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Review

• Probability models: Gaussian, Binomial, 
Multinomial, linear regression, logistic regression

• MLE of Gaussian, Binomial, Multinomial



Outline

• Basic concepts
– Loss functions
– Estimation vs inference
– Decision boundaries
– Overfitting
– Regularization
– Model selection
– Structural error vs approximation error



Loss functions

• Squared error, 0-1 loss

• Minimize risk (expected loss, empirical loss)

L(y, ŷ) = (y − ŷ)2

L(y, ŷ) = I(y �= ŷ)

R(f̂) = Ex,yL(f(x), f̂(x))

R̂(f̂) =
1

n

n∑

i=1

L(yi, f̂(xi))



Loss functions for density estimation

• Suppose output is \hat{p}(.|x), truth is p(.|x)

• Use KL  (Kullback Leibler) loss

• Risk is expected negative log likelihood 

L(p(y|x), p̂(y|x)) = KL(p(y|x), p̂(y|x)) =
∑

y

p(y|x) log p(y|x)
p̂(y|x)

R(p̂) = −Ex
∑

y

p(y|x) log p̂(y|x) = −Ex,y log p̂(y|x)



Estimation vs Inference

• Learning as optimization (frequentist): Given D, 
Choose     to approximate f as closely as possible, 
so as to minimize (future) expected loss

• Usually compute parameter estimate
• Learning as inference (Bayesian): given D, 

compute posterior over functions
• Or posterior over parameters

• In the decision theory chapter, we show that one of 
the best ways to minimize frequentist risk is to be 
Bayesian

p(f |D)

p(θ|D) = p(D|θ)p(θ)
p(D)

θ̂

f̂



MAP estimation

• One possible point estimate derived from the 
posterior is the posterior mode or Maximum A 
Posterior value

• Equivalent to penalized maximum likelihood
• Computing MAP is optimization problem (fast)

• Not strictly Bayesian, since it is a point estimate, 
not a probability distribution

• We will study  Bayesian methods later

θ̂ = argmax
θ
p(θ|D) = argmax

θ
log p(D|θ) + log p(θ)



Uncertainty in parameter estimates

• Uncertainty in p(θ|D) induces uncertainty in p(y|x,θ)
• Ignoring uncertainty in parameters can cause over 

confidence

p(y = 1|x,w) = σ(wT [1, x]) = σ(w0 + w1x)
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Decision boundaries

• Logistic regression in 2D

p(y = 1|x,w) = σ(wT
x)



Decision boundaries

• Decision region and boundary

• 2D input

• 1D input

R0 = {x : p(y = 0|x,w) > p(y = 1|x,w)}
B = {x : p(y = 1|x,w) = p(y = 0|x,w) = 0.5}

B = {x : log p(y = 1|x,w)
p(y = 0|x,w) = w

Tφ(x) = 0

log
p(y = 1|x,w)
p(y = 0|x,w) = log

eη

1 + eη
1 + eη

1
= log eη = η

B = {x : w0 + w1x1 + w2x2 = 0}

Log odds ratio

B = {x : w0 + w1x = 0} = {x : x =
−w0
w1

= w∗}



Xor problem

x1 x2 y

0 0 0
0 1 1
1 0 1
1 1 0



Linearly separable data



Overfitting

D=10 D=15

D=20

test

train



Regularization

• Minimize penalized negative log likelihood

• Weight decay, shrinkage, L2 regularization, ridge 
regression

−ℓ(w) + λ||w||22



Regularization D=14

λ=0
λ=10-5

λ=10-3



Why it works

• Coefficients if λ=0 (MLE)

• Coefficients  if λ=10-3

• Small weights mean the curve is almost linear 
(same is true for sigmoid function)

-0.18, 10.57, -110.28, -245.63, 1664.41, 2647.81, -965
27669.94, 19319.66, -41625.65, -16626.90, 31483.81, 54

-1.54, 5.52, 3.66, 17.04, -2.63, -23.06, -0.37, -8.49
7.92, 5.40, 8.29, 7.75, 1.78, 2.03, -8.42,



Model selection

• Cannot use test set to pick D or λ
• Partition training into train and validation
• If training set is small, use cross validation



Cross validation

• CV estimate of risk (expected loss)

• Leave one out (LOOCV)

J(λ) =
1

n

n∑

i=1

L
(
yi, f(xi,D−b(i), λ)

)

J(λ) =
1

n

B∑

b=1

∑

i∈b

L (yi, f(xi, D−b, K))

J(λ) =
1

n

n∑

i=1

L(yi, f(xi, D−i, λ))



Standard errors

• CV score is an estimate of the expected loss

• Uncertainty in the mean can be quantified using the 
standard error

• From a Bayesian viewpoint, we can think of this as 

Li = L(yi, f(xi, D−b(i),K))

J(λ) = L =
1

n

n∑

i=1

Li

σ̂2 =
1

n

n∑

i=1

(Li − L)2

se =
σ̂√
n
=

√
σ̂2

n

L = Ep(J(λ)|D), se =
√

Var p(J(λ)|D)



CV with se



One standard error rule



Penalized likelihood methods

• CV can be slow: have to fit B models

• Instead pick λ to minimize

• Eg BIC, AIC – see later

• Or use Empirical Bayes – see later

• CV estimate J(λ) requires grid search over λ; other 
methods can use gradient-based optimization

J(λ) = − log p(D|θ̂(λ)) + C(θ̂(λ))

J(λ) = p(D|λ) =
∫
p(D|θ)p(θ|λ)dθ
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Structural error vs approximation error

D=1

D=2

D=30Truth = D=2
Sigma^2 = 4

Ntest=200


