CS540 Machine learning Lecture 16 EM: theory and applications

Outline

- Conditional mixture models
- EM for Empirical Bayes
- "Sparse Bayesian learning"
- EM theory

One to many "functions"

Neural net models E[y|x]

Need to model p(y|x)

Ambiguity in inferring 3d from 2d

Sminchisescu

Mixture of gaussians

Deterministic nodes in green double circles

$$p(\mathbf{y}_i, z_i = k | \boldsymbol{\theta}) = p(z_i = k | \boldsymbol{\theta})(\mathbf{y}_i | z_i = k, \boldsymbol{\theta})$$

=
$$Mu(z_i = k | \boldsymbol{\pi}, 1) \mathcal{N}(\mathbf{y}_i | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

Conditional mixture of gaussians

$$p(\mathbf{y}_i, z_i = k | \mathbf{x}_i, \boldsymbol{\theta}) = p(z_i = k | \mathbf{x}_i, \boldsymbol{\theta}) p(\mathbf{y}_i | z_i = k, \boldsymbol{\theta})$$
$$= \operatorname{Mu}(z_i = k | \mathcal{S}(\mathbf{x}_i, \mathbf{B}), 1) \mathcal{N}(\mathbf{y}_i | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

mixture of linear regression

$$p(y_i, z_i = k | \mathbf{x}_i, \boldsymbol{\theta}) = p(z_i = k | \boldsymbol{\theta}) p(y_i | \mathbf{x}_i, z_i = k, \boldsymbol{\theta})$$

= Mu(z_i = k | \mathcal{\pi}, 1) \mathcal{N}(y_i | \mathbf{x}_i^T \mathbf{w}_k, \sigma_k^2)

Conditional mixture of linear regression

$$p(y_i, z_i = k | \mathbf{x}_i, \boldsymbol{\theta}) = p(z_i = k | \mathbf{x}_i, \boldsymbol{\theta}) p(y_i | \mathbf{x}_i, z_i = k, \boldsymbol{\theta})$$

= Mu(z_i = k | S(\mathbf{x}_i, \mathbf{B}), 1) N(y_i | \mathbf{x}_i^T \mathbf{w}_k, \sigma_k^2)

Mixtures of linear regression

Mixtures of logistic regression

EM for CondMixLinReg

• Expected complete data log likelihood

$$p(y_{i}, z_{i} | \mathbf{x}_{i}, \boldsymbol{\theta}) = \prod_{k=1}^{K} p(z_{i} = k | \mathbf{x}_{i}, \boldsymbol{\theta}) p(y_{i} | \mathbf{x}_{i}, z_{i} = k, \boldsymbol{\theta})^{I(z_{i} = k)}$$

$$\ell_{c}(\mathbf{y}, \mathbf{z} | \mathbf{x}, \boldsymbol{\theta}) = \sum_{i=1}^{n} \sum_{k=1}^{K} I(z_{i} = k) \log \mathcal{S}(k | \mathbf{x}_{i}, \mathbf{B})$$

$$+ I(z_{i} = k) \log \mathcal{N}(y_{i} | \mathbf{x}_{i}^{T} \mathbf{w}_{k}, \sigma_{k}^{2})$$

$$= \sum_{i=1}^{n} \sum_{k=1}^{K} p(z_{i} = k | \mathbf{x}_{i}, y_{i}, \boldsymbol{\theta}^{t}) \log \mathcal{S}(k | \mathbf{x}_{i}, \mathbf{B})$$

$$+ p(z_{i} = k | \mathbf{x}_{i}, y_{i}, \boldsymbol{\theta}^{t}) \log \mathcal{N}(y_{i} | \mathbf{x}_{i}^{T} \mathbf{w}_{k}, \sigma_{k}^{2})$$

E step: compute responsibilities $p(z_i = k | \mathbf{x}_i, y_i, \boldsymbol{\theta}^t)$

M step: weighted IRLS for B, weighted LS for w, residual for σ

Cluster weighted regression

 $p(y_i, \mathbf{x}_i, z_i = k | \boldsymbol{\theta}) = p(z_i = k | \boldsymbol{\theta}) p(\mathbf{x}_i | z_i = k, \boldsymbol{\theta}) p(y_i | \mathbf{x}_i, z_i = k, \boldsymbol{\theta})$ = $Mu(z_i = k | \boldsymbol{\pi}, 1) \mathcal{N}(\mathbf{x}_i | \mathbf{m}_k, \boldsymbol{\Sigma}_k) \mathcal{N}(y_i | \mathbf{x}_i^T \mathbf{w}_k, \sigma_k^2)$

Hierarchical mixture of experts

Probabilistic regression tree of fixed depth

Hierarchical mixtures of experts

CondMixLinReg

$$p(y_i, z_i = k | \mathbf{x}_i, \boldsymbol{\theta}) = p(z_i = k | \mathbf{x}_i, \boldsymbol{\theta}) p(y_i | \mathbf{x}_i, z_i = k, \boldsymbol{\theta})$$

= Mu(z_i = k | S(\mathbf{x}_i, \mathbf{B}), 1) N(y_i | \mathbf{x}_i^T \mathbf{w}_k, \sigma_k^2)

Mixture density networks

$$p(y_i, z_i = k | \mathbf{x}_i, \boldsymbol{\theta}) = p(z_i = k | \mathbf{x}_i, \boldsymbol{\theta}) p(y_i | \mathbf{x}_i, z_i = k, \boldsymbol{\theta})$$

= Mu(z_i = k | f(\mathbf{x}_i), 1) $\mathcal{N}(y_i | g_k(\mathbf{x}_i), \exp(h_k(\mathbf{x}_i)))$

Have to use gradient descent or generalized EM

CondMixBernoulli

$$p(\mathbf{y}_i, z_i = k | \mathbf{x}_i, \boldsymbol{\theta}) = p(z_i = k | \mathbf{x}_i, \boldsymbol{\theta}) p(\mathbf{y}_i | z_i = k, \boldsymbol{\theta})$$
$$= \operatorname{Mu}(z_i = k | \mathcal{S}(\mathbf{x}_i, \mathbf{B}), 1) \prod_{j=1}^d \operatorname{Ber}(y_{i,j} | \mu_{j,k})$$

CondMixBernoulliMix

$$p(\mathbf{y}_{i}|z_{i} = k, \boldsymbol{\theta}) = \sum_{h=1}^{H} p(h_{i} = h|\boldsymbol{\theta}) \prod_{j=1}^{d} \operatorname{Ber}(y_{i,j}|\mu_{j,h,k})$$

$$p(\mathbf{y}_i, z_i = k, h_i = h | \mathbf{x}_i, \boldsymbol{\theta}) = p(z_i = k | \mathbf{x}_i, \boldsymbol{\theta}) p(h_i = h | z_i = k, \boldsymbol{\theta}) p(\mathbf{y}_i | h_i = h, z_i = k, \boldsymbol{\theta})$$
$$= \operatorname{Mu}(z_i = k | \mathcal{S}(\mathbf{x}_i, \mathbf{B}), 1) \operatorname{Mu}(h_i = h | \pi_k, 1) \prod_{j=1}^d \operatorname{Ber}(y_{i,j} | \mu_{j,h,k})$$

Outline

- Conditional mixture models
- EM for Empirical Bayes
- "Sparse Bayesian learning"
- EM theory

Empirical Bayes

Method	Definition
Maximum likelihood	$\hat{ heta} = rg \max_{ heta} p(\mathcal{D} heta)$
MAP estimation	$\hat{\theta} = rg \max_{\theta} p(\mathcal{D} \theta) p(\theta \alpha)$
Empirical Bayes	$\hat{\alpha} = \arg \max_{\alpha} p(\mathcal{D} \alpha) = \arg \max_{\alpha} \int p(\mathcal{D} \theta) p(\theta \alpha) d\theta$

EB = Type II maximum likelihood = evidence approximation

E step =
$$p(\boldsymbol{\theta}|\mathcal{D}, \boldsymbol{\alpha}) \propto p(\boldsymbol{\theta}|\boldsymbol{\alpha}) \prod_{i=1}^{n} p(\mathbf{y}_i|\boldsymbol{\theta})$$

M step = $\max_{\boldsymbol{\alpha}} E \log p(\mathcal{D}, \boldsymbol{\theta}|\boldsymbol{\alpha})$

Outline

- Conditional mixture models
- EM for Empirical Bayes
- "Sparse Bayesian learning"
- EM theory

Automatic Relevancy Determination (ARD)

$$p(y_i | \mathbf{x}_i, \mathbf{w}, \beta) = \mathcal{N}(y_i | \mathbf{x}_i^T \mathbf{x}, \beta^{-1})$$
$$p(\mathbf{w} | \boldsymbol{\alpha}) = \mathcal{N}(\mathbf{w} | \mathbf{0}, \alpha^{-1} \mathbf{I})$$

Expected complete data log likelihood

$$J(\boldsymbol{\theta}) = E \log p(\mathbf{y}, \mathbf{w} | \mathbf{X}, \alpha, \beta)$$

= $\frac{d}{2} \log \frac{\alpha}{2\pi} - \frac{\alpha}{2} E[\mathbf{w}^T \mathbf{w}] + \frac{n}{2} \log \frac{\beta}{2\pi} - \frac{\beta}{2} \sum_{i=1}^n E[(y_i - \mathbf{w}^T \mathbf{x})i)^2]$

EM for ARD

$$p(y_i | \mathbf{x}_i, \mathbf{w}, \beta) = \mathcal{N}(y_i | \mathbf{x}_i^T \mathbf{x}, \beta^{-1})$$

$$p(\mathbf{w} | \boldsymbol{\alpha}) = \mathcal{N}(\mathbf{w} | \mathbf{0}, \alpha^{-1} \mathbf{I})$$

$$p(\mathbf{w}|\mathbf{y}, \mathbf{X}, \alpha, \beta) \propto \mathcal{N}(\mathbf{w}|\mathbf{0}, \alpha^{-1}\mathbf{I}_d)\mathcal{N}(\mathbf{y}|\mathbf{X}\mathbf{w}, \beta^{-1}\mathbf{I}_n)$$

= $\mathcal{N}(\mathbf{w}|\mathbf{m}, \mathbf{S})$
 $\mathbf{S} = \alpha \mathbf{I}_d + \beta \mathbf{X}^T \mathbf{X}$
 $\mathbf{m} = \beta \mathbf{S} \mathbf{X}^T \mathbf{y}$

M step

$$\frac{\partial}{\partial \alpha} J(\boldsymbol{\theta}) = 0 \quad \Rightarrow \quad \alpha = \frac{d}{E[\mathbf{w}^T \mathbf{w}]} = \frac{d}{\mathbf{m}^T \mathbf{m} + \operatorname{trace}(\mathbf{S})} = \frac{d}{\sum_{j=1}^d m_j^2 + S_{jj}}$$

Relevance vector machines (RVMs)

 Perform a kernel expansion of the input data eg using RBFs

 $\boldsymbol{\phi}_i(\mathbf{x}_i) = [K(\mathbf{x}_i, \mathbf{x}_1), \dots, K(\mathbf{x}_i, \mathbf{x}_n)]$

• Then apply ARD to select a subset of the input features

L1 penalized logreg with RBF expansion

Outline

- Conditional mixture models
- EM for Empirical Bayes
- "Sparse Bayesian learning"
- EM theory

Bound optimization algorithms

 $\boldsymbol{\theta}_{k+1} = rg\max_{\boldsymbol{\theta}} Q(\boldsymbol{\theta}|\boldsymbol{\theta}_k)$

Key condition: $Q(\theta_k | \theta_k)$ touches $f(\theta_k)$ So pushing up on Q will actually push up on f

 $\min_{\boldsymbol{\theta}} f(\boldsymbol{\theta}) - Q(\boldsymbol{\theta}|\boldsymbol{\theta}_k) = f(\boldsymbol{\theta}_k) - Q(\boldsymbol{\theta}_k|\boldsymbol{\theta}_k) \le f(\boldsymbol{\theta}_{k+1}) - Q(\boldsymbol{\theta}_{k+1}|\boldsymbol{\theta}_k)$

MM algorithm

- In general, if Q is a lower bound on f that satisfies the key condition, we say Q minorizes f.
- The algorithm is called the minorize-maximize (MM) algorithm.
- We can also create majorize-minimize algorithms.

MM monotonically increases objective

$$f(\boldsymbol{\theta}_{k+1}) = f(\boldsymbol{\theta}_{k+1}) - Q(\boldsymbol{\theta}_{k+1}|\boldsymbol{\theta}_k) + Q(\boldsymbol{\theta}_{k+1}|\boldsymbol{\theta}_k)$$
(1)

$$\geq f(\boldsymbol{\theta}_k) - Q(\boldsymbol{\theta}_k | \boldsymbol{\theta}_k) + Q(\boldsymbol{\theta}_{k+1} | \boldsymbol{\theta}_k)$$
(2)

which follows from the key condition

$$\min_{\boldsymbol{\theta}} f(\boldsymbol{\theta}) - Q(\boldsymbol{\theta}|\boldsymbol{\theta}_k) = f(\boldsymbol{\theta}_k) - Q(\boldsymbol{\theta}_k|\boldsymbol{\theta}_k) \le f(\boldsymbol{\theta}_{k+1}) - Q(\boldsymbol{\theta}_{k+1}|\boldsymbol{\theta}_k)$$
(3)

Also, $Q(\theta|\theta_k)$ is maximized when $\theta = \theta_{k+1}$, by definition, so

$$f(\boldsymbol{\theta}_{k+1}) \geq f(\boldsymbol{\theta}_k) - Q(\boldsymbol{\theta}_k | \boldsymbol{\theta}_k) + Q(\boldsymbol{\theta}_{k+1} | \boldsymbol{\theta}_k)$$
(4)

$$\geq f(\boldsymbol{\theta}_k) - Q(\boldsymbol{\theta}_k | \boldsymbol{\theta}_k) + Q(\boldsymbol{\theta}_k | \boldsymbol{\theta}_k)$$
(5)

$$= f(\boldsymbol{\theta}_k) \tag{6}$$

EM is an MM algorithm

$$\ell(\boldsymbol{\theta}) = \sum_{i=1}^{n} \log p(\mathbf{x}_{i}|\boldsymbol{\theta}) = \sum_{i=1}^{n} \log \left[\sum_{\mathbf{z}_{i}} p(\mathbf{x}_{i}, \mathbf{z}_{i}|\boldsymbol{\theta})\right]$$
$$p(\mathbf{x}_{i}|\boldsymbol{\theta}) = \sum_{\mathbf{z}_{i}} q_{i}(\mathbf{z}_{i}) \frac{p(\mathbf{x}_{i}, \mathbf{z}_{i}|\boldsymbol{\theta})}{q_{i}(\mathbf{z}_{i})}$$
$$\sum_{i} \log \sum_{\mathbf{z}_{i}} q_{i}(\mathbf{z}_{i}) \frac{p(\mathbf{x}_{i}, \mathbf{z}_{i}|\boldsymbol{\theta})}{q_{i}(\mathbf{z}_{i})} \geq \sum_{i} \sum_{\mathbf{z}_{i}} q_{i}(\mathbf{z}_{i}) \log \frac{p(\mathbf{x}_{i}, \mathbf{z}_{i}|\boldsymbol{\theta})}{q_{i}(\mathbf{z}_{i})}$$

Jensen's inequality

Lower bound on log lik! What q value?

What q function?

$$\begin{aligned} \boldsymbol{\theta}_{k+1} &= \arg \max_{\boldsymbol{\theta}} \sum_{i} \sum_{\mathbf{Z}_{i}} q_{i}(\mathbf{z}_{i}) \log \frac{p(\mathbf{x}_{i}, \mathbf{z}_{i} | \boldsymbol{\theta})}{q_{i}(\mathbf{z}_{i})} \\ L(q_{i}, \boldsymbol{\theta}) &= \sum_{\mathbf{Z}_{i}} q_{i}(\mathbf{z}_{i}) \log \frac{p(\mathbf{x}_{i}, \mathbf{z}_{i} | \boldsymbol{\theta})}{q_{i}(\mathbf{z}_{i})} \\ &= \sum_{\mathbf{Z}_{i}} q_{i}(\mathbf{z}_{i}) \log \frac{p(\mathbf{z}_{i} | \mathbf{x}_{i}, \boldsymbol{\theta}) p(\mathbf{x}_{i} | \boldsymbol{\theta})}{q_{i}(\mathbf{z}_{i})} \\ &= \sum_{\mathbf{Z}_{i}} q_{i}(\mathbf{z}_{i}) \log \frac{p(\mathbf{z}_{i} | \mathbf{x}_{i}, \boldsymbol{\theta})}{q_{i}(\mathbf{z}_{i})} - \sum_{\mathbf{Z}_{i}} q_{i}(\mathbf{z}_{i}) \log p(\mathbf{x}_{i} | \boldsymbol{\theta}) \\ &= KL(q_{i}(\mathbf{z}_{i}) || p(\mathbf{z}_{i} | \mathbf{x}_{i}, \boldsymbol{\theta})) - \log p(\mathbf{x}_{i} | \boldsymbol{\theta}) \end{aligned}$$

To make bound tight, set $q_i(z_i) = p(z_i|x_i,\theta)$

$$Q(\boldsymbol{\theta}, \boldsymbol{\theta}_k) \stackrel{\text{def}}{=} \sum_i \sum_k p(\mathbf{z}_i | \mathbf{x}_i, \boldsymbol{\theta}_k) \log p(\mathbf{x}_i, \mathbf{z}_i | \boldsymbol{\theta})$$

EM

$$Q(\boldsymbol{\theta}, \boldsymbol{\theta}_k) \stackrel{\text{def}}{=} \sum_i \sum_i p(\mathbf{z}_i | \mathbf{x}_i, \boldsymbol{\theta}_k) \log p(\mathbf{x}_i, \mathbf{z}_i | \boldsymbol{\theta})$$

which we recognize as the expected complete data log likelihood.

- E step: compute $p(\mathbf{z}_i | \mathbf{x}_i, \boldsymbol{\theta}_k)$
- M step: compute $\boldsymbol{\theta}_{k+1} = \arg \max_{\boldsymbol{\theta}} Q(\boldsymbol{\theta}, \boldsymbol{\theta}_k)$

Variational EM: set $q_i(z_i)$ to be an approximate $p(z_i|x_i,\theta)$

- EM theory
- Conditional mixture models
- Empirical Bayes for linear regression