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Q1

* Lots of students don' t realize that when X is rectangular, inv(X) doesn' t exist.
This is themost seriousproblem I saw with Q1, asmost of studentssimplify by taking
inv(X' X) = inv(X)* inv(X' ).

* Also most students still don' t realize that a' b = b'a. They also have problems
seeing the matrix dimensions, so sometime they will equate scalars to vectors without
even realizing, or multiply matrices of incompatible dimensions. Some also didn' t
realize that AB not equal to BA. So a common mistake was X*inv(X' X)*X' = I, as it
can be rearranged. Anyways, I think somemore stresson linear algebra will help.
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Q2

• * Very few students understood that J(W) can be split into J(w_i) and 
because of this

• separation of function into q number of functions depending only on 
w_i, it is possible

• to convert the problem into a bunch of OLS problems. 

• * Many used the word "independent"
• ambiguously. Many students had the right idea but failed to clearly 

express it (and 
• I didn't deduct marks whenever I saw even a glimpse of the right idea). 

• * Few students
• also wrote that because norm is positive so that they can change "min 

of sum" to "sum of min"
• (which is wrong).
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Q3

• * Many students didn't realize that J(w) is a scalar 
and when you

• differentiate wrt a scalar, you 

• get a scalar. Most of these students got a vector 
at the end which

• was equated to zero, and then  

• they tried to "magically" take the average and get 
the answer. I

• could see that only few students  

• knew how to do matrix differentiation properly. 
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Q4

• * This question had least problems. It was easiest 
of all (although I

• thought it may be hard). I found 
• that few students have very similar answers. I 

even found a bunch of
• answers with the same (less likely) 
• mistake. I don't know if it was a coicidence or not. 

But anyway,
• this question was very easy for most of them. 
• Only those people lost marks, who didn't attempt 

the last part.
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Last time

• Logistic regression p(y|x,theta)

• Perceptron algorithm
• IRLS (Newton’s algorithm)

• Multinomial logistic regression
• Why probabilistic classifiers?
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This time

• Multivariate Gaussians
• Definition

• Eigenanalysis
• MLE

• Plug into a classifier
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Correlated features

• Height and weight are not independent
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Multivariate Gaussian

• Multivariate Normal (MVN)

• Exponent is the Mahalanobis distance between x 
and µ

Σ is the covariance matrix (positive definite)

N (x|µ,Σ)
def
=

1

(2π)p/2|Σ|1/2
exp[− 1

2
(x− µ)TΣ−1(x− µ)]

∆ = (x− µ)TΣ−1(x− µ)

xTΣx > 0 ∀x
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Bivariate Gaussian

• Covariance matrix is

where the correlation coefficient is

and satisfies -1 ≤ ρ ≤ 1

• Density is

Σ =

(
σ2x ρσxσy

ρσxσy σ2y

)

ρ =
Cov(X,Y )

√
V ar(X)V ar(Y )

p(x, y) =
1

2πσxσy
√
1− ρ2

exp

(
−

1

2(1− ρ2)

(
x2

σ2x
+

y2

σ2y
−

2ρxy

(σxσy)

))



12

Spherical, diagonal, full covariance

Σ =

(
σ2 0
0 σ2

)

Σ =

(
σ2x 0
0 σ2y

)
Σ =

(
σ2x ρσxσy

ρσxσy σ2y

)
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Surface plots
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Eigenanalysis

• We can show analytically that the contours of 
constant density will be ellipses by studying the 
eigenvectors / values of Σ.

• This analysis will prove useful for other things, too.
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Eigenvectors and eigenvalues

• We can compute the evecs ui and evals λi of any square
m x m matrix A; these satisfy

• In matrix form, this becomes

where Λ is a diagonal matrix of evals.
• For this set of eqns to have a soln, we require

• This is a polynomial of order m, so it has m solutions 
(though these need not all be distinct). 

• In Matlab, just type      

Aui = λiui

AU = UΛ

(A− Λ)U = 0

|A− Λ| = 0

[U,Lam] = eig(A);
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Real, symmetric matrices

• If Aij ∈ R, then A is called real.

• If AT = A, then A is called symmetric.
• Examples include: covariance matrices, kernel 

matrices and Hessian matrices.
• A-1 is also symmetric, since

A−1A = I

AT (A−1)T = IT

AA−T = I

A−T = A−1
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Orthogonal matrices

• If A is real and symmetric (so AT = A), then one can 
show that the evals are real and the evecs are 
orthonormal, i.e.

• In matrix form this becomes

• We say U is an orthogonal matrix.
• The rows are also orthonormal since

uTi uj = δ(i− j)

UTU = I

UTU = I

UTUU−1 = U−1

UU−1 = UUT = I
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Diagonalization

• If A is real and symmetric, then U is orthogonal.

• Hence we can express A as a sum of outer 
products of the evecs weighted by the evals

AU = UΛ

A = UΛUT =

p∑

i=1

λiuiu
T
i
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Transformation by an orthogonal matrix

• Consider a vector x transformed by the orthogonal 
matrix U to give

• The length of the vector is preserved since 

• The angle between vectors is preserved

• Thus multiplication by U can be interpreted as a 
rigid rotation of the coordinate system.

x̃ = Ux

||x̃||2 = x̃T x̃ = xTUTUTx = xTx = ||x||2

x̃
T
ỹ = xTUUy = xTy
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Geometry of diagonalization

• Let A be a linear transformation. We can always 
decompose this into a rotation U, a scaling Λ, and a 
reverse rotation UT=U-1.

• Hence A = U Λ UT.

• The inverse mapping is given by A-1 = U Λ-1 UT

A =

m∑

i=1

λiuiu
T
i

A−1 =
m∑

i=1

1

λi
uiu

T
i
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Positive definite matrices

• A matrix A is pd if xT A x > 0 for any non-zero 
vector x. 

• Hence all the evecs of a pd matrix are positive

• A matrix is positive semi definite (psd) if λi >= 0.
• A matrix of all positive entries is not necessarily pd;  

conversely, a pd matrix can have negative entries

Aui = λiui

uTi Aui = λiu
T
i ui = λi > 0

> [u,v] = eig([1 2; 3 4])

u =

-0.8246 -0.4160

0.5658 -0.9094

v =

-0.3723 0

0 5.3723

[u,v]=eig([2 -1; -1 2])

u =

-0.7071 -0.7071

-0.7071 0.7071

v =

1 0

0 3
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Rank of a matrix

• The rank of a matrix is the number of non zero 
evalues.

• If the matrix is not full rank, it is not invertible, since

A = UΛUT

|A| = |U ||Λ||UT | =
m∏

i=1

λi
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Visualizing a covariance matrix

• Let Σ = U Λ UT. Hence

• Let  y = U(x-µ) be a transformed coordinate system, 
translated by µ and rotated by U. Then

Σ−1 = U−TΛ−1U−1 = UΛ−1U =

p∑

i=1

1

λi
uiu

T
i

(x− µ)TΣ−1(x− µ) = (x− µ)T

(
p∑

i=1

1

λi
uiu

T
i

)

(x− µ)

=

p∑

i=1

1

λi
(x− µ)Tuiu

T
i (x− µ) =

p∑

i=1

y2i
λi
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Visualizing a covariance matrix

• From the previous slide

• Recall that the equation for an ellipse in 2D is

• Hence the contours of equiprobability are elliptical, 
with axes given by the evecs and scales given by 
the evals of Σ

(x− µ)TΣ−1(x− µ) =

p∑

i=1

y2i
λi

y21
λ1
+

y22
λ2
= 1
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Standardizing the data

• We can subtract off the mean and divide by the 
standard deviation of each dimension to get the 
following (for case i=1:n and dimension j=1:d)

• Then E[Y]=0 and Var[Yj]=1.

• However, Cov[Y] might still be elliptical due to 
correlation amongst the dimensions.

yij =
xij − xj

σj
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Whitening the data

• Let X ~ N(µ,Σ) and Σ = U Λ UT.
• To remove any correlation, we can apply the 

following linear transformation

• In Matlab

Y = Λ−
1

2UTX

Λ−
1

2 = diag(1/
√
Λii)

[U,D] = eig(cov(X));

Y = sqrt(inv(D)) * U’ * X;
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Whitening: example
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Whitening: proof

• Let

• Using

we have

and

Y = Λ−
1

2UTX

Λ−
1

2 = diag(1/
√
Λii)

Cov[AX] = ACov[X ]AT

Cov[Y ] = Λ−
1

2UTΣUΛ−
1

2

= Λ−
1

2UT (UΛUT )UΛ−
1

2

= Λ−
1

2ΛΛ−
1

2 = I

EY = Λ−
1

2UTE[X ]
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Linear transformations of Gaussian RVs

• If X ~ N(µ, Σ) and Y = A X, then one can show that

• Hence the whitened data is also Gaussian
Y ∼ N(Aµ,AΣAT )

Y ∼ N (Λ−
1

2UTµ, I)
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Maximum likelihood estimation

• Log likelihood

• Let Λ = Σ-1 be the precision matrix

• Just solve

log p(X|µ,Σ) = −
Np

2
log(2π)−

N

2
log |Σ| −

1

2

N∑

i=1

(xi − µ)TΣ−1(xi − µ)

log p(X|µ,Σ) = −
Np

2
log(2π)

N

2
log |Λ| −

1

2

N∑

i=1

(xi − µ)TΛ(xi − µ)

∂

∂µ
log p(X|µ,Λ) = 0,

∂

∂Λ
log p(X|µ,Λ) = 0
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MLE for mean

• Log likelihood

• Taking derivatives wrt a vector

• Let                      Then

log p(X|µ,Σ) = −
Np

2
log(2π)

N

2
log |Λ| −

1

2

N∑

i=1

(xi − µ)TΛ(xi − µ)

∂(aTy)

∂y
= a

∂(yTAy)

∂y
= (A+AT )y

∂

∂µ
(xi − µ)TΣ−1(xi − µ) =

∂

∂yi

∂yi
∂µ

yTi Σ
−1yi

= −1(Σ−1 +Σ−T )yi

yi = xi − µ
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MLE for mean

• Log likelihood

• From before

• Hence

• So finally

log p(X|µ,Σ) = −
Np

2
log(2π)

N

2
log |Λ| −

1

2

N∑

i=1

(xi − µ)TΛ(xi − µ)

∂

∂µ
(xi − µ)TΣ−1(xi − µ) =

∂

∂yi

∂yi
∂µ

yTi Σ
−1yi

= −1(Σ−1 +Σ−T )yi

∂

∂µ
log p(X|µ,Σ) = −

1

2

N∑

i=1

−2Σ−1(xi − µ)

= Σ−1
N∑

i=1

(xi − µ) = 0

µML =
1

N

∑

i

xi
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MLE for Σ
• Log likelihood

• Trace of matrix is sum of diagonal entries

• Cyclic permutation property of trace

• “Trace trick”

• Derivatives wrt a matrix

log p(X |µ,Σ) = −
Np

2
log(2π)

N

2
log |Λ| −

1

2

N∑

i=1

(xi − µ)TΛ(xi − µ)

tr(A) =
∑

i

Aii

tr(ABC) = tr(CAB) = tr(BCA)

xTAx = tr(xTAx) = tr(xxTA)

∂

∂A
tr(BA) = BT

∂

∂A
log |A| = A−T
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MLE for Σ
• Log likelihood

• Derivative

ℓ(D|Λ, µ̂) =
N

2
log |Λ| − 1

2

∑

i

(xi − µ)TΛ(xi − µ)

=
N

2
log |Λ| − 1

2

∑

i

tr[(xi − µ)(xi − µ)TΛ]

=
N

2
log |Λ| − 1

2

∑

i

tr[SΛ]

S
def
=

∑

i

(xi − x)(xi − x)T = (
∑

i

xix
T
i )−NxxT

∂ℓ(D|Σ, µ̂)

∂Λ
=

N

2
Λ−T −

1

2
ST = 0

Λ−T = Σ =
1

N
S
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MLE for Σ
• MLE

• In Matlab

• In 1d

• Unbiased estimate

• In Matlab

Sigma = cov(X, 1)

σ2ML =
1

N

N∑

i=1

(xi − µ)2

ΣML =
1

N

N∑

i=1

(xi − x)(xi − x)T

Sigma = cov(X)

Σunb =
1

N − 1

N∑

i=1

(xi − x)(xi − x)T
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Bayes rule for classifiers

p(y = c|x) =
p(x|y = c)p(y = c)∑
c′ p(x|y = c′)p(y = c′)

Class prior
Class posterior

Class-conditional density

Normalization constant
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Gaussian classifiers

• Class posterior (using plug-in rule)

• We will consider the form of this equation for 
various special cases: 

• Σ1=Σ0,   
• tied, many classes

• General case

p(Y = c|x) =
p(x|Y = c)p(Y = c)

∑C
c′=1 p(x|Y = c′)p(Y = c′)

=
πc|2πΣc|

−
1

2 exp
[
− 1

2
(x− µc)

TΣ−1c (x− µc)
]

∑
c′ πc′ |2πΣc′ |

−
1

2 exp
[
− 1

2
(x− µc′)TΣ

−1

c′ (x− µc′)
]

Σc

Linear/ quadratic discriminant analysis
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Σ1 = Σ0

• Class posterior simplifies to
p(Y = 1|x) =

p(x|Y = 1)p(Y = 1)

p(x|Y = 1)p(Y = 1) + p(x|Y = 0)p(Y = 0)

=
π1 exp

[
− 1

2
(x− µ1)

TΣ−1(x− µ1)
]

π1 exp
[
− 1

2
(x− µ1)TΣ−1(x− µ1)

]
+ π0 exp

[
− 1

2
(x − µ0)TΣ−1(x− µ0)

]

=
π1e

a1

π1ea1 + π0ea0
=

1

1 + π0
π1

ea0−a1

ac
def
= − 1

2
(x− µc)

TΣ(x− µc)
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Σ1 = Σ0

• Class posterior simplifies to
p(Y = 1|x) =

1

1 + exp
[
− log π1

π0
+ a0 − a1

]

a0 − a1 = − 1

2
(x− µ0)

TΣ−1(x− µ0) +
1

2
(x− µ1)

TΣ−1(x− µ1)

= −(µ1 − µ0)
TΣ−1x+ 1

2
(µ1 − µ0)

TΣ−1(µ1 + µ0)

so

p(Y = 1|x) =
1

1 + exp [−βTx− γ]
= σ(βTx+ γ)

β
def
= Σ−1(µ1 − µ0)

γ
def
= −1

2
(µ1 − µ0)

TΣ−1(µ1 + µ0) + log
π1
π0

σ(η)
def
=

1

1 + e−η
=

eη

eη + 1

Linear function of x
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Decision boundary

• Rewrite class posterior as

• If Σ=I, then w=(µ1-µ0) is in the direction of µ1-µ0, so 
the hyperplane is orthogonal to the line between 
the two means, and intersects it at x0

• If π1=π0, then x0 = 0.5(µ1+µ0) is midway between 
the two means

• If π1 increases, x0 decreases, so the boundary 
shifts toward µ0 (so more space gets mapped to 
class 1)

p(Y = 1|x) = σ(βTx+ γ) = σ(wT (x− x0))

w = β = Σ−1(µ1 − µ0)

x0 = −
γ

β
= 1

2
(µ1 + µ0)−

log(π1/π0)

(µ1 − µ0)
TΣ−1(µ1 − µ0)

(µ1 − µ0)
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Decision boundary in 1d

Discontinuous decision region
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Decision boundary in 2d
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Tied Σ, many classes

• Similarly to before

• This is the multinomial logit or softmax function

p(Y = c|x) =
πc exp

[
− 1

2
(x− µc)

TΣ−1c (x− µc)
]

∑
c′ πc′ exp

[
− 1

2
(x− µc′)TΣ

−1

c′ (x− µc′)
]

=
exp

[
µT′ Σ−1x− 1

2
µTc Σ

−1µc + log πc
]

∑
c′ exp

[
µTc′Σ

−1x− 1

2
µTc′Σ

−1µc′ + log πc′
]

θc
def
=

(
−µTc Σ

−1µc + log πc
Σ−1µc

)
=

(
γc
βc

)

p(Y = c|x) =
eθ

T

c
x

∑
c′ e

θT
c′
x
=

eβ
T

c
x+γc

∑
c′ e

βT
c′
x+γ

c′
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Tied Σ, many classes

• Discriminant function

• Decision boundary is again linear, since xT Σ x 
terms cancel

• If Σ = I, then the decision boundaries are 
orthogonal to µi - µj, otherwise skewed

gc(x) = − 1

2
(x− µc)

TΣ−1(x− µc) + log p(Y = c) = βTc x+ βc0

βc = Σ−1µc

βc0 = − 1

2
µTc Σ

−1µc + log πc



45

Decision boundaries

[x,y] = meshgrid(linspace(-10,10,100), linspace(-10,10,100));

g1 = reshape(mvnpdf(X, mu1(:)’, S1), [m n]); ...

contour(x,y,g2*p2-max(g1*p1, g3*p3),[0 0],’-k’);
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Σ0, Σ1 arbitrary

• If the Σ are unconstrained, we end up with cross 
product terms, leading to quadratic decision 
boundaries
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General case

µ1 = (0, 0), µ2 = (0, 5), µ3 = (5, 5), π = (1/3, 1/3, 1/3)


