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* Lots of students don't realize that when X is rectangular, inv(X) doesn't exist.
Thisisthe most serious problem | saw with Q1, as most of students simplify by taking
inv(X'X) =inv(X)*inv(X").

* Also most students still don't realize that ab = b'a. They aso have problems
seeing the matrix dimensions, so sometime they will equate scalars to vectors without
even realizing, or multiply matrices of incompatible dimensions. Some also didn't
realize that AB not equal to BA. So a common mistake was X*inv(X'X)*X' =1, asit
can be rearranged. Anyways, | think some more stress on linear algebrawill help.



 *Very few students understood that J(W) can be split into J(w_i) and
because of this

» separation of function into g number of functions depending only on
W_i, it is possible
* to convert the problem into a bunch of OLS problems.

« * Many used the word "independent”

e ambiguously. Many students had the right idea but failed to clearly
express it (and

| didn't deduct marks whenever | saw even a glimpse of the right idea).

e * Few students

« also wrote that because norm is positive so that they can change "min
of sum" to "sum of min"

(which is wrong).



e * Many students didn't realize that J(w) is a scalar
and when you

 differentiate wrt a scalar, you

e (et a scalar. Most of these students got a vector
at the end which

e was equated to zero, and then

e they tried to "magically" take the average and get
the answer. |

e could see that only few students
 knew how to do matrix differentiation properly.



* * This question had least problems. It was easiest
of all (although |

e thought it may be hard). | found

e that few students have very similar answers. |
even found a bunch of

« answers with the same (less likely)

e mistake. | don't know If it was a coicidence or not.
But anyway,

 this question was very easy for most of them.

 Only those people lost marks, who didn't attempt
the last part.



e Logistic regression p(y|x,theta)
e Perceptron algorithm

 IRLS (Newton’s algorithm)

e Multinomial logistic regression
 Why probabillistic classifiers?




e Multivariate Gaussians
e Definition

e Eigenanalysis

 MLE

e Plug Into a classifier



Correlated features

« Height and weight are not independent

red = famals, blueg=mals

] ) a5 70 75 ao



Multivariate Gaussian

e Multivariate Normal (MVN)

e 1 _
Nl D)= sy expl=g (x = )27 (= )

 EXxponent is the Mahalanobis distance between X
and A= (x-S (x—p)

2 Is the covariance matrix (positive definite)

xI'Yx > 0 Vx
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Bivariate Gaussian

e Covariance matrix is
_( oz pogoy
2= (o, ")

where the correlation coefficient is
Cov(X,Y)
VVar(X)Var(Y)

and satisfies -1 < p <1

p_

e Density Is

(z,9) 1 ( 1 (x2 N vy 2pzy ))
P\, Yy) = exXp |\ — —
20,04/ 1 — p? 21 =p?) \oz o5 (020y)
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Spherical, diagonal, full covariance
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Eigenanalysis

 \We can show analytically that the contours of

constant density will be ellipses by studying the
eigenvectors / values of 2.

e This analysis will prove useful for other things, too.
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Eigenvectors and eigenvalues

 We can compute the evecs u; and evals A; of any square
m X m matrix A; these satisfy

Aui — )\z-uz-
e In matrix form, this becomes
AU = UA

(A—-ANU = 0
where A is a diagonal matrix of evals.
* For this set of eqns to have a soln, we require

A—Al = 0
e This is a polynomial of order m, so it has m solutions
(though these need not all be distinct).

e In Matlab, just type

[U,Lam] = eig(A);
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Real, symmetric matrices
It A; € R, then Alis called real.

o If AT = A, then A is called symmetric.

 Examples include: covariance matrices, kernel
matrices and Hessian matrices.

e A-lis also symmetric, since

A A = T
AT(A—l)T _ IT
AAT = T

A_T _ A—l
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Orthogonal matrices

o If Ais real and symmetric (so AT = A), then one can
show that the evals are real and the evecs are
orthonormal, i.e. u/u; =46(i — j)

* In matrix form this becomes U'U =1

 We say U Is an orthogonal matrix.

 The rows are also orthonormal since

Ul = 1
vtovu—t = vt
vt = vt =1
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Diagonalization

e If Alis real and symmetric, then U is orthogonal.

« Hence we can express A as a sum of outer
oroducts of the evecs weighted by the evals

AU = UA

p
A = UAUT — Z)\Zuzu?

QICEd
A
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Transformation by an orthogonal matrix

Consider a vector x transformed by the orthogonal
matrix U to give

~

x = Ux

The length of the vector is preserved since

I1X]? = %% =xTUTUTx = xTx = ||x||?
The angle between vectors is preserved

iTS} _ XTUUy _ XTy
Thus multiplication by U can be interpreted as a

rigid rotation of the coordinate system.
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Geometry of diagonalization

* Let A be a linear transformation. We can always
decompose this into a rotation U, a scaling A, and a
reverse rotation UT=U-1,

« Hence A=UA UT.
e The inverse mapping is given by A1 =U A1 UT

m
§ : T

A = )\iuiui
1=1

A = i)\iuzu'f
i=1""
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Positive definite matrices

e A matrix Ais pd if x" A x> 0 for any non-zero

vector X.
 Hence all the evecs of a pd matrix are positive
Au; = M\u;
uf‘fAui — Aiu?ui = X\; >0

» A matrix is positive semi definite (psd) if A; >= 0.

o A matrix of all positive entries is not necessarily pd,;
conversely, a pd matrix can have negative entries

> [u,v] = eig([1 2; 3 4]) [u,v]l=eig([2 -1; -1 2])
u = u =
-0.8246 -0.4160 -0.7071 -0.7071
0.5658 -0.9094 -0.7071 0.7071
v = v =
-0.3723 0 1 0

0  5.3723 0 3 21



Rank of a matrix

e The rank of a matrix i1s the number of non zero
evalues.

e |f the matrix i1s not full rank, It iIs not invertible, since
A = UAU"

UlAITT =]

1=1

A
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Visualizing a covariance matrix

e LetZ=UAU'. Hence
Sl =UTTATIUT =UAIU = Z—uz
e Let y=U(X-H) be a transformed doordinate system,
translated by g and rotated by U. Then

(x-S (x—p) = (x-p' (Z %uiuf‘?) (x — p)
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Visualizing a covariance matrix

 From the prewous slide

(X . [,L)TZ Z yz
 Recall that the equatlon for an elllpse In 2D Is
2 2
Y1 Ya
M

 Hence the contours of equiprobability are elliptical,
with axes given by the evecs and scales given by

Y2
Ch
3
1/2
A
=$1

the evals of X~
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Standardizing the data

 We can subtract off the mean and divide by the
standard deviation of each dimension to get the

following (for case I=1:n and dimension j=1:d)
Tij — T

Yis —
0

 Then E[Y]=0 and Var[Y]=1.

 However, Cov[Y] might still be elliptical due to
correlation amongst the dimensions.
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Whitening the data

e Let X ~N(,2)and = =U A UT.

 To remove any correlation, we can apply the
following linear transformation

1
Y = A 2U'X

1
A2 = diag(l/vAii)
 |n Matlab

[U,D] = eig(cov(X));
Y = sqrt(inv(D)) * U’ * X;
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example

o
=
-
Q
=
C
=
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Whitening: proof

o Let 1
Y = A 2U0'X
1
A2 = diag(l/vAii)
e Using
Cov[AX] = ACov[X]A*
we have
1 1
CovlY] = A 2U'SUA 2
1
= A 2UN(UAUDUA 2
. A TAA T =]
and
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Linear transformations of Gaussian RVs

e IfX~N(u, 2) and Y = A X, then one can show that
Y ~ N(Au, AL AT)

 Hence the whitened data is also Gaussian
Y ~ N(A—%UTM, I
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Maximum likelihood estimation

* Log likelihood N
N 1

Np _
log p(X|p, %) = Ty log(2m) — b} log |X| — ) E (i — )" 27— )
i=1

e Let A =21 be the precision matrix

Np N 1 &
log p(X |p, ¥) = ——-log(2m) - log [A| — 5 > (i — ) A% — )
1=1
e Just solve
9, (X|p,A) =0 9, (X |, A) =0
5y 08P(X|p, A) =0, 70 log p(X |, A) =
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MLE for mean

e Log likelihood

Np N 1 &
log p(X |, 3) = ——~log(2m) - log Al — 5 3 (xi — 1) "A(xi — )
1=1

« Taking derivatives wrt a vector

e Llet yi=xi—n  Then
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MLE for mean

e Log likelihood

Np N 1 &

log p(X |, 3) = ——~log(2m) - log Al — 5 > (xi — 1) "A(xi — )
e From before =1
i._T—l,_ _88YiT—1
8H(Xz p) ET(x, —p) = By, O yi XY
= -1+ 2y,
 Hence
B 1 Y
_ = _ -1/ _
5, loep(X|u. %) = 2; 25! (x; — p)
N
= ') (xi—p)=
e So finally =1

MML:NZXi 32



MLE for =
e Log likelihood

Np N 1
log p(X |, 3) = ——~log(2m) - log Al — 5 > (xi — 1) "A(xi — )
 Trace of matrix is sum of diagonal ‘ehtries
tr(A) =) Ay

Cyclic permutation proioerty of trace

tr(ABC) = tr(CAB) = tr(BCA)
e “Trace trick”

el Az = tr(z! Az) = tr(zal A)

e Derivatives wrt a matrix

0 LT
a -T
A log|A| = A
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MLE for Z

e Log likelihood
N 1

(DA, p) = - log Al =3 (zi—p) Az — p)
_ N Al =1 L - )TA
- 5 log |A| 2 Ztr[(xz p) (i — p)" Al

= S log|A|— 3 ) tr[SA]

S = Y (xi-nx-7)T = (Z x;x1) — Nzz’

e Derivative
oU(D|X, i) N, r 1.
oA = A 99 =
1
_T L L
A — __Ns
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MLE for Z

e MLE N

Sun = N;(Xi—i)(xi—i)rf
 |n Matlab

Sigma = cov(X, 1)
* In 1d .
KT DICE

 Unblased estimate N

Eunb — ﬁ;(xi_f)(xi_f)fp
e In Matlab -

Sigma = cov(X)
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Bayes rule for classifiers

: Class-conditional density Class prior
Class posterior
/ o

/
" gy — Py =c)ply =)
Py =€) = = ey = ply = &)

/

Normalization constant
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Gaussian classifiers

» Class posterior (using plug-in rule)
p(x[Y =c)p(Y = ¢)
Yo p(x]Y = ¢)p(Y =¢)
mel2mSe] 72 exp [ (x — o) T8 (x — o)
S mel2m |72 exp [~ — ) T8 (¢ )]
 We will consider the form of this equation for
various special cases:

° lezO’
e . tied, many classes
 General case

p(Y =clx) =

Linear/ quadratic discriminant analysis
37



e Class posterior simplifies to
p(x[Y =1p(Y =1)

PV IR = Ry =Dy = 1) + (¥ = (Y = 0)
B 1 exXp [—%(x —pu) T (x — ,ul)]
- mexp [—5(x — ) TS (x — )] + moexp [—5(x — o) TE 1 (x — po)]
7T1€a1 1
- m1e% 4 medo 1+ et
ae = =30k = pe) 0k — pe)
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e Class posterior simplifies to
1

p(Y =1[x) =
1+ exp [—log% + ag —al]
ap—a1 = —z(x—po) TTH(x = po) + F(x — )T T THx — )
= —(p1 —po)" S %+ 2 (w1 — po) TS (w1 + o)
SO Linear function of x
1 o
Y =1|x = =0 X +
def _
B = ITNu1— po)
def _ ™1
v = =3 p0) 2T + o) + logﬁ—O
def 1 e'l
o(n) = =

l1+em en+1
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Decision boundary

 Rewrite class posterior as

p(Y =1x) = o(B'x+7)=0c(w’(x—x0))
w o= =%y — po)
e B log(my /7o) B
X = g =2l Ho) (g — 110) TS (g — o) (b1 = bo)

o If 2=I, then w=(1;-l,) IS In the direction of p-l,, SO
the hyperplane is orthogonal to the line between
the two means, and intersects it at x,

o If =115, then x, = 0.5(u,+H,) 1S midway between
the two means

 If Ty Increases, x, decreases, so the boundary
shifts toward U, (SO more space gets mapped to
class 1)
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Decision boundary in 1d

P 7211 = (>0l
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Tied Z, many classes

e Similarly to before

p(Y =clx) = Teexp [—5(x — pe) T8 (x — pue)]
e mer exp [ 5 (% = per) TESN (% = per)]
exp [ S~ e — gpd ¥ e + log 7|

D er €XP [MSE_lx — %Mgﬁ_lud + log 7rc/]

g def (u321u6+1ogwc) _ (7)
‘ 2_1.Uc Be

T~ T
Zc/ eeclx zc/ e'Bc/X_P—YC/

p(Y =clx) =

e This Is the multinomial logit or softmax function
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Tied Z, many classes

e Discriminant function

ge(x) = —2(x—p)TE (x— pe) +logp(Y =c) = BIx + Beo
ﬁc = E_ He
Beo ZE e + log 7,

e Decision boundary IS again linear, since x' 2 x
terms cancel

e |f 2 =1, then the decision boundaries are
orthogonal to | - b, otherwise skewed

All boundaries ara linear
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Decision boundaries

q (%) =max (5,9, jlbc\) =p

[x,y] = meshgrid(linspace(-10,10,100), linspace(-10,10,100));
gl = reshape(mvnpdf (X, mul(:)’, S1), [m nl); ...
contour (x,y,g2*p2-max(gl*pl, g3*p3),[0 0],’-k’);
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2 24 arbitrary

 |f the 2 are unconstrained, we end up with cross
oroduct terms, leading to quadratic decision
poundaries

parabolic boundary

parabolic boundary




General case

H1 = (07 0)?#2 = (0,5),#3 — (575)77T — (1/37 1/37 1/3)

All boundaries are linear

Some linear, some quadratic

Thare are only 2 decision regions

Z‘ ) QOL?S
22: Lt°°|)
1\: ng\,

Z‘ ) (IOOB
zl: L‘rool)
3

\ 0
S \oy
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