CS540 Machine learning Lecture 16

EM: theory and applications

Outline

- Conditional mixture models
- EM for Empirical Bayes
- "Sparse Bayesian learning"
- EM theory

One to many "functions"

Neural net models E[y|x]

Need to model $p(y \mid x)$

Ambiguity in inferring 3d from 2d

Sminchisescu

Mixture of gaussians

Deterministic nodes in green double circles

$$
\begin{aligned}
p\left(\mathbf{y}_{i}, z_{i}=k \mid \boldsymbol{\theta}\right) & =p\left(z_{i}=k \mid \boldsymbol{\theta}\right)\left(\mathbf{y}_{i} \mid z_{i}=k, \boldsymbol{\theta}\right) \\
& =\operatorname{Mu}\left(z_{i}=k \mid \boldsymbol{\pi}, 1\right) \mathcal{N}\left(\mathbf{y}_{i} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)
\end{aligned}
$$

Conditional mixture of gaussians

$$
\begin{aligned}
p\left(\mathbf{y}_{i}, z_{i}=k \mid \mathbf{x}_{i}, \boldsymbol{\theta}\right) & =p\left(z_{i}=k \mid \mathbf{x}_{i}, \boldsymbol{\theta}\right) p\left(\mathbf{y}_{i} \mid z_{i}=k, \boldsymbol{\theta}\right) \\
& =\operatorname{Mu}\left(z_{i}=k \mid \mathcal{S}\left(\mathbf{x}_{i}, \mathbf{B}\right), 1\right) \mathcal{N}\left(\mathbf{y}_{i} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)
\end{aligned}
$$

mixture of linear regression

$$
\begin{aligned}
p\left(y_{i}, z_{i}=k \mid \mathbf{x}_{i}, \boldsymbol{\theta}\right) & =p\left(z_{i}=k \mid \boldsymbol{\theta}\right) p\left(y_{i} \mid \mathbf{x}_{i}, z_{i}=k, \boldsymbol{\theta}\right) \\
& =\operatorname{Mu}\left(z_{i}=k \mid \boldsymbol{\pi}, 1\right) \mathcal{N}\left(y_{i} \mid \mathbf{x}_{i}^{T} \mathbf{w}_{k}, \sigma_{k}^{2}\right)
\end{aligned}
$$

Conditional mixture of linear regression

$$
\begin{aligned}
p\left(y_{i}, z_{i}=k \mid \mathbf{x}_{i}, \boldsymbol{\theta}\right) & =p\left(z_{i}=k \mid \mathbf{x}_{i}, \boldsymbol{\theta}\right) p\left(y_{i} \mid \mathbf{x}_{i}, z_{i}=k, \boldsymbol{\theta}\right) \\
& =\operatorname{Mu}\left(z_{i}=k \mid \mathcal{S}\left(\mathbf{x}_{i}, \mathbf{B}\right), 1\right) \mathcal{N}\left(y_{i} \mid \mathbf{x}_{i}^{T} \mathbf{w}_{k}, \sigma_{k}^{2}\right)
\end{aligned}
$$

Mixtures of linear regression

$L L=-27.6$

Bishop

Mixtures of logistic regression

EM for CondMixLinReg

- Expected complete data log likelihood

$$
\begin{aligned}
& p\left(y_{i}, z_{i} \mid \mathbf{x}_{i}, \boldsymbol{\theta}\right)=\prod_{k=1}^{K} p\left(z_{i}=k \mid \mathbf{x}_{i}, \boldsymbol{\theta}\right) p\left(y_{i} \mid \mathbf{x}_{i}, z_{i}=k, \boldsymbol{\theta}\right)^{I\left(z_{i}=k\right)} \\
& \ell_{c}(\mathbf{y}, \mathbf{z} \mid \mathbf{x}, \boldsymbol{\theta})=\sum_{i=1}^{n} \sum_{k=1}^{K} I\left(z_{i}=k\right) \log \mathcal{S}\left(k \mid \mathbf{x}_{i}, \mathbf{B}\right)
\end{aligned}
$$

$$
\begin{aligned}
& Q\left(\boldsymbol{\theta}, \boldsymbol{\theta}^{t}\right)=E_{\mathbf{z} \mid \boldsymbol{\theta}^{t_{c}}(\mathbf{y}, \mathbf{z} \mid \mathbf{x}, \boldsymbol{\theta})} \\
& =\sum_{i=1}^{n} \sum_{k=1}^{K} p\left(z_{i}=k \mid \mathbf{x}_{i}, y_{i}, \boldsymbol{\theta}^{t}\right) \log \mathcal{S}\left(k \mid \mathbf{x}_{i}, \mathbf{B}\right) \\
& +p\left(z_{i}=k \mid \mathbf{x}_{i}, y_{i}, \boldsymbol{\theta}^{t}\right) \log \mathcal{N}\left(y_{i} \mid \mathbf{x}_{i}^{T} \mathbf{w}_{k}, \sigma_{k}^{2}\right) \\
& \text { E step: compute responsibilities } p\left(z_{i}=k \mid \mathbf{x}_{i}, y_{i}, \boldsymbol{\theta}^{t}\right) \\
& \text { M step: weighted IRLS for B, weighted LS for w, residual for } \sigma
\end{aligned}
$$

Cluster weighted regression

$$
\begin{aligned}
p\left(y_{i}, \mathbf{x}_{i}, z_{i}=k \mid \boldsymbol{\theta}\right) & =p\left(z_{i}=k \mid \boldsymbol{\theta}\right) p\left(\mathbf{x}_{i} \mid z_{i}=k, \boldsymbol{\theta}\right) p\left(y_{i} \mid \mathbf{x}_{i}, z_{i}=k, \boldsymbol{\theta}\right) \\
& =M u\left(z_{i}=k \mid \boldsymbol{\pi}, 1\right) \mathcal{N}\left(\mathbf{x}_{i} \mid \mathbf{m}_{k}, \boldsymbol{\Sigma}_{k}\right) \mathcal{N}\left(y_{i} \mid \mathbf{x}_{i}^{T} \mathbf{w}_{k}, \sigma_{k}^{2}\right)
\end{aligned}
$$

Hierarchical mixture of experts

Probabilistic regression tree of fixed depth

Hierarchical mixtures of experts

Brutti

CondMixLinReg

$$
\begin{aligned}
p\left(y_{i}, z_{i}=k \mid \mathbf{x}_{i}, \boldsymbol{\theta}\right) & =p\left(z_{i}=k \mid \mathbf{x}_{i}, \boldsymbol{\theta}\right) p\left(y_{i} \mid \mathbf{x}_{i}, z_{i}=k, \boldsymbol{\theta}\right) \\
& =\operatorname{Mu}\left(z_{i}=k \mid \mathcal{S}\left(\mathbf{x}_{i}, \mathbf{B}\right), 1\right) \mathcal{N}\left(y_{i} \mid \mathbf{x}_{i}^{T} \mathbf{w}_{k}, \sigma_{k}^{2}\right)
\end{aligned}
$$

Mixture density networks

$$
\begin{aligned}
p\left(y_{i}, z_{i}=k \mid \mathbf{x}_{i}, \boldsymbol{\theta}\right) & =p\left(z_{i}=k \mid \mathbf{x}_{i}, \boldsymbol{\theta}\right) p\left(y_{i} \mid \mathbf{x}_{i}, z_{i}=k, \boldsymbol{\theta}\right) \\
& =\operatorname{Mu}\left(z_{i}=k \mid f\left(\mathbf{x}_{i}\right), 1\right) \mathcal{N}\left(y_{i} \mid g_{k}\left(\mathbf{x}_{i}\right), \exp \left(h_{k}\left(\mathbf{x}_{i}\right)\right)\right)
\end{aligned}
$$

Have to use gradient descent or generalized EM

CondMixBernoulli

$$
\begin{aligned}
p\left(\mathbf{y}_{i}, z_{i}=k \mid \mathbf{x}_{i}, \boldsymbol{\theta}\right) & =p\left(z_{i}=k \mid \mathbf{x}_{i}, \boldsymbol{\theta}\right) p\left(\mathbf{y}_{i} \mid z_{i}=k, \boldsymbol{\theta}\right) \\
& =\operatorname{Mu}\left(z_{i}=k \mid \mathcal{S}\left(\mathbf{x}_{i}, \mathbf{B}\right), 1\right) \prod_{j=1}^{d} \operatorname{Ber}\left(y_{i, j} \mid \mu_{j, k}\right)
\end{aligned}
$$

CondMixBernoulliMix

$$
\begin{aligned}
p\left(\mathbf{y}_{i}, z_{i}=k, h_{i}=h \mid \mathbf{x}_{i}, \boldsymbol{\theta}\right) & =p\left(z_{i}=k \mid \mathbf{x}_{i}, \boldsymbol{\theta}\right) p\left(h_{i}=h \mid z_{i}=k, \boldsymbol{\theta}\right) p\left(\mathbf{y}_{i} \mid h_{i}=h, z_{i}=k, \boldsymbol{\theta}\right) \\
& =\operatorname{Mu}\left(z_{i}=k \mid \mathcal{S}\left(\mathbf{x}_{i}, \mathbf{B}\right), 1\right) \operatorname{Mu}\left(h_{i}=h \mid \pi_{k}, 1\right) \prod_{j=1}^{d} \operatorname{Ber}\left(y_{i, j} \mid \mu_{j, h, k}\right)
\end{aligned}
$$

Outline

- Conditional mixture models
- EM for Empirical Bayes
- "Sparse Bayesian learning"
- EM theory

Empirical Bayes

EM for EB

$$
\begin{aligned}
\text { E step } & =p(\boldsymbol{\theta} \mid \mathcal{D}, \boldsymbol{\alpha}) \propto p(\boldsymbol{\theta} \mid \boldsymbol{\alpha}) \prod_{i=1}^{n} p\left(\mathbf{y}_{i} \mid \boldsymbol{\theta}\right) \\
\text { M step } & =\max _{\boldsymbol{\alpha}} E \log p(\mathcal{D}, \boldsymbol{\theta} \mid \boldsymbol{\alpha})
\end{aligned}
$$

Outline

- Conditional mixture models
- EM for Empirical Bayes
- "Sparse Bayesian learning"
- EM theory

Automatic Relevancy Determination (ARD)

$$
\beta \rightarrow\left[\begin{array}{c}
x_{i} \\
\vdots \\
y_{i}
\end{array}\right] \leftarrow \omega \leqslant \alpha
$$

$$
\begin{aligned}
p\left(y_{i} \mid \mathbf{x}_{i}, \mathbf{w}, \beta\right) & =\mathcal{N}\left(y_{i} \mid \mathbf{x}_{i}^{T} \mathbf{x}, \beta^{-1}\right) \\
p(\mathbf{w} \mid \boldsymbol{\alpha}) & =\mathcal{N}\left(\mathbf{w} \mid \mathbf{0}, \alpha^{-1} \mathbf{I}\right)
\end{aligned}
$$

Expected complete data log likelihood

$$
\begin{aligned}
J(\boldsymbol{\theta}) & =E \log p(\mathbf{y}, \mathbf{w} \mid \mathbf{X}, \alpha, \beta) \\
& \left.=\frac{d}{2} \log \frac{\alpha}{2 \pi}-\frac{\alpha}{2} E\left[\mathbf{w}^{T} \mathbf{w}\right]+\frac{n}{2} \log \frac{\beta}{2 \pi}-\frac{\beta}{2} \sum_{i=1}^{n} E\left[\left(y_{i}-\mathbf{w}^{T} \mathbf{x}\right) i\right)^{2}\right]
\end{aligned}
$$

EM for ARD

$$
\left.\beta \rightarrow c_{\overline{x_{i}}}^{\vdots} \begin{array}{l}
y_{i}
\end{array}\right\} \omega \leqslant \alpha
$$

$$
\begin{aligned}
p\left(y_{i} \mid \mathbf{x}_{i}, \mathbf{w}, \beta\right) & =\mathcal{N}\left(y_{i} \mid \mathbf{x}_{i}^{T} \mathbf{x}, \beta^{-1}\right) \\
p(\mathbf{w} \mid \boldsymbol{\alpha}) & =\mathcal{N}\left(\mathbf{w} \mid \mathbf{0}, \alpha^{-1} \mathbf{I}\right)
\end{aligned}
$$

E step

$$
\begin{aligned}
p(\mathbf{w} \mid \mathbf{y}, \mathbf{X}, \alpha, \beta) & \propto \mathcal{N}\left(\mathbf{w} \mid \mathbf{0}, \alpha^{-1} \mathbf{I}_{d}\right) \mathcal{N}\left(\mathbf{y} \mid \mathbf{X} \mathbf{w}, \beta^{-1} \mathbf{I}_{n}\right) \\
& =\mathcal{N}(\mathbf{w} \mid \mathbf{m}, \mathbf{S}) \\
\mathbf{S} & =\alpha \mathbf{I}_{d}+\beta \mathbf{X}^{T} \mathbf{X} \\
\mathbf{m} & =\beta \mathbf{S X}^{T} \mathbf{y}
\end{aligned}
$$

M step

$$
\frac{\partial}{\partial \alpha} J(\boldsymbol{\theta})=0 \Rightarrow \alpha=\frac{d}{E\left[\mathbf{w}^{T} \mathbf{w}\right]}=\frac{d}{\mathbf{m}^{T} \mathbf{m}+\operatorname{trace}(\mathbf{S})}=\frac{d}{\sum_{j=1}^{d} m_{j}^{2}+S_{j j}}
$$

Relevance vector machines (RVMs)

- Perform a kernel expansion of the input data eg using RBFs

$$
\phi_{i}\left(\mathbf{x}_{i}\right)=\left[K\left(\mathbf{x}_{i}, \mathbf{x}_{1}\right), \ldots, K\left(\mathbf{x}_{i}, \mathbf{x}_{n}\right)\right]
$$

- Then apply ARD to select a subset of the input features

L1 penalized logreg with RBF expansion

Outline

- Conditional mixture models
- EM for Empirical Bayes
- "Sparse Bayesian learning"
- EM theory

Bound optimization algorithms

$$
\boldsymbol{\theta}_{k+1}=\arg \max _{\boldsymbol{\theta}} Q\left(\boldsymbol{\theta} \mid \boldsymbol{\theta}_{k}\right)
$$

Key condition: $\mathrm{Q}\left(\theta_{\mathrm{k}} \mid \theta_{\mathrm{k}}\right)$ touches $\mathrm{f}\left(\theta_{\mathrm{k}}\right)$
So pushing up on Q will actually push up on f

$$
\min _{\boldsymbol{\theta}} f(\boldsymbol{\theta})-Q\left(\boldsymbol{\theta} \mid \boldsymbol{\theta}_{k}\right)=f\left(\boldsymbol{\theta}_{k}\right)-Q\left(\boldsymbol{\theta}_{k} \mid \boldsymbol{\theta}_{k}\right) \leq f\left(\boldsymbol{\theta}_{k+1}\right)-Q\left(\boldsymbol{\theta}_{k+1} \mid \boldsymbol{\theta}_{k}\right)
$$

MM algorithm

- In general, if Q is a lower bound on f that satisfies the key condition, we say Q minorizes f .
- The algorithm is called the minorize-maximize (MM) algorithm.
- We can also create majorize-minimize algorithms.

MM monotonically increases objective

$$
\begin{align*}
f\left(\boldsymbol{\theta}_{k+1}\right) & =f\left(\boldsymbol{\theta}_{k+1}\right)-Q\left(\boldsymbol{\theta}_{k+1} \mid \boldsymbol{\theta}_{k}\right)+Q\left(\boldsymbol{\theta}_{k+1} \mid \boldsymbol{\theta}_{k}\right) \tag{1}\\
& \geq f\left(\boldsymbol{\theta}_{k}\right)-Q\left(\boldsymbol{\theta}_{k} \mid \boldsymbol{\theta}_{k}\right)+Q\left(\boldsymbol{\theta}_{k+1} \mid \boldsymbol{\theta}_{k}\right) \tag{2}
\end{align*}
$$

which follows from the key condition

$$
\begin{equation*}
\min _{\boldsymbol{\theta}} f(\boldsymbol{\theta})-Q\left(\boldsymbol{\theta} \mid \boldsymbol{\theta}_{k}\right)=f\left(\boldsymbol{\theta}_{k}\right)-Q\left(\boldsymbol{\theta}_{k} \mid \boldsymbol{\theta}_{k}\right) \leq f\left(\boldsymbol{\theta}_{k+1}\right)-Q\left(\boldsymbol{\theta}_{k+1} \mid \boldsymbol{\theta}_{k}\right) \tag{3}
\end{equation*}
$$

Also, $Q\left(\boldsymbol{\theta} \mid \boldsymbol{\theta}_{k}\right)$ is maximized when $\boldsymbol{\theta}=\boldsymbol{\theta}_{k+1}$, by definition, so

$$
\begin{align*}
f\left(\boldsymbol{\theta}_{k+1}\right) & \geq f\left(\boldsymbol{\theta}_{k}\right)-Q\left(\boldsymbol{\theta}_{k} \mid \boldsymbol{\theta}_{k}\right)+Q\left(\boldsymbol{\theta}_{k+1} \mid \boldsymbol{\theta}_{k}\right) \tag{4}\\
& \geq f\left(\boldsymbol{\theta}_{k}\right)-Q\left(\boldsymbol{\theta}_{k} \mid \boldsymbol{\theta}_{k}\right)+Q\left(\boldsymbol{\theta}_{k} \mid \boldsymbol{\theta}_{k}\right) \tag{5}\\
& =f\left(\boldsymbol{\theta}_{k}\right) \tag{6}
\end{align*}
$$

EM is an MM algorithm

$$
\begin{aligned}
\ell(\boldsymbol{\theta}) & =\sum_{i=1}^{n} \log p\left(\mathbf{x}_{i} \mid \boldsymbol{\theta}\right)=\sum_{i=1}^{n} \log \left[\sum_{\mathbf{z}_{i}} p\left(\mathbf{x}_{i}, \mathbf{z}_{i} \mid \boldsymbol{\theta}\right)\right] \\
p\left(\mathbf{x}_{i} \mid \boldsymbol{\theta}\right) & =\sum_{\mathbf{z}_{i}} q_{i}\left(\mathbf{z}_{i}\right) \frac{p\left(\mathbf{x}_{i}, \mathbf{z}_{i} \mid \boldsymbol{\theta}\right)}{q_{i}\left(\mathbf{z}_{i}\right)} \\
\sum_{i} \log \sum_{\mathbf{z}_{i}} q_{i}\left(\mathbf{z}_{i}\right) \frac{p\left(\mathbf{x}_{i}, \mathbf{z}_{i} \mid \boldsymbol{\theta}\right)}{q_{i}\left(\mathbf{z}_{i}\right)} & \geq \sum_{i} \sum_{\mathbf{z}_{i}} q_{i}\left(\mathbf{z}_{i}\right) \log \frac{p\left(\mathbf{x}_{i}, \mathbf{z}_{i} \mid \boldsymbol{\theta}\right)}{q_{i}\left(\mathbf{z}_{i}\right)}
\end{aligned}
$$

Jensen's inequality

Lower bound on log lik! What q value?

What q function?

$$
\begin{aligned}
\boldsymbol{\theta}_{k+1} & =\arg \max _{\boldsymbol{\theta}} \sum_{i} \sum_{\mathbf{z}_{i}} q_{i}\left(\mathbf{z}_{i}\right) \log \frac{p\left(\mathbf{x}_{i}, \mathbf{z}_{i} \mid \boldsymbol{\theta}\right)}{q_{i}\left(\mathbf{z}_{i}\right)} \\
L\left(q_{i}, \boldsymbol{\theta}\right) & =\sum_{\mathbf{z}_{i}} q_{i}\left(\mathbf{z}_{i}\right) \log \frac{p\left(\mathbf{x}_{i}, \mathbf{z}_{i} \mid \boldsymbol{\theta}\right)}{q_{i}\left(\mathbf{z}_{i}\right)} \\
& =\sum_{\mathbf{z}_{i}} q_{i}\left(\mathbf{z}_{i}\right) \log \frac{p\left(\mathbf{z}_{i} \mid \mathbf{x}_{i}, \boldsymbol{\theta}\right) p\left(\mathbf{x}_{i} \mid \boldsymbol{\theta}\right)}{q_{i}\left(\mathbf{z}_{i}\right)} \\
& =\sum_{\mathbf{z}_{i}} q_{i}\left(\mathbf{z}_{i}\right) \log \frac{p\left(\mathbf{z}_{i} \mid \mathbf{x}_{i}, \boldsymbol{\theta}\right)}{q_{i}\left(\mathbf{z}_{i}\right)}-\sum_{\mathbf{z}_{i}} q_{i}\left(\mathbf{z}_{i}\right) \log p\left(\mathbf{x}_{i} \mid \boldsymbol{\theta}\right) \\
& =K L\left(q_{i}\left(\mathbf{z}_{i}\right) \| p\left(\mathbf{z}_{i} \mid \mathbf{x}_{i}, \boldsymbol{\theta}\right)\right)-\log p\left(\mathbf{x}_{i} \mid \boldsymbol{\theta}\right)
\end{aligned}
$$

To make bound tight, set $\mathrm{q}_{\mathrm{i}}\left(\mathrm{z}_{\mathrm{i}}\right)=\mathrm{p}\left(\mathrm{z}_{\mathrm{i}} \mid \mathrm{x}_{\mathrm{i}}, \theta\right)$

$$
Q\left(\boldsymbol{\theta}, \boldsymbol{\theta}_{k}\right) \stackrel{\text { def }}{=} \sum_{i} \sum_{\mathbf{z}_{i}} p\left(\mathbf{z}_{i} \mid \mathbf{x}_{i}, \boldsymbol{\theta}_{k}\right) \log p\left(\mathbf{x}_{i}, \mathbf{z}_{i} \mid \boldsymbol{\theta}\right)
$$

EM

$$
Q\left(\boldsymbol{\theta}, \boldsymbol{\theta}_{k}\right) \stackrel{\text { def }}{=} \sum_{i} \sum_{\mathbf{z}_{i}} p\left(\mathbf{z}_{i} \mid \mathbf{x}_{i}, \boldsymbol{\theta}_{k}\right) \log p\left(\mathbf{x}_{i}, \mathbf{z}_{i} \mid \boldsymbol{\theta}\right)
$$

which we recognize as the expected complete data log likelihood.

- E step: compute $p\left(\mathbf{z}_{i} \mid \mathbf{x}_{i}, \boldsymbol{\theta}_{k}\right)$
- M step: compute $\boldsymbol{\theta}_{k+1}=\arg \max _{\boldsymbol{\theta}} Q\left(\boldsymbol{\theta}, \boldsymbol{\theta}_{k}\right)$

Variational $E M$: set $q_{i}\left(z_{i}\right)$ to be an approximate $p\left(z_{i} \mid x_{i}, \theta\right)$

Outline

- EM theory
- Conditional mixture models
- Empirical Bayes for linear regression

