CS540 Machine learning Lecture 6

Last time

- Linear and ridge regression (QR, SVD, LMS)

This time

- Logistic regression
- MLE
- Perceptron algorithm
- IRLS
- Multinomial logistic regression

Logistic regression

- Model for binary classification

$$
\begin{aligned}
p(y \mid \mathbf{x}, \mathbf{w}) & =\operatorname{Ber}(y \mid \sigma(\eta))=\sigma(\eta)^{y}(1-\sigma(\eta))^{1-y} \\
\eta & =\mathbf{w}^{T} \boldsymbol{\phi}(\mathbf{x}) \\
\sigma(\eta) \stackrel{\text { def }}{=} & \frac{1}{1+\exp (-\eta)}=\frac{e^{\eta}}{e^{\eta}+1}
\end{aligned}
$$

Logistic regression in 1d

Logistic regression in 2d

$$
p(y=1 \mid \mathbf{x}, \mathbf{w})=\sigma\left(w_{0}+w_{1} x_{1}+w_{2} x_{2}\right)
$$

Notation

$$
p(y \mid \mathbf{x}, \mathbf{w})= \begin{cases}\sigma(\eta) & \text { if } y=1 \\ 1-\sigma(\eta)=\sigma(-\eta) & \text { if } y=0\end{cases}
$$

If we use $\tilde{y} \in\{-1,+1\}$ as the two labels instead of $y \in\{0,1\}$:

$$
\begin{gathered}
p(\tilde{y} \mid \mathbf{x}, \mathbf{w})=\sigma(\tilde{y} \eta) \\
(-1,+1) \stackrel{(y+1) / 2}{\longrightarrow}(0,1) \\
(0,1) \stackrel{\text { sign }(y-0.5)}{\longrightarrow}(-1,+1)
\end{gathered}
$$

Why the logistic function?

- McCulloch Pitts model of neuron

Log-odds ratio

$$
\log \frac{p(y=1 \mid \mathbf{x}, \mathbf{w})}{p(y=0 \mid \mathbf{x}, \mathbf{w})}=\log \frac{e^{\eta}}{1+e^{\eta}} \frac{1+e^{\eta}}{1}=\log e^{\eta}=\eta
$$

Thus if $w_{j}>0$, then increasing x_{j} makes $y=1$ more likely, and decreasing x_{j} makes $y=0$ more likely; the opposite happens if $w_{j}<0$. If $w_{j}=0$, then x_{j} has no impact on the output, so feature j is irrelevant to predicting the output.

This time

- Logistic regression
- MLE
- Perceptron algorithm
- IRLS
- Multinomial logistic regression

MLE

Maximize log likelihood

$$
\begin{aligned}
\ell(\mathbf{w}) & \stackrel{\text { def }}{=} \log p(D \mid \mathbf{w})=\sum_{i=1}^{n} \log p\left(y_{i} \mid \mathbf{x}_{i}, \mathbf{w}\right) \\
& =\sum_{i=1}^{n}\left[y_{i} \log \mu_{i}+\left(1-y_{i}\right) \log \left(1-\mu_{i}\right)\right]
\end{aligned}
$$

Minimize cross entropy

$$
J(\mathbf{w})=-\ell(\mathbf{w})=-\sum_{i}\left[y_{i} \log \mu_{i}+\left(1-y_{i}\right) \log \left(1-\mu_{i}\right)\right]
$$

Gradient

Gradient (homework)

$$
\nabla J(\mathbf{w})=\sum_{i=1}^{n}\left(\mu_{i}-y_{i}\right) \mathbf{x}_{i}=\mathbf{X}^{T}(\boldsymbol{\mu}-\mathbf{y})
$$

Stochastic gradient descent

$$
\mathbf{w}:=\mathbf{w}-\alpha \mathbf{g}_{i}
$$

Approximation

$$
\mu_{i} \approx \hat{y}_{i}=\arg \max _{y \in\{0,1\}} p\left(y \mid \mathbf{x}_{i}, \mathbf{w}\right)
$$

Gives

$$
\mathbf{g}_{i}=\left(\hat{y}_{i}-y_{i}\right) \mathbf{x}_{i}
$$

Perceptron algorithm

$$
\mathbf{g}_{i}=\left(\hat{y}_{i}-y_{i}\right) \mathbf{x}_{i}
$$

Let $y \in\{-1,+1\}$.

$$
\hat{y}_{i}=\operatorname{sgn}\left(\mathbf{w}^{T} \mathbf{x}_{i}\right)
$$

If $\hat{y}_{i}=y_{i}$, then $g_{i}=0$. Otherwise

$$
\mathbf{g}_{i}=-y_{i} \mathbf{x}_{i}
$$

Hence

$$
\mathbf{w}:=\mathbf{w}+\alpha y_{i} \mathbf{x}_{i}
$$

Set $\alpha=1$.

Perceptron algorithm

```
function [w,b] = perceptron(X, y)
[n d] = size(X);
w = zeros(d,1);
b = zeros(1,1); % offset term
max_iter = 100;
for iter=1:max_iter
    errors = 0;
    for i=1:n
        xi = X(i,:)';
        yhati = sign(w'*xi + b);
        if ( y(i)*yhati <= 0 ) % made an error
            w = w + y(i) * xi;
            b = b + y(i);
            errors = errors + 1;
        end
    end
    fprintf('Iteration %d, errors = %d\n', iter, errors);
    if (errors==0)
        break;
    end
end

\section*{Convergence}
- If linearly separable (so errors = 0), guaranteed to converge, but may do so slowly
- If not linearly separable, may not converge

\section*{This time}
- Logistic regression
- MLE
- Perceptron algorithm
- IRLS
- Multinomial logistic regression

\section*{IRLS}
- Iteratively reweighted least squares for finding the MLE for logistic regression
- Special case of Newton's algorithm

\section*{Newton's method}
- Consider a quadratic objective
\[
f(\mathbf{x})=\frac{1}{2} \mathbf{x}^{T} \mathbf{A} \mathbf{x}-\mathbf{b}^{T} \mathbf{x}
\]
- Gradient methods may take many steps, but we can "hop" to the minimum in 1 step if we use
\[
\begin{array}{r}
\mathbf{g}(\mathbf{x})=\mathbf{A} \mathbf{x}-\mathbf{b}=\mathbf{0} \\
\mathbf{x}=\mathbf{A}^{-1} \mathbf{b}
\end{array}
\]
- In general, \(g(x)\) will not be linear in \(x\), but we can linearize it. Alternatively we can approximate f by a quadratic.

\section*{Linearize the gradient}
- First order Taylor series approx of \(g(x)\) around \(x \_k\)
\[
\begin{array}{r}
\mathbf{g}(\mathbf{x}) \approx \mathbf{g}_{k}+\mathbf{H}_{k}\left(\mathbf{x}-\mathbf{x}_{k}\right) \\
\mathbf{g}(\mathbf{x})=0 \\
\mathbf{x}=\mathbf{x}_{k}-\mathbf{H}_{k}^{-1} \mathbf{g}_{k}=\mathbf{x}_{k}+\mathbf{d}_{k}
\end{array}
\]

\[
g_{l i n}(x)=g\left(x_{k}\right)+g^{\prime}\left(x_{k}\right)\left(x-x_{k}\right)
\]

\section*{Approximate the function}
- Construct second order Taylor of \(f(x)\) around \(x \_k\)
\[
\begin{array}{r}
f_{\text {quad }}(\mathbf{x})=f_{k}+\mathbf{g}_{k}^{T}\left(\mathbf{x}-\mathbf{x}_{k}\right)+\frac{1}{2}\left(\mathbf{x}-\mathbf{x}_{k}\right)^{T} \mathbf{H}_{k}\left(\mathbf{x}-\mathbf{x}_{k}\right) \\
f_{q u a d}(\mathbf{x})=\mathbf{x}^{T} \mathbf{A} \mathbf{x}+\mathbf{b}^{T} \mathbf{x}+r \\
\mathbf{A}=\frac{1}{2} \mathbf{H}_{k}, \quad \mathbf{b}=\mathbf{g}_{k}-\mathbf{H}_{k} \mathbf{x}_{k}, \quad r=f_{k}-\mathbf{g}_{k}^{T} \mathbf{x}_{k}+\frac{1}{2} \mathbf{x}_{k}^{T} \mathbf{H}_{k} \mathbf{x}_{k}
\end{array}
\]

Minimum
\[
\mathbf{x}=-\frac{1}{2} \mathbf{A}^{-1} \mathbf{b}=\mathbf{x}_{k}-\mathbf{H}_{k}^{-1} \mathbf{g}_{k}
\]


\section*{Newton's algorithm}
```

Algorithm 1: Newton's method for minimizing a convex function
1 Initialize \mathbf{x}_{0}
2 for $k=1,2, \ldots$ until convergence do
$3 \quad$ Evaluate $\mathbf{g}_{k}=\nabla f\left(\mathbf{x}_{k}\right), \mathbf{H}_{k}=\nabla^{2} f\left(\mathbf{x}_{k}\right)$
$4 \quad$ Solve $\mathbf{d}_{k}=-\mathbf{H}^{-1} \mathbf{g}_{k}$
5 Use line search to find stepsize α_{k} along \mathbf{d}_{k}
$6 \quad \mathbf{x}_{k}=\mathbf{x}_{k}+\alpha_{k} \mathbf{d}_{k}$

```

Use QR to solve \(H d_{k}=-g_{k}\) for \(d_{k}\)

\section*{Gradient and Hessian}
\[
\mathbf{g}(\mathbf{w})=\sum_{i=1}^{n}\left(\mu_{i}-y_{i}\right) \mathbf{x}_{i}=\mathbf{X}^{T}(\boldsymbol{\mu}-\mathbf{y})
\]
\[
\begin{array}{r}
\mathbf{H}=\nabla_{\mathbf{W}}\left(g(\mathbf{w})^{T}\right)=\sum_{i}\left(\nabla_{\mathbf{w}} \mu_{i}\right) \mathbf{x}_{i}^{T}=\sum_{i} \mu_{i}\left(1-\mu_{i}\right) \mathbf{x}_{i} \mathbf{x}_{i}^{T} \\
\mathbf{H}=\mathbf{X}^{T} \mathbf{S} \mathbf{X} \\
\mathbf{S} \stackrel{\text { def }}{=} \operatorname{diag}\left(\mu_{1}\left(1-\mu_{1}\right), \ldots, \mu_{n}\left(1-\mu_{n}\right)\right)
\end{array}
\]

\section*{Generic solver}

\section*{Listing 1: Listing of logregNLLgradHesslogregNLLgradHess}
```

function [f,g,H] = logregNLLgradHess(beta, X, y, lambda)
% gradient and hessian of negative log likelihood for logistic regression
%
% Rows of }X\mathrm{ contain data
% y(i) = 0 or 1
% lambda is optional strength of L2 regularizer
if nargin < 4,lambda = 0; end
mu = 1./ (1 + exp(-X*beta)); % mu(i) = prob(y(i)=1/X(i,:))
f = -sum((y.*log(mu+eps) + (1-y).*log(1-mu+eps))) + lambda/2*sum(beta.^2);
g = []; H = [];
if nargout > 1
g = X'*(mu-y) + lambda*beta;
end
if nargout > 2
W = diag(mu .* (1-mu)); % weight matrix
H = X'*W*X + lambda*eye(length(beta));
end

```

\section*{Listing 2: :}
```

opts = optimset('fminunc');
opts = optimset(opts, 'GradObj', 'on', 'Hessian', 'on');
w = zeros(d,1);
[w fval] = fminunc(@logregNLLgradHess, w, opts);

```

\section*{IRLS}
\[
\begin{aligned}
\mathbf{w}_{t+1} & =\mathbf{w}_{t}-\mathbf{H}^{-1} \mathbf{g}_{t} \\
\mathbf{w}_{t+1} & =\mathbf{w}_{t}+\left(\mathbf{X}^{T} \mathbf{S}_{t} \mathbf{X}\right)^{-1} \mathbf{X}^{T}\left(\mathbf{y}-\boldsymbol{\mu}_{t}\right) \\
& =\left(\mathbf{X}^{T} \mathbf{S}_{t} \mathbf{X}\right)^{-1}\left[\left(\mathbf{X}^{T} \mathbf{S}_{t} \mathbf{X}\right) \mathbf{w}_{t}+\mathbf{X}^{T}\left(\mathbf{y}-\boldsymbol{\mu}_{t}\right)\right] \\
& =\left(\mathbf{X}^{T} \mathbf{S}_{t} \mathbf{X}\right)^{-1} \mathbf{X}^{T}\left[\mathbf{S}_{t} \mathbf{X} \mathbf{w}_{t}+\mathbf{y}-\boldsymbol{\mu}_{t}\right] \\
\mathbf{w}_{t+1} & =\left(\mathbf{X}^{T} \mathbf{S}_{t} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{S}_{t} \mathbf{z}_{t} \\
\mathbf{z}_{t} & \stackrel{\text { def }}{=} \mathbf{X} \mathbf{w}_{t}+\mathbf{S}_{t}^{-1}\left(\mathbf{y}-\boldsymbol{\mu}_{t}\right)
\end{aligned}
\]

\section*{L2 regularization}
- Needed to prevent overfitting and w -> inf
\[
\begin{array}{r}
J(\mathbf{w}, \lambda)=-\left[\sum_{i=1}^{n} y_{i} \log \mu_{i}+\left(1-y_{i}\right) \log \left(1-\mu_{i}\right)\right]+\frac{\lambda}{2}\|\mathbf{w}\|_{2}^{2} \\
\mathbf{g}=\mathbf{X}^{T}(\mu-\mathbf{y})+\lambda \mathbf{w}, \mathbf{H}=\mathbf{X}^{T} \mathbf{S X}+\lambda \mathbf{I}_{d}
\end{array}
\]

\section*{This time}
- Logistic regression
- MLE
- Perceptron algorithm
- IRLS
- Multinomial logistic regression

\section*{Multinomial logistic regression}
- Y in \(\{1, \ldots, \mathrm{C}\}\) categorical
\[
\begin{aligned}
p(y=c \mid \mathbf{x}, \mathbf{W}) & =\mathcal{S}\left(\mathbf{W}^{T} \mathbf{x}\right)_{c} \\
\mathcal{S}(\boldsymbol{\eta})_{c} & =\frac{e^{\eta_{c}}}{\sum_{c^{\prime}=1}^{C} e^{\eta_{c^{\prime}}}} \quad \text { softmax }
\end{aligned}
\]

Binary case
\[
\mathcal{S}\left(\mathbf{W}^{T} \mathbf{x}\right)_{1}=\frac{e^{\mathbf{W}_{1}^{T} \mathbf{x}}}{e^{\mathbf{W}_{1}^{T} \mathbf{x}}+e^{\mathbf{W}_{0}^{T} \mathbf{x}}}=\frac{1}{1+e^{-\left(\mathbf{W}_{1}-\mathbf{W}_{0}\right)^{T} \mathbf{x}}}=\sigma\left(\left(\mathbf{w}_{1}-\mathbf{w}_{0}\right)^{T} \mathbf{x}\right)
\]

\section*{Softmax function}
\[
\begin{array}{r}
\mathcal{S}(\boldsymbol{\eta})_{c}=\frac{e^{\eta_{c}}}{\sum_{c^{\prime}=1}^{C} e^{\eta_{c^{\prime}}}} \\
\mathcal{S}(\beta \boldsymbol{\eta})_{c}= \begin{cases}1.0 & \text { if } c=\arg \max _{c^{\prime}} \eta_{c^{\prime}} \\
0.0 & \text { otherwise }\end{cases}
\end{array}
\]


\section*{MLE}
\[
\begin{array}{r}
\mu_{i k}=p\left(y=k \mid \mathbf{x}_{i}, \mathbf{W}\right)=\mathcal{S}\left(\boldsymbol{\eta}_{i}\right)_{k} \\
\boldsymbol{\eta}_{i}=\mathbf{W}^{T} \mathbf{x}_{i} \\
y_{i k}=I\left(y_{i}=k\right) \\
\ell(\mathbf{W})=\sum_{i=1}^{n} \sum_{k=1}^{C} y_{i k} \log \mu_{i k}=\sum_{i=1}^{n}\left[\left(\sum_{k=1}^{C} y_{i k} \mathbf{w}_{k}^{T} \mathbf{x}_{i}\right)-\log \left(\sum_{j=1}^{C} \exp \left(\mathbf{w}_{j}^{T} \mathbf{x}_{i}\right)\right)\right]
\end{array}
\]

Can compute gradient and Hessian and use Newton's method

\section*{Can add L2 regularizer}

Can use faster optimization methods eg bound optimization```

