our estimate away from the MLE towards 
the prior (a form of regularization).

w = M/(N+M) is the strength of the prior relative to the total amount of data

E[θ|α1, α0, N1, N0] =
α1 +N1

α1 +N1 + α0 +N0
=
α1 +N1
N +M

=
M

N +M

α1
M
+

N

N +M

N1
N

= w
α1
M
+ (1− w)

N1
N



MAP estimation

• It is often easier to compute the posterior mode 
(optimization) than the posterior mean (integration).

• This is called maximum a posteriori estimation.

• This is equivalent to penalized likelihood 
estimation.

• For the beta distribution,

θ̂MAP = argmax
θ
p(θ|D)

θ̂MAP = argmax
θ
log p(D|θ) + log p(θ)

MAP =
α1 − 1

α1 + α0 − 2



Posterior predictive distribution

• We integrate out our uncertainty about θ when 
predicting the future (hedge our bets)

• If the posterior becomes peaked

we get the plug-in principle.

p(θ|D)→ δ(θ − θ̂)

p(X|D) =

∫
p(X|θ)p(θ|D)dθ

p(x|D) =

∫
p(x|θ)δ(θ − θ̂)dθ = p(x|θ̂)

Sifting property of delta functions



Posterior predictive distribution

• Let αi’ = updated hyper-parameters.
• In this case, the posterior predictive is equivalent to 

plugging in the posterior mean parameters

• If α0=α1=1, we get Laplace’s rule of succession
(add one smoothing)

p(X = 1|D) =

∫ 1

0

p(X = 1|θ)p(θ|D)dθ

=

∫ 1

0

θ Beta(θ|α′1, α
′

0)dθ = E[θ] =
α′1

α′0 + α
′

1

p(X = 1|N1, N0) =
N1 + 1

N1 +N0 + 2



Solution to black swan paradox

• If we use a Beta(1,1) prior, the posterior predictive 
is

so we will never predict black swans are 
impossible.

• However, as we see more and more white swans, 
we will come to believe that black swans are pretty 
rare.

p(X = 1|N1, N0) =
N1 + 1

N1 +N0 + 2



Summary of beta-Bernoulli model

• Prior

• Likelihood
• Posterior

• Posterior predictive

p(θ) = Beta(θ|α1, α0) =
1

B(α1, α0)
θα1−1(1− θ)α0−1

p(D|θ) = θN1(1− θ)N0

p(θ|D) = Beta(θ|α1 +N1, α0 +N0)

p(X = 1|D) =
α1 +N1

α1 + α0 +N


