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CS540 Machine learning
Directed graphical models
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Outline

• Directed graphical models

• Conditional independence
• Effects of node ordering

• Markov equivalence
• Bayesian modeling
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Conditional independence

• Recall the naïve Bayes assumption

• This lets us factorize the class conditional density

• Hence the joint distribution is

• Graphical models are ways to represent CI 
statements pictorially. This provides a compact way 
to define joint probability distributions.

Xj ⊥ Xk|Y

p(x|y) =

nx∏

j=1

p(xj |y)

p(x, y) = p(y)

nx∏

j=1

p(xj |y)
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Kinds of graphical models

• Undirected graphical models – aka Markov 
Random fields – see later in class.

• Directed graphical models – aka Bayesian (belief) 
networks.
– BNs require that the graph is a DAG (directed acyclic 

graphs).
– No directed cycles allowed.
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Directed graphical models

• A prob distribution factorizes according to a DAG if 
it can be written as

where πj are the parents of j , and the nodes are 
ordered topologically (parents before children). 

Each row of the conditional
probability table (CPT) defines
the distribution over the child’s
values given its parents values.
The model is locally normalized.

p(x) =

d∏

j=1

p(xj|xπj )

p(x1:6) = p(x1)p(x2|x1)p(x3|x1)p(x4|x3)

p(x5|x2, x3)p(x6|x2, x5)
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Example model

p(B,E,A, J,M) = p(B)p(E)p(A|B,E)p(J |A)p(M |A)

Source: Russell & Norvig
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Example model

p(C, S,R,W ) = p(C)p(S|C)p(R|C)p(W |S,R)
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Joint distribution

c s r w prob

0 0 0 0 0.200

0 0 0 1 0.000

0 0 1 0 0.005

0 0 1 1 0.045

0 1 0 0 0.020

0 1 0 1 0.180

0 1 1 0 0.001

0 1 1 1 0.050

1 0 0 0 0.090

1 0 0 1 0.000

1 0 1 0 0.036

1 0 1 1 0.324

1 1 0 0 0.001

1 1 0 1 0.009

1 1 1 0 0.000

1 1 1 1 0.040

p(C, S,R,W ) = p(C)p(S|C)p(R|C)p(W |S,R)
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Inference

• Prior that sprinkler is on

• Posterior that sprinkler is on given that grass is wet

• Posterior that sprinkler is on given that grass is wet 
and it is raining

p(S = 1) =

1∑

c=0

1∑

r=0

1∑

w=0

p(C = c, S = 1, R = r,W = w) = 0.3

p(S = 1|W = 1) =
p(S = 1,W = 1)

p(W = 1)
= 0.43

p(S = 1|W = 1, R = 1) =
p(S = 1,W = 1, R = 1)

p(W = 1, R = 1)
= 0.19

Explaining away!
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Graph separation

• We say S separates A and B in G if, when we 
remove edges connected to S, all paths from A to B 
are blocked

• Hammersley-Clifford Theorem: if p(x)>0 for all x, 
and p factorizes over G, then graph separation iff
conditional independence

A ⊥G B|S ⇔ A ⊥p B|S

eg {2,5} separates 1 and 4
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Markov properties of UGMs

• Global

• Local

A ⊥ B|S

α ⊥ V \ cl(α)|bd(α)

bd = boundary,
cl = closure = boundary + node 

A node is independent of the rest given its Markov blanket
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Conditional independence properties of DAGs

• For UGMs, independence ≡ separation.

• For DGMs, independence ≡ d-separation.

• Alternatively, we can convert a DGM to a UGM and 
use simple separation.
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DAGs

• DAGs admit a total ordering (parents before 
children).

• Local Markov property: A node is independent of its 
predecssors given its parents. 
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Local directed Markov property

• A node is independent of its non-descendants 
given its parents
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Chain rule

• By the chain rule

• By the local Markov property 

p(v1:n) = p(v1)p(v2|vπ2)p(v3|vπ3) . . . p(vn|zπn)

p(v1:nv ) = p(v1)p(v2|v1)p(v3|v1, v2) . . . p(vnv |v1:nv−1

p(y, x1:nx) = p(y)

nx∏

j=1

p(xj |y)
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Local Markov property is not enough

• NB property is Xj ⊥ Xk | Y for all k, including k > j

• But local Markov property only tells us 
Xj ⊥ Xk | Y for k < j 

• Want to be able to answer the following for any sets 
of variables a,b,c: Za ⊥ Zb | Zc ?
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Global Markov property

• By chaining together local independencies, one can 
infer global independencies.

• The general definition/ algorithm is complex, so we 
will break it into pieces.
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Chains

• Consider the chain

• If we condition and y, x and z are independent

p(x, y, z) = p(x)p(y|x)p(z|y)

p(x, z|y) =
p(x)p(y|x)p(z|y)

p(y)

=
p(x, y)p(z|y)

p(y)

= p(x|y)p(z|y)
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Tents

• Consider the “tent”

• Conditioning on Y makes X and Z independent

p(x, y, z) = p(y)p(x|y)p(z|y)

p(x, z|y) =
p(x, y, z)

p(y)

=
p(y)p(x|y)p(z|y)

p(y)
= p(x|y)p(z|y)
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Naïve Bayes assumption

• Conditional on class, features are independent
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V-structure 

• Consider the v-structure

• X and Z are unconditionally independent

but are conditionally dependent

p(x, y, z) = p(x)p(z)p(y|x, z)

p(x, z) =

∫
p(x, y, z)dy =

∫
p(x)p(z)p(y|x, z)dy = p(x)p(z)

p(x, z|y) =
p(x)p(z)p(y|x, z)

p(y)
�= f(x)g(z)
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Explaining away

• Consider the v-structure

• Let X, Z ∈ {0,1} be iid coin tosses.

• Let Y = X + Z.
• If we observe Y, X and Z are coupled.
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Explaining away

• Let Y = 1 iff burglar alarm goes off,

• X=1 iff burglar breaks in
• Z=1 iff earthquake occurred

• X and Z compete to explain Y, and hence become 
dependent

• Intuitively, p(X=1|Y=1) > p(X=1|Y=1,Z=1)
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Bayes Ball Algorithm

• ZA ⊥ ZB | ZC if every variable in A is d-separated 

from every variable in B when we shade the 
variables in C
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Boundary conditions
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Example
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Example
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Naïve Bayes assumption

• Conditional on class, features are independent
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Markov blankets for DAGs

• The Markov blanket of a node is the set that 
renders it independent of the rest of the graph.

• This is the parents, children and co-parents.

p(Xi|X−i) =
p(Xi,X−i)∑
x p(Xi,X−i)

=
p(Xi, U1:n, Y1:m, Z1:m, R)∑
x p(x, U1:n, Y1:m, Z1:m, R)

=
p(Xi|U1:n)[

∏
j p(Yj |Xi, Zj)]P (U1:n, Z1:m, R)∑

x p(Xi = x|U1:n)[
∏
j p(Yj |Xi = x,Zj)]P (U1:n, Z1:m, R)

=
p(Xi|U1:n)[

∏
j p(Yj |Xi, Zj)]∑

x p(Xi = x|U1:n)[
∏
j p(Yj |Xi = x,Zj)]

p(Xi|X−i) ∝ p(Xi|Pa(Xi))
∏

Yj∈ch(Xi)

p(Yj |Pa(Yj)

Useful for Gibbs sampling



31

Outline

• Undirected graphical models

• Directed graphical models
• Conditional independence

• Effects of node ordering
• Markov equivalence

• Bayesian modeling



32

Example model

• Suppose the true distribution is

p(B,E,A, J,M) = p(B)p(E)p(A|B,E)p(J |A)p(M |A)
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Choosing the “wrong” ordering

• If we choose the order MJABE, we get a more 
densely connected network, otherwise this will 
make independence statements that are not true.

• Eg in original model we have
so we must connect E to B,A but not M,J

E ⊥M |A, E ⊥ J |A, E �⊥ B|A

Source: Russell & Norvig
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A worse ordering

• If we pick the order MJEBA, the graph becomes 
fully connected, and thus makes no independence 
statements (and therefore includes the true 
distribution).
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Markov equivalence

• The following 3 graphs all assert the same set of 
conditional independencies, namely X indep Y | Z; 
hence they are equivalent

This v-structure is not equivalent
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Markov equivalence

• Thm: 2 DAGs are Markov equivalent iff they have 
the same undirected skeleton and the same set of 
v-structures
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PDAGs

• We can uniquely represent each equivalence class 
using a partially directed acyclic graph (aka 
essential graph).

• This uses undirected edges if they are reversible, 
and directed edges if they are compelled.
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Parameter nodes

• If we treat the parameters as random variables, we 
can add them as nodes to the graph.

• Here we assume global parameter independence.
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Repetitive structure

• If we have iid samples, the variables get replicated 
but the parameters are tied / shared 
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Plate notation

• For shorthand, we use plates 

p(D, θ) = p(θc)p(θs)p(θr)p(θw)

×

n∏

i=1

p(ci|θc)p(si|ci, θs)p(ri|ci, θr)p(wi|si, ri, θw)
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Factored prior, likelihood, posterior

• Since the parameters are independent in the prior, 
and the likelihood is factorized, they are also 
independent in the posterior

p(θ|D) ∝ p(θ)p(D|θ)

= p(θc)
∏

i

p(ci|θc)

× p(θs)
∏

i

p(si|ci, θs)

× p(θr)
∏

i

p(ri|ci, θr)

× p(θw)
∏

i

p(wi|si, ri, θs)
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Local parameter independence

• Each row of CPT is a different multinomial 
distribution. We typically assume these are 
independent. 

p(θR) =

1∏

k=0

p(θR|C=k) =
∏

k

Dir(θR|C=k|αR|C=k)
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Local parameter independence

• In the case of CPTs, we assume each row of the 
table is an independent multinomial
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Posterior over parameters factorizes 

p(θR|D) =

1∏

k=0

p(θR|C=k)

n∏

i=1

I(ci = k)p(ri|θR|C=k)

=
∏

k

Dir(θR|C=k|αR|C=k)Mu(nR,C=k|θR|C=k, n)

p(θ|D) =

d∏

j=1

∏

k∈Pa(j)

Dir(θjk|αjk + njk)
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Parameters are rv’s, too!

p(x, y, π, θ) = p(π)p(y|π)

d∏

j=1

[

p(xj |y, θj)

C∏

c=1

p(θjc)

]

= p(π)
∏

j

∏

c

p(θjc)

×p(y|π)
∏

j

p(xj |y, θj)
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Repetitive structure

• When we have multiple samples, we replicate the 
variables, but the params are fixed
p(D, π, θ) = p(π, θ)p(D|π, θ)

p(D|π,θ) =
∏

i

p(yi|π)
∏

j

p(xij |yi, θj)

=
∏

c

∏

i:yi=c

πcp(xij |θjc)
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Plates

• We introduce a shorthand for repetitive structure
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Nested plates

• Doubly indexed nodes
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Hyper-parameters

• If the hyper-parameters are fixed, they will be root 
nodes in the graph.
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Factored prior/ likelihood/ posterior

• Since the prior and likelihood are factorized over 
parameters, so is the posterior

Hence we can compute the posterior
(or MLE/MAP) of each parameter
separately 

θjc ⊥ θj′c′ |Deg
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Example: Binary features

p(D,π, θ|α, a,b)

= p(π|α)
∏

i

p(yi|π)
∏

c




∏

j

∏

i:yi=c

p(xij |θjc)



 p(θjc)

= Dir(π|α)Mu(n|π)
∏

c

∏

j

Bin(njc1|θjc, njc)Beta(θjc|ajc, bjc)

= Dir(π|α+ n)
∏

c

∏

j

Beta(θjc|ajc + njc1, bjc + njc0)

njc1 =
∑

i

I(yi = c)I(xij = 1)

njc0 =
∑

i

I(yi = c)I(xij = 0)

njc = nc =
∑

i

I(yi = c)

n = (n1, . . . , nC)


