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CS540 Machine learning
Lecture 5
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Last time

• Basis functions for linear regression

• Normal equations
• QR

• SVD - briefly
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This time

• Geometry of least squares (again)

• SVD – more slowly
• LMS

• Ridge regression
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Geometry of least squares

Columns of X define a d-dimensional
linear subspace in n-dimensions.
Yhat is projection of y into that subspace.
Here n=3, d=2.

Unit norm
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Orthogonal projection

• Projection of y onto X

• Let r = y - \hat{y}. Residual must be orthogonal to 
X. Hence

• Prediction on training set

• Residual is orthogonal

Hat matrix
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This time

• Geometry of least squares (again)

• SVD – more slowly
• LMS

• Ridge regression
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Eigenvector decomposition (EVD)

• For any square matrix A, we say λ is an eval and u 
is its evec if

• Stacking up all evecs/vals gives

• If evecs linearly independent

diagonalization
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EVD of symmetric matrices

• If A is symmetric, all its evals are real, and all its 
evecs are orthonormal, ui

T uj =δij

• Hence

• and 
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SVD

For any real matrix
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Truncated SVD

• Rank k approximation to a matrix

Equivalent to PCA
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Truncated SVD
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SVD and EVD

• If A is symmetric positive definite, then 
svals(A)=evals(A), 
leftSvecs(A)=rightSvecs(A)=evecs(A)
modulo sign changes
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SVD and EVD

• For arbitrary real matrix A

• leftSvecs(A) = evecs(A A’)
• rightSvecs(A) = evecs(A’ A)

• Svals(A)^2 = evals(A’ A) = evals(A A’)
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SVD for least squares

• We have

What if Dj = 0 (so rank of X is less than d)?
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Pseudo inverse

• If D_j=0, use

• Of all solutions w that minimize ||Xw – y||, the pinv
solution also minimizes ||w||
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This time

• Geometry of least squares (again)

• SVD – more slowly
• LMS

• Ridge regression
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Gradient descent

• QR and SVD take O(d3) time
• We can find the MLE by following the gradient

• O(d) per step, but may need many steps

Exact line search
η=0.1 η=0.6
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Stochastic gradient descent

• Approximate the gradient 
by looking at a single data 
case

• Can be used to learn online

Least Mean Squared
Widrow-Hoff
Delta-rule
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This time

• Geometry of least squares (again)

• SVD – more slowly
• LMS

• Ridge regression
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Ridge regression

• Minimize penalized negative log likelihood

• Weight decay, shrinkage, L2 regularization, ridge 
regression

−ℓ(w) + λ||w||22
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Regularization D=14

λ=0
λ=10-5

λ=10-3
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Why it works

• Coefficients if λ=0 (MLE)

• Coefficients  if λ=10-3

• Small weights mean the curve is almost linear 
(same is true for sigmoid function)

-0.18, 10.57, -110.28, -245.63, 1664.41, 2647.81, -965
27669.94, 19319.66, -41625.65, -16626.90, 31483.81, 54

-1.54, 5.52, 3.66, 17.04, -2.63, -23.06, -0.37, -8.49
7.92, 5.40, 8.29, 7.75, 1.78, 2.03, -8.42,
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Ridge regression

• The objective function is

• We don’t shrink w_0. We should standardize first.
• Constrained formulation

• Find the penalized MLE

w = argmin
w

n∑

i=1

(yi − xTi w− w0)2 + λ
d∑

j=1

w2j

w = argmin
w

n∑

i=1

(yi − xTi w − w0)2 s.t.
d∑

j=1

w2j ≤ t

J(w) = (y −Xw)T (y −Xw) + λwTw

w = (XTX+ λI)−1XTy

See book
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QR

• Recall

• Expanded data:

w = (XTX+ λI)−1XTy

X̃ =

(
X√
λId

)
, ỹ =

(
y

0d×1

)

J(w) = (ỹ − X̃w)T (ỹ− X̃w) = (y −Xw)T (y −Xw) + λwTw

ŵridge = X̃ \ ỹ.
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SVD

• Recall

• Homework: let X=U D VT.

• Cheap to compute for many lambdas (regularization 
path), useful for CV

w = (XTX+ λI)−1XTy

w = V(D2 + λI)−1DUTy
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Ridge and PCA

• We have
ŷ = Xŵridge = UDV

TV(D2 + λI)−1DUTy

= UD̃UTy =
d∑

j=1

ujD̃jju
T
j y

D̃jj
def
= [D(D2 + λI)−1D]jj =

d2j
d2j + λ

ŷ = Xŵridge =
d∑

j=1

uj
d2j

d2j + λ
uTj y

ŷ = Xŵls = (UDV
T )(VD−1UTy) = UUTy =

d∑

j=1

uju
T
j y

d2j/(d
2
j + λ) ≤ 1 Filter factors
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Ridge and PCA

• Dj
2 are the eigenvalues of empirical cov mat XT X.

• Small d_j are directions j with small variance: these get 
shrunk the most, since most ill-determined

ŷ = Xŵridge =

d∑

j=1

uj
d2j

d2j + λ
uTj y
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Principal components regression

• Can set Z=PCA(X,K) then w=regress(X,y) using a 
pcaTransformer object

• PCR sets (transformed) dimensions K+1,…,d to 
zero, whereas ridge uses all weighted dimensions. 
Ridge predictions usually more accurate.

• Feature selection (see later) sets (original) 
dimensions K+1,…,d to zero. Ridge is usually more 
accurate, but may be less interpretable.
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Degrees of freedom

λ=0
λ=10-5

λ=10-3

All have D=14 but clearly
differ in their effective complexity

ŷ = S(X)y

df(S)
def
= trace(S)

df(λ) =

d∑

j=1

d2j
d2j + λ
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Tikhonov regularization

min
f

1

2

∫ 1

0

(f(x)− y(x))2dx+ λ
2

∫ 1

0

[f ′(x)]2dx
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Discretization

min
f

1

2

∫ 1

0

(f(x)− y(x))2dx+ λ
2

∫ 1

0

[f ′(x)]2dx

min
f

1

2

n−1∑

i=1

(fi − yi)2 +
λ

2

n−1∑

i=1

(fi+1 − fi)2

min
f

1

2

n∑

i=1

(fi − yi)2 +
λ

4

n∑

i=1

[
(fi − fi−1)2 + (fi − fi+1)2

]

Boundary conditions: f0=f1, fn+1=fn
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Matrix form

min
f

1

2

n∑

i=1

(fi − yi)2 +
λ

4

n∑

i=1

[
(fi − fi−1)2 + (fi − fi+1)2

]

J(w) = ||y −w||2 + λ||Dw||2

D =






−1 1
−1 1

. ..
. ..
−1 1






||Dw||2 = wT (DTD)w =
n−1∑

i=1

(wi+1 − wi)2

DTD =






1 −1 0 0 · · · 0 0 0
−1 2 −1 0 · · · 0 0 0
0 −1 2 −1 · · · 0 0 0
0 0 0 0 · · · −1 2 −1
0 0 0 0 · · · 0 −1 1
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QR

min
w
||
(
In√
λD

)
w −

(
y

0

)
||2

Listing 1: :
D = spdiags(ones(N-1,1)*[-1 1], [0 1], N-1, N);
A = [speye(N); sqrt(lambda)*D];
b = [y; zeros(N-1,1)];
w = A \ b;


