CS540 Machine learning Lecture 5

Last time

- Basis functions for linear regression
- Normal equations
- QR
- SVD - briefly

This time

- Geometry of least squares (again)
- SVD - more slowly
- LMS
- Ridge regression

Geometry of least squares

Columns of X define a d-dimensional linear subspace in n-dimensions. Yhat is projection of y into that subspace. Here $\mathrm{n}=3, \mathrm{~d}=2$.
$\mathbf{X}=\left(\begin{array}{cc}1 & 2 \\ 1 & -2 \\ 1 & 2\end{array}\right), \mathbf{y}=\left(\begin{array}{c}8.8957 \\ 0.6130 \\ 1.7761\end{array}\right), \hat{\mathbf{y}}=X \hat{\mathbf{w}}=\left(\begin{array}{c}5.3359 \\ 0.6130 \\ 5.3359\end{array}\right)$
$\mathbf{X}=\left(\begin{array}{cc}0.5774 & 0.5774 \\ 0.5774 & -0.5774 \\ 0.5774 & 0.5774\end{array}\right), \quad \mathbf{y}=\left(\begin{array}{c}0.9784 \\ 0.0674 \\ 0.1954\end{array}\right), \quad \hat{\mathbf{y}}=\left(\begin{array}{c}0.7048 \\ 0.0810 \\ 0.7048\end{array}\right) \quad$ Unit norm

Orthogonal projection

- Projection of y onto X

$$
\operatorname{Proj}(\mathbf{y} ; \mathbf{X})=\operatorname{argmin}_{\hat{\mathbf{y}} \in \operatorname{span}\left(\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right\}\right)}\|\mathbf{y}-\hat{\mathbf{y}}\|_{2}
$$

- Let $\mathrm{r}=\mathrm{y}$ - \hat\{y\}. Residual must be orthogonal to X. Hence

$$
\mathbf{x}_{j}^{T}(\mathbf{y}-\hat{\mathbf{y}})=0 \Rightarrow \mathbf{X}^{T}(\mathbf{y}-\mathbf{X} \mathbf{w})=\mathbf{0} \Rightarrow \mathbf{w}=\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{y}
$$

- Prediction on training set

$$
\hat{\mathbf{y}}=\mathbf{X} \hat{\mathbf{w}}=\mathbf{X}\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{y} \stackrel{\text { def }}{=} \mathbf{H y} \quad \text { Hat matrix }
$$

- Residual is orthogonal

$$
\mathbf{X}^{T}(\mathbf{y}-\mathbf{H y})=\mathbf{X}^{T}(\mathbf{y}-\mathbf{X} \hat{\mathbf{w}})=\mathbf{X}^{T} \mathbf{y}-\mathbf{X}^{T} \mathbf{X}\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{y}=\mathbf{0}
$$

This time

- Geometry of least squares (again)
- SVD - more slowly
- LMS
- Ridge regression

Eigenvector decomposition (EVD)

- For any square matrix A, we say λ is an eval and u is its evec if

$$
\mathbf{A} \mathbf{u}=\lambda \mathbf{u}, \quad \mathbf{u} \neq 0
$$

- Stacking up all evecs/vals gives

$$
\mathbf{A U}=\mathbf{U} \boldsymbol{\Lambda}=\left(\begin{array}{cccc}
\mid & \mid & & \mid \\
\mathbf{u}_{1} & \mathbf{u}_{2} & \cdots & \mathbf{u}_{n} \\
\mid & \mid & & \mid
\end{array}\right)\left(\begin{array}{llll}
\lambda_{1} & & & \\
& \lambda_{2} & & \\
& & \ddots & \\
& & & \lambda_{n}
\end{array}\right)
$$

- If evecs linearly independent

$$
\mathbf{A}=\mathbf{U} \boldsymbol{\Lambda} \mathbf{U}^{-1} . \quad \text { diagonalization }
$$

EVD of symmetric matrices

- If A is symmetric, all its evals are real, and all its evecs are orthonormal, $u_{i}^{\top} u_{j}=\delta_{i j}$
- Hence $\mathbf{U}^{T} \mathbf{U}=\mathbf{U U}^{T}=\mathbf{I},|\mathbf{U}|=1$.
- and

$$
\left.\begin{array}{c}
\mathbf{A}=\mathbf{U} \boldsymbol{\Lambda} \mathbf{U}^{T}=\sum_{i=1}^{n} \lambda_{i} \mathbf{u}_{i} \mathbf{u}_{i}^{T} \\
\mathbf{A}= \\
=\left(\begin{array}{cccc}
\mid & \mid & & \mid \\
\mathbf{u}_{1} & \mathbf{u}_{2} & \cdots & \mathbf{u}_{n} \\
\mid & \mid & & \mid
\end{array}\right)\left(\begin{array}{llll}
\lambda_{1} & & & \\
& \lambda_{2} & & \\
& & \ddots & \\
& & & \lambda_{n}
\end{array}\right)\left(\begin{array}{ccc}
- & \mathbf{u}_{1}^{T} & - \\
- & \mathbf{u}_{2}^{T} & - \\
& \vdots & \\
- & \mathbf{u}_{n}^{T} & -
\end{array}\right) \\
= \\
\\
\\
\\
\mathbf{u}_{1} \\
\mid
\end{array}\right)\left(\begin{array}{lll}
- & \mathbf{u}_{1}^{T} & -
\end{array}\right)+\cdots+\lambda_{n}\left(\begin{array}{c}
\mid \\
\mathbf{u}_{n} \\
\mid
\end{array}\right)\left(\begin{array}{lll}
- & \mathbf{u}_{n}^{T} & -
\end{array}\right)
$$

SVD

For any real matrix

$$
\begin{aligned}
& \mathbf{A}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{T}=\sigma_{1}\left(\begin{array}{c}
\mid \\
\mathbf{u}_{1} \\
\mid
\end{array}\right)\left(\begin{array}{lll}
- & \mathbf{v}_{1}^{T} & -
\end{array}\right)+\cdots+\sigma_{r}\left(\begin{array}{c}
\mid \\
\mathbf{u}_{r} \\
\mid
\end{array}\right)\left(\begin{array}{lll}
- & \mathbf{v}_{r}^{T} & -
\end{array}\right) \\
& \mathbf{U}^{T} \mathbf{U}=\mathbf{I} \\
& \mathbf{V}^{T} \mathbf{V}=\mathbf{V} \mathbf{V}^{T}=\mathbf{I}
\end{aligned}
$$

Truncated SVD

- Rank k approximation to a matrix

$$
\mathbf{A}_{k}=\sum_{j=1}^{k} \sigma_{j} \mathbf{u}_{j} \mathbf{v}_{k}^{T}=\mathbf{U}_{:, 1: k} \quad \boldsymbol{\Sigma}_{1: k, 1: k} \quad \mathbf{V}_{:, 1: k}^{T}
$$

Equivalent to PCA

Truncated SVD

rafls: 5
radra 2

load clown; \% built-in image $[\mathrm{U}, \mathrm{S}, \mathrm{V}]=\operatorname{svd}(\mathrm{X}, 0)$;
k = 20;
Xhat $=\left(U(:, 1: k) * S(1: k, 1: k) * V(:, 1: k)^{\prime}\right)$;
image (Xhat);

SVD and EVD

- If A is symmetric positive definite, then svals(A)=evals(A), leftSvecs(A)=rightSvecs(A)=evecs(A) modulo sign changes
>> A=randpd (3)
$\mathrm{A}=$

0.9302	0.4036	0.7065
0.4036	0.8049	0.4521
0.7065	0.4521	0.5941

$\gg[\mathrm{U}, \mathrm{Lam}]=\mathrm{eig}(\mathrm{A})$
$\mathrm{U}=\begin{array}{rrr} \\ 0.5476 & 0.5148 & 0.6597 \\ 0.1872 & -0.8437 & 0.5030 \\ -0.8155 & 0.1520 & 0.5584 \\ \text { Lam = } & & \\ 0.0159 & 0 & 0 \\ 0 & 0.4772 & 0 \\ 0 & 0 & 1.8361\end{array}$

-0.6597	0.5148	-0.5476
-0.5030	-0.8437	-0.1872
-0.5584	0.1520	0.8155
$\mathrm{S}=$		
1.8361	0	0
0	0.4772	0
0	0	0.0159
$\mathrm{V}=$		
-0.6597	0.5148	-0.5476
-0.5030	-0.8437	-0.1872
-0.5584	0.1520	0.8155

SVD and EVD

- For arbitrary real matrix A
- leftSvecs(A) $=\operatorname{evecs}\left(A A^{\prime}\right)$
- rightSvecs $(A)=\operatorname{evecs}\left(A^{\prime} A\right)$
- Svals $(A)^{\wedge} 2=\operatorname{evals}\left(A^{\prime} A\right)=\operatorname{evals}\left(A A^{\prime}\right)$

SVD for least squares

- We have
$\mathbf{X}=\mathbf{U D V}^{T}$

$$
\begin{aligned}
& \hat{\mathbf{w}}=\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{y} \\
& \mathbf{X}^{T} \mathbf{X} \mathbf{w}=\mathbf{X}^{T} \mathbf{y}\left(\text { premultiply by } \mathbf{X}^{T} \mathbf{X}\right) \\
& \mathbf{V D U}^{T} \mathbf{U D V}^{T} \mathbf{w}=\mathbf{V D U}^{T} \mathbf{y}(\text { SVD expansion }) \\
& \mathbf{V D}^{2} \mathbf{V}^{T} \mathbf{w}=\mathbf{V D U}^{T} \mathbf{y}\left(\text { since } \mathbf{U}^{T} \mathbf{U}=\mathbf{I} \text { and } \mathbf{D D}=\mathbf{D}^{2}\right) \\
& \mathbf{D}^{2} \mathbf{V}^{T} \mathbf{w}=\mathbf{D U}^{T} \mathbf{y}\left(\text { premultiply by } \mathbf{V}^{T}\right) \\
& \mathbf{V}^{T} \mathbf{w}=\mathbf{D}^{-1} \mathbf{U}^{T} \mathbf{y}\left(\text { premultiply by } \mathbf{D}^{-2}\right) \\
& \mathbf{w}=\mathbf{V D}^{-1} \mathbf{U}^{T} \mathbf{y}(\text { premultiply by } \mathbf{V}) \\
& \\
& {[\mathrm{U}, \mathrm{D}, \mathrm{~V}]=\operatorname{svd}(\mathrm{X}, 0) ; } \\
& \mathrm{Dinv}=\operatorname{diag}(1 . /(\operatorname{diag}(\mathrm{D}))) ; \\
& \mathrm{W}=\mathrm{V} * \operatorname{Dinv} * \mathrm{U}^{\prime} * \mathrm{Y} ;
\end{aligned}
$$

What if $D_{j}=0$ (so rank of X is less than d)?

Pseudo inverse

- If $\mathrm{D}_{\mathrm{j}} \mathrm{j}=0$, use

$$
\begin{aligned}
& \mathbf{w}=\mathbf{V D}^{\dagger} \mathbf{U}^{T} \mathbf{y} \stackrel{\operatorname{def}}{=} \mathbf{X}^{\dagger} \mathbf{y}, \mathbf{D}^{\dagger}=\operatorname{diag}\left(\sigma_{1}^{-1}, \ldots, \sigma_{r}^{-1}, 0, \ldots, 0\right) \\
& \text { function } B=\operatorname{pinv}(A) \\
& {[U, S, V]=\operatorname{svd}(A, 0) ;} \\
& S=\operatorname{diag}(S) ; \\
& r=\operatorname{sum}(s>\operatorname{tol}) ; \% \operatorname{rank} \\
& \mathrm{w}=\operatorname{diag}(\operatorname{ones}(r, 1) . / \operatorname{s}(1: r)) ; \\
& B=V(:, 1: r) * W * U(:, 1: r)^{\prime} ;
\end{aligned}
$$

- Of all solutions w that minimize \|Xw-y\|, the pinv solution also minimizes $\|\mathrm{w}\|$

$$
\begin{aligned}
& w=X \backslash y ; \\
& w 2=\operatorname{pinv}(X) \star y ; \\
& {[\operatorname{norm}(w) \text { norm }(w 2)]} \\
& \gg 10.8449 \quad 10.8440
\end{aligned}
$$

This time

- Geometry of least squares (again)
- SVD - more slowly
- LMS
- Ridge regression

Gradient descent

- QR and SVD take $O\left(\mathrm{~d}^{3}\right)$ time
- We can find the MLE by following the gradient

$$
\begin{aligned}
\mathbf{w}_{k+1} & =\mathbf{w}_{k}-\eta_{k} \mathbf{g}\left(\mathbf{w}_{k}\right) \\
\mathbf{g}(\mathbf{w}) & \propto \mathbf{X}^{T}(\mathbf{X} \mathbf{w}-\mathbf{y})=\sum^{n} \mathbf{x}_{i}\left(\mathbf{w}^{T} \mathbf{x}_{i}-y_{i}\right)
\end{aligned}
$$

- O(d) per step, but may need ${ }^{i=1}$ many steps

$\eta=0.6$

Exact line search

Stochastic gradient descent

- Approximate the gradient by looking at a single data case

$$
\mathbf{g}\left(\mathbf{w}_{k}\right) \approx \mathbf{x}_{i}\left(\mathbf{w}^{T} \mathbf{x}_{i}-y_{i}\right)
$$

Least Mean Squared
Widrow-Hoff
Delta-rule

- Can be used to learn online

Algorithm 1: LMS algorithm	
1 Initialize \mathbf{w}	
$2 t \leftarrow 0$	
3 repeat	
4	$t \leftarrow t+1$
5	$i \leftarrow t \bmod n$
	$\mathbf{w} \leftarrow \mathbf{w}+\eta\left(y_{i}-\mathbf{w}^{T} \mathbf{x}_{i}\right) \mathbf{x}_{i}$
7	$\eta \leftarrow \eta \times s$
	until converged

This time

- Geometry of least squares (again)
- SVD - more slowly
- LMS
- Ridge regression

Ridge regression

- Minimize penalized negative log likelihood

$$
-\ell(\mathbf{w})+\lambda\|\mathbf{w}\|_{2}^{2}
$$

- Weight decay, shrinkage, L2 regularization, ridge regression

Regularization D=14

Why it works

- Coefficients if $\lambda=0$ (MLE)
-0.18, 10.57, -110.28, -245.63, 1664.41, 2647.81, -965 $27669.94,19319.66,-41625.65,-16626.90,31483.81,54$
- Coefficients if $\lambda=10^{-3}$

$$
\begin{aligned}
& -1.54, \quad 5.52,3.66,17.04,-2.63,-23.06,-0.37,-8.4 \text { ! } \\
& \text { 7.92, } 5.40,8.29,7.75,1.78,2.03,-8.42 \text {, }
\end{aligned}
$$

- Small weights mean the curve is almost linear (same is true for sigmoid function)

Ridge regression

- The objective function is

$$
\mathbf{w}=\arg \min _{\mathbf{W}} \sum_{i=1}^{n}\left(y_{i}-\mathbf{x}_{i}^{T} \mathbf{w}-w_{0}\right)^{2}+\lambda \sum_{j=1}^{d} w_{j}^{2}
$$

- We don't shrink w_0. We should standardize first.
- Constrained formulation

$$
\mathbf{w}=\arg \min _{\mathbf{w}} \sum_{i=1}^{n}\left(y_{i}-\mathbf{x}_{i}^{T} \mathbf{w}-w_{0}\right)^{2} \text { s.t. } \sum_{j=1}^{d} w_{j}^{2} \leq t
$$

- Find the penalized MLE

$$
\begin{aligned}
J(\mathbf{w}) & =(\mathbf{y}-\mathbf{X} \mathbf{w})^{T}(\mathbf{y}-\mathbf{X} \mathbf{w})+\lambda \mathbf{w}^{T} \mathbf{w} \quad \text { See book } \\
\mathbf{w} & =\left(\mathbf{X}^{T} \mathbf{X}+\lambda \mathbf{I}\right)^{-1} \mathbf{X}^{T} \mathbf{y}
\end{aligned}
$$

QR

- Recall

$$
\mathbf{w}=\left(\mathbf{X}^{T} \mathbf{X}+\lambda \mathbf{I}\right)^{-1} \mathbf{X}^{T} \mathbf{y}
$$

- Expanded data:

$$
\begin{aligned}
\tilde{\mathbf{X}} & =\binom{\mathbf{X}}{\sqrt{\lambda} \mathbf{I}_{d}}, \quad \tilde{\mathbf{y}}=\binom{\mathbf{y}}{\mathbf{o}_{d \times 1}} \\
J(\mathbf{w}) & =(\tilde{\mathbf{y}}-\tilde{\mathbf{X}} \mathbf{w})^{T}(\tilde{\mathbf{y}}-\tilde{\mathbf{X}} \mathbf{w})=(\mathbf{y}-\mathbf{X} \mathbf{w})^{T}(\mathbf{y}-\mathbf{X} \mathbf{w})+\lambda \mathbf{w}^{T} \mathbf{w} \\
\hat{\mathbf{w}}_{\text {ridge }} & =\tilde{\mathbf{X}} \backslash \tilde{\mathbf{y}} .
\end{aligned}
$$

SVD

- Recall

$$
\mathbf{w}=\left(\mathbf{X}^{T} \mathbf{X}+\lambda \mathbf{I}\right)^{-1} \mathbf{X}^{T} \mathbf{y}
$$

- Homework: let $\mathrm{X}=\mathrm{U} \mathrm{D} \mathrm{V}^{\top}$.

$$
\mathbf{w}=\mathbf{V}\left(\mathbf{D}^{2}+\lambda \mathbf{I}\right)^{-1} \mathbf{D} \mathbf{U}^{T} \mathbf{y}
$$

- Cheap to compute for many lambdas (regularization path), useful for CV

Ridge and PCA

- We have

$$
\begin{aligned}
\hat{\mathbf{y}} & =\mathbf{X} \hat{\mathbf{w}}_{\text {ridge }}=\mathbf{U} \mathbf{D} \mathbf{V}^{T} \mathbf{V}\left(\mathbf{D}^{2}+\lambda \mathbf{I}\right)^{-1} \mathbf{D} \mathbf{U}^{T} \mathbf{y} \\
& =\mathbf{U} \tilde{\mathbf{D}} \mathbf{U}^{T} \mathbf{y}=\sum_{j=1}^{d} \mathbf{u}_{j} \tilde{D}_{j j} \mathbf{u}_{j}^{T} \mathbf{y} \\
\tilde{D}_{j j} & \stackrel{\text { def }}{=}\left[\mathbf{D}\left(\mathbf{D}^{2}+\lambda I\right)^{-1} \mathbf{D}\right]_{j j}=\frac{d_{j}^{2}}{d_{j}^{2}+\lambda} \\
\hat{\mathbf{y}} & =\mathbf{X} \hat{\mathbf{w}}_{\text {ridge }}=\sum_{j=1}^{d} \mathbf{u}_{j} \frac{d_{j}^{2}}{d_{j}^{2}+\lambda} \mathbf{u}_{j}^{T} \mathbf{y} \\
\hat{\mathbf{y}} & =\mathbf{X} \hat{\mathbf{w}}_{l s}=\left(\mathbf{U D} \mathbf{V}^{T}\right)\left(\mathbf{V} \mathbf{D}^{-1} \mathbf{U}^{T} \mathbf{y}\right)=\mathbf{U} \mathbf{U}^{T} \mathbf{y}=\sum_{j=1}^{d} \mathbf{u}_{j} \mathbf{u}_{j}^{T} \mathbf{y}
\end{aligned}
$$

$d_{j}^{2} /\left(d_{j}^{2}+\lambda\right) \leq 1 \quad$ Filter factors

Ridge and PCA

- D_{j}^{2} are the eigenvalues of empirical cov mat $X^{\top} X$.
- Small d j are directions j with small variance: these get shrunk the most, since most ill-determined

$$
\hat{\mathbf{y}}=\mathbf{X} \hat{\mathbf{w}}_{\text {ridge }}=\sum_{j=1}^{d} \mathbf{u}_{j} \frac{d_{j}^{2}}{d_{j}^{2}+\lambda} \mathbf{u}_{j}^{T} \mathbf{y}
$$

Principal components regression

- Can set $\mathrm{Z}=\mathrm{PCA}(\mathrm{X}, \mathrm{K})$ then $\mathrm{w}=\mathrm{regress}(\mathrm{X}, \mathrm{y})$ using a pcaTransformer object
- PCR sets (transformed) dimensions $\mathrm{K}+1, \ldots, \mathrm{~d}$ to zero, whereas ridge uses all weighted dimensions. Ridge predictions usually more accurate.
- Feature selection (see later) sets (original) dimensions $\mathrm{K}+1, \ldots$, d to zero. Ridge is usually more accurate, but may be less interpretable.

Degrees of freedom

All have $\mathrm{D}=14$ but clearly differ in their effective complexity
$\hat{\mathbf{y}}=\mathbf{S}(\mathbf{X}) \mathbf{y}$
$d f(\mathbf{S}) \stackrel{\text { def }}{=} \operatorname{trace}(\mathbf{S})$
$d f(\lambda)=\sum_{j=1}^{d} \frac{d_{j}^{2}}{d_{j}^{2}+\lambda}$

Tikhonov regularization

$$
\min _{f} \frac{1}{2} \int_{0}^{1}(f(x)-y(x))^{2} d x+\frac{\lambda}{2} \int_{0}^{1}\left[f^{\prime}(x)\right]^{2} d x
$$

Discretization

$$
\begin{array}{r}
\min _{f} \frac{1}{2} \int_{0}^{1}(f(x)-y(x))^{2} d x+\frac{\lambda}{2} \int_{0}^{1}\left[f^{\prime}(x)\right]^{2} d x \\
\min _{\mathbf{f}} \frac{1}{2} \sum_{i=1}^{n-1}\left(f_{i}-y_{i}\right)^{2}+\frac{\lambda}{2} \sum_{i=1}^{n-1}\left(f_{i+1}-f_{i}\right)^{2} \\
\min _{\mathbf{f}} \frac{1}{2} \sum_{i=1}^{n}\left(f_{i}-y_{i}\right)^{2}+\frac{\lambda}{4} \sum_{i=1}^{n}\left[\left(f_{i}-f_{i-1}\right)^{2}+\left(f_{i}-f_{i+1}\right)^{2}\right]
\end{array}
$$

Boundary conditions: $\mathfrak{f}_{0}=f_{1}, f_{n+1}=f_{n}$

Matrix form

$$
\begin{aligned}
& \min _{\mathbf{f}} \frac{1}{2} \sum_{i=1}^{n}\left(f_{i}-y_{i}\right)^{2}+\frac{\lambda}{4} \sum_{i=1}^{n}\left[\left(f_{i}-f_{i-1}\right)^{2}+\left(f_{i}-f_{i+1}\right)^{2}\right] \\
& J(\mathbf{w})=\|\mathbf{y}-\mathbf{w}\|^{2}+\lambda\|\mathbf{D} \mathbf{w}\|^{2} \\
& \mathbf{D}=\left(\begin{array}{ccccc}
-1 & 1 & & & \\
& -1 & 1 & & \\
& & \ddots & \ddots & \\
& & & -1 & 1
\end{array}\right) \\
& \|\mathbf{D} \mathbf{w}\|^{2}=\mathbf{w}^{T}\left(D^{T} D\right) \mathbf{w}=\sum_{i=1}^{n-1}\left(w_{i+1}-w_{i}\right)^{2} \\
& \mathbf{D}^{T} \mathbf{D}=\left(\begin{array}{cccccccc}
1 & -1 & 0 & 0 & \cdots & 0 & 0 & 0 \\
-1 & 2 & -1 & 0 & \cdots & 0 & 0 & 0 \\
0 & -1 & 2 & -1 & \cdots & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \cdots & -1 & 2 & -1 \\
0 & 0 & 0 & 0 & \cdots & 0 & -1 & 1
\end{array}\right)
\end{aligned}
$$

QR

$$
\min _{\mathbf{w}}\left\|\binom{I_{n}}{\sqrt{\lambda} D} \mathbf{w}-\binom{\mathbf{y}}{\mathbf{0}}\right\|^{2}
$$

Listing 1: :

```
D = spdiags(ones(N-1,1)*[-1 1], [0 1], N-1, N);
A = [speye(N); sqrt(lambda) *D];
b}=[y; zeros(N-1,1)]
w = A \ b;
```

