CS540 Machine learning Lecture 3

Review

- Probability models: Gaussian, Binomial,
 Multinomial, linear regression, logistic regression
- MLE of Gaussian, Binomial, Multinomial

Outline

- Basic concepts
 - Loss functions
 - Estimation vs inference
 - Decision boundaries
 - Overfitting
 - Regularization
 - Model selection
 - Structural error vs approximation error

Loss functions

Squared error, 0-1 loss

$$L(y, \hat{y}) = (y - \hat{y})^2$$

$$L(y, \hat{y}) = I(y \neq \hat{y})$$

Minimize risk (expected loss, empirical loss)

$$R(\hat{f}) = E_{\mathbf{X},y} L(f(\mathbf{x}), \hat{f}(\mathbf{x}))$$

$$\hat{R}(\hat{f}) = \frac{1}{n} \sum_{i=1}^{n} L(y_i, \hat{f}(\mathbf{x}_i))$$

Loss functions for density estimation

- Suppose output is \hat{p}(.|x), truth is p(.|x)
- Use KL (Kullback Leibler) loss

$$L(p(y|\mathbf{x}), \hat{p}(y|\mathbf{x})) = KL(p(y|\mathbf{x}), \hat{p}(y|\mathbf{x})) = \sum_{y} p(y|\mathbf{x}) \log \frac{p(y|\mathbf{x})}{\hat{p}(y|\mathbf{x})}$$

Risk is expected negative log likelihood

$$R(\hat{p}) = -E_{\mathbf{X}} \sum_{y} p(y|\mathbf{x}) \log \hat{p}(y|\mathbf{x}) = -E_{\mathbf{X},y} \log \hat{p}(y|\mathbf{x})$$

Estimation vs Inference

- Learning as optimization (frequentist): Given D, Choose \hat{f} to approximate f as closely as possible, so as to minimize (future) expected loss
- Usually compute parameter estimate $\hat{\theta}$
- Learning as inference (Bayesian): given D, compute posterior over functions p(f|D)
- Or posterior over parameters

$$p(\boldsymbol{\theta}|\mathcal{D}) = \frac{p(\mathcal{D}|\boldsymbol{\theta})p(\boldsymbol{\theta})}{p(\mathcal{D})}$$

 In the decision theory chapter, we show that one of the best ways to minimize frequentist risk is to be Bayesian

MAP estimation

 One possible point estimate derived from the posterior is the posterior mode or Maximum A Posterior value

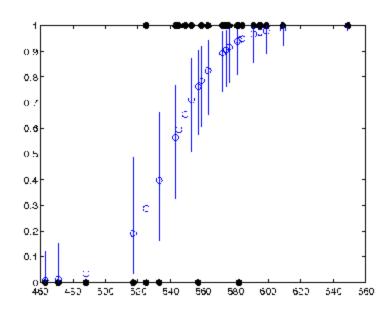
$$\hat{\boldsymbol{\theta}} = \arg \max_{\boldsymbol{\theta}} p(\boldsymbol{\theta}|\mathcal{D}) = \arg \max_{\boldsymbol{\theta}} \log p(\mathcal{D}|\boldsymbol{\theta}) + \log p(\boldsymbol{\theta})$$

- Equivalent to penalized maximum likelihood
- Computing MAP is optimization problem (fast)
- Not strictly Bayesian, since it is a point estimate, not a probability distribution
- We will study Bayesian methods later

Uncertainty in parameter estimates

- Uncertainty in $p(\theta|D)$ induces uncertainty in $p(y|x,\theta)$
- Ignoring uncertainty in parameters can cause over confidence

$$p(y=1|x,\mathbf{w}) = \sigma(\mathbf{w}^T[1,x]) = \sigma(w_0 + w_1x)$$



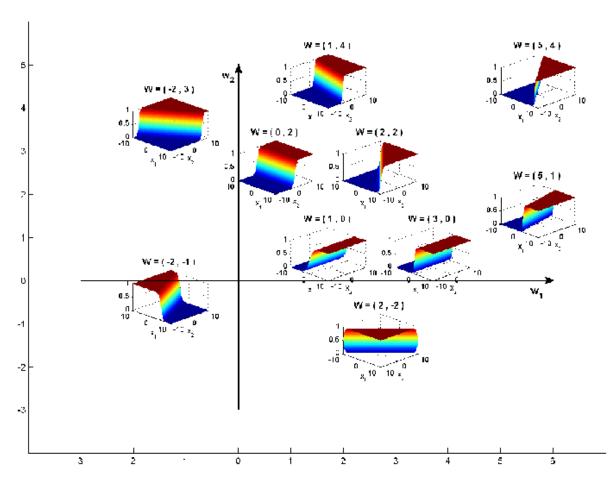
Outline

- Basic concepts
 - Loss functions
 - Estimation vs inference
 - Decision boundaries
 - Overfitting
 - Regularization
 - Model selection
 - Structural error vs approximation error

Decision boundaries

Logistic regression in 2D

$$p(y = 1|\mathbf{x}, \mathbf{w}) = \sigma(\mathbf{w}^T \mathbf{x})$$



Decision boundaries

Decision region and boundary

$$R_0 = \{\mathbf{x} : p(y = 0 | \mathbf{x}, \mathbf{w}) > p(y = 1 | \mathbf{x}, \mathbf{w})\}$$

$$\mathcal{B} = \{\mathbf{x} : p(y = 1 | \mathbf{x}, \mathbf{w}) = p(y = 0 | \mathbf{x}, \mathbf{w}) = 0.5\}$$

$$\mathcal{B} = \{\mathbf{x} : \log \frac{p(y = 1 | \mathbf{x}, \mathbf{w})}{p(y = 0 | \mathbf{x}, \mathbf{w})} = \mathbf{w}^T \phi(\mathbf{x}) = 0$$

Log odds ratio
$$\log \frac{p(y=1|\mathbf{x},\mathbf{w})}{p(y=0|\mathbf{x},\mathbf{w})} = \log \frac{e^{\eta}}{1+e^{\eta}} \frac{1+e^{\eta}}{1} = \log e^{\eta} = \eta$$

• 2D input

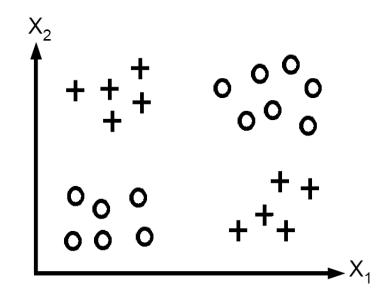
$$\mathcal{B} = \{ \mathbf{x} : w_0 + w_1 x_1 + w_2 x_2 = 0 \}$$

1D input

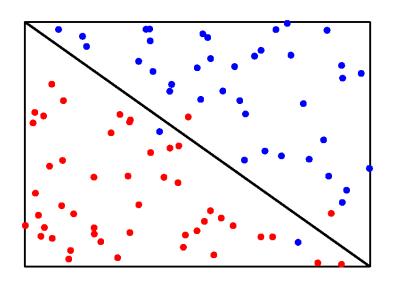
$$\mathcal{B} = \{x : w_0 + w_1 x = 0\} = \{x : x = \frac{-w_0}{w_1} = w^*\}$$

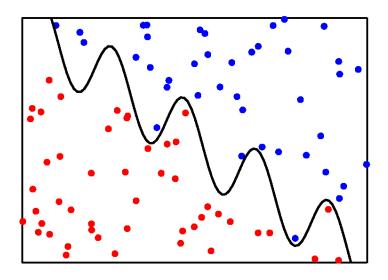
Xor problem

x_1	x_2	y
0	0	0
0	1	1
1	0	1
1	1	0

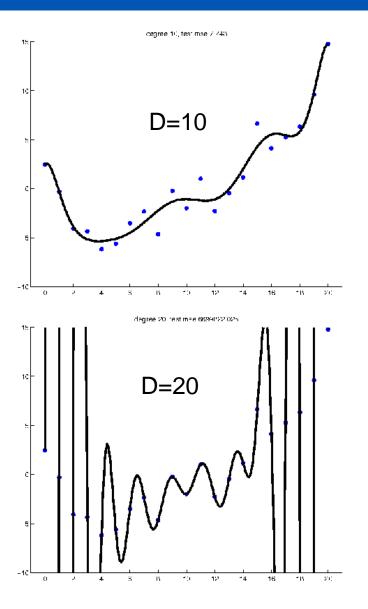


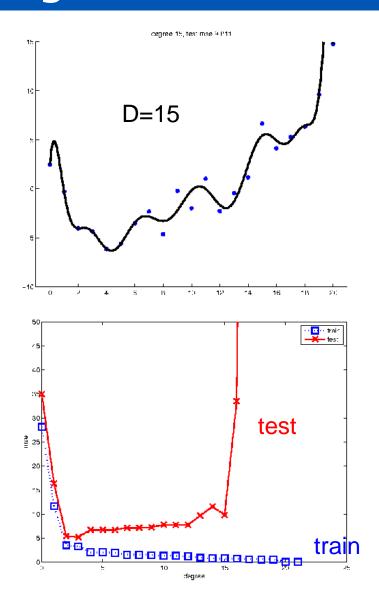
Linearly separable data





Overfitting





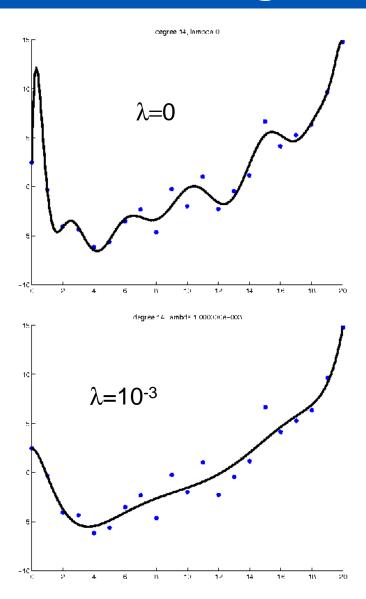
Regularization

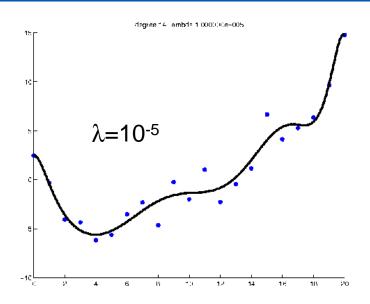
Minimize penalized negative log likelihood

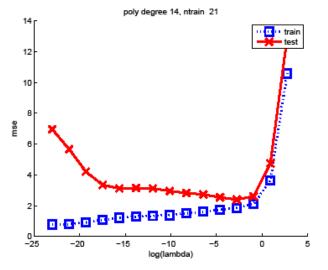
$$-\ell(\mathbf{w}) + \lambda ||\mathbf{w}||_2^2$$

Weight decay, shrinkage, L2 regularization, ridge regression

Regularization D=14







Why it works

• Coefficients if λ =0 (MLE)

```
-0.18, 10.57, -110.28, -245.63, 1664.41, 2647.81, -965
27669.94, 19319.66, -41625.65, -16626.90, 31483.81, 54
```

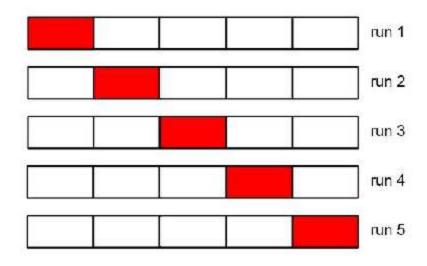
• Coefficients if $\lambda = 10^{-3}$

```
-1.54, 5.52, 3.66, 17.04, -2.63, -23.06, -0.37, -8.49, -2.92, -2.40, -2.40, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2.63, -2
```

 Small weights mean the curve is almost linear (same is true for sigmoid function)

Model selection

- Cannot use test set to pick D or λ
- Partition training into train and validation
- If training set is small, use cross validation



Cross validation

CV estimate of risk (expected loss)

$$J(\lambda) = \frac{1}{n} \sum_{i=1}^{n} L\left(y_i, f(x_i, D_{-b(i)}, \lambda)\right)$$

$$J(\lambda) = \frac{1}{n} \sum_{b=1}^{B} \sum_{i \in b} L\left(y_i, f(x_i, D_{-b}, K)\right)$$

Leave one out (LOOCV)

$$J(\lambda) = \frac{1}{n} \sum_{i=1}^{n} L(y_i, f(x_i, D_{-i}, \lambda))$$

Standard errors

CV score is an estimate of the expected loss

$$L_{i} = L(y_{i}, f(\mathbf{x}_{i}, D_{-b(i)}, K))$$

$$J(\lambda) = \overline{L} = \frac{1}{n} \sum_{i=1}^{n} L_{i}$$

Uncertainty in the mean can be quantified using the standard error

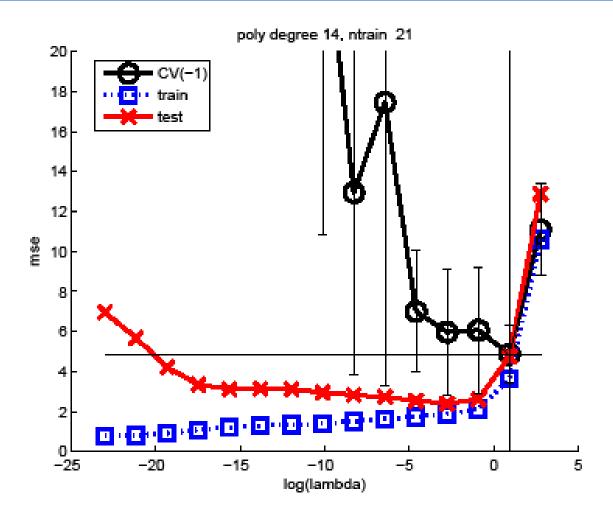
$$\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (L_i - \overline{L})^2$$

$$se = \frac{\hat{\sigma}}{\sqrt{n}} = \sqrt{\frac{\hat{\sigma}^2}{n}}$$

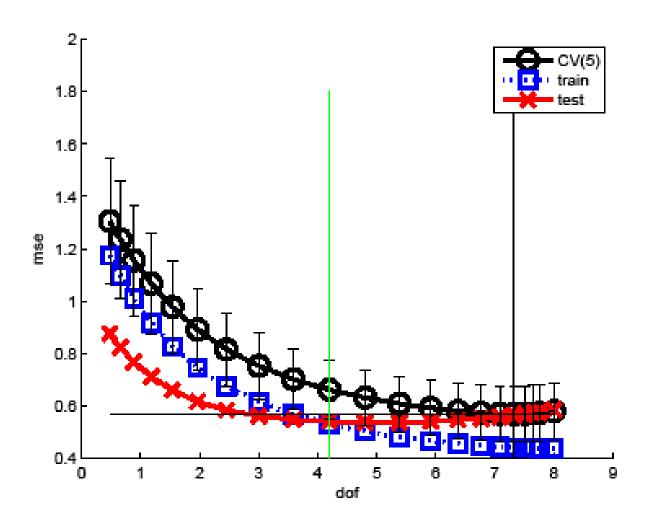
From a Bayesian viewpoint, we can think of this as

$$\overline{L} = Ep(J(\lambda)|\mathcal{D}), \quad se = \sqrt{\operatorname{Var} p(J(\lambda)|\mathcal{D})}$$

CV with se



One standard error rule



Penalized likelihood methods

- CV can be slow: have to fit B models
- Instead pick λ to minimize

$$J(\lambda) = -\log p(\mathcal{D}|\hat{\boldsymbol{\theta}}(\lambda)) + C(\hat{\boldsymbol{\theta}}(\lambda))$$

- Eg BIC, AIC see later
- Or use Empirical Bayes see later

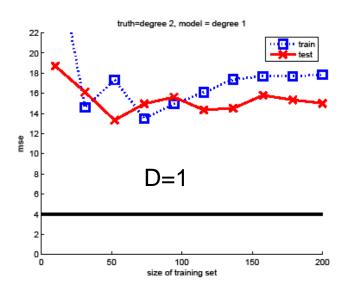
$$J(\lambda) = p(\mathcal{D}|\lambda) = \int p(\mathcal{D}|\boldsymbol{\theta})p(\boldsymbol{\theta}|\lambda)d\boldsymbol{\theta}$$

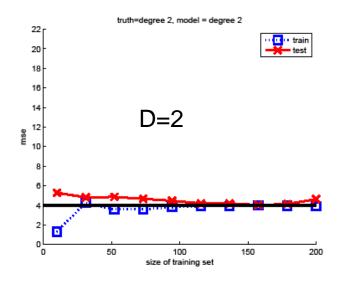
 CV estimate J(λ) requires grid search over λ; other methods can use gradient-based optimization

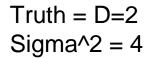
Outline

- Basic concepts
 - Loss functions
 - Estimation vs inference
 - Decision boundaries
 - Overfitting
 - Regularization
 - Model selection
 - Structural error vs approximation error

Structural error vs approximation error







Ntest=200

