CS540 Machine learning Lecture 12
Feature selection

Midterm

Q1

Q2

Q3

Q4

Outline

- Problem formulation
- Filter methods
- Wrapper methods
- L1 methods

Feature selection

- If predictive accuracy is the goal, often best to keep all predictors and use L2 regularization
- We often want to select a subset of the inputs that are "most relevant" for predicting the output, to get sparse models - interpretability, speed, possibly better predictive accuracy

Bayesian formulation

- Let m specify which of the 2^{d} subsets of variables to use (bit vector)

$$
\begin{aligned}
p(m \mid \mathcal{D}) & \propto p(\mathcal{D} \mid m) p(m) \\
p(\mathcal{D} \mid m) & =\int \prod_{i} p\left(y_{i} \mid \mathbf{x}_{i}, \mathbf{w}, m\right) p(\mathbf{w} \mid m) d \mathbf{w}
\end{aligned}
$$

Statistical problem

- What if we cannot evaluate marginal likelihood $p(\mathrm{D} \mid \mathrm{m})$?
- Cannot use MLE since will always pick largest subset

Penalized likelihood

- Common to pick the model that minimizes

$$
J(m)=-\log p(\mathcal{D} \mid m)+\lambda \text { complexity }(m)
$$

- Eg complexity $(m)=$ \#chosen variables
- For linear regression

$$
J(m)=R S S(\mathbf{w})+\lambda\|\mathbf{w}\|_{0}, \quad \mathbf{w}=\left(\mathbf{X}(:, m)^{T} \mathbf{X}(:, m)\right)^{-1} \mathbf{X}(:, m)^{T} \mathbf{y}
$$

Computational problem

- $2^{\wedge} d$ subsets to evaluate

Filter methods

- Compute "relevance" of Xj to Y marginally
- Computationally efficient

Correlation coefficient

- Measures extent to which X j and Y are linearly related

$$
\rho_{X_{j}, Y}=\frac{\operatorname{Cov}\left(X_{j}, Y\right)}{\sqrt{\operatorname{Var}\left(X_{j}\right) \operatorname{Var}(Y)}}
$$

Anscombe's quartet

$\rho=0.81$

Mutual information

- Can model non linear non Gaussian dependencies

$$
I\left(X_{j}, Y\right)=\iint p\left(x_{j}, y\right) \log \frac{p\left(x_{j}, y\right)}{p\left(x_{j}\right) p(y)} d x_{j} d y
$$

- If assume $p(X, Y)$ is Gaussian, recover correlation coef. Can use non-parametric density estimates to get better estimate.
- For discrete data, can estimate $p(X, Y)$ by counting.

$$
\begin{aligned}
I\left(X_{j}, Y\right) & =\sum_{x_{j}} \sum_{y} p\left(x_{j}, y\right) \log \frac{p\left(x_{j}, y\right)}{p\left(x_{j}\right) p(y)} \\
\hat{p}\left(x_{j}=a, y=b\right) & =\frac{\sum_{i} I\left(x_{i j}=a, y=b\right)}{n}
\end{aligned}
$$

MI for NB with binary features

$$
\begin{aligned}
& I\left(X_{j}, Y\right)= \sum_{x=0}^{1} \sum_{c=1}^{C} p\left(X_{j}=x, y=c\right) \log \frac{p\left(X_{j}=x \mid y=c\right) p(y=c)}{p\left(X_{j}=x\right) p(y=c)} \\
&= \sum_{x=0}^{1} \sum_{c} p\left(X_{j}=x \mid y=c\right) p(y=c) \log \frac{p\left(X_{j}=x \mid y=c\right)}{p\left(X_{j}=x\right)} \\
&= \sum_{c} p\left(X_{j}=1 \mid y=c\right) p(y=c) \log \frac{p\left(X_{j}=1 \mid y=c\right)}{p\left(X_{j}=1\right)} \\
& \quad+\sum_{c} p\left(X_{j}=0 \mid y=c\right) p(y=c) \log \frac{p\left(X_{j}=0 \mid y=c\right)}{p\left(X_{j}=0\right)} \\
&= \sum_{c}\left[\theta_{j c} \pi_{c} \log \frac{\theta_{j c}}{\theta_{j}}+\left(1-\theta_{j c}\right) \pi_{c} \log \frac{1-\theta_{j c}}{1-\theta_{j}}\right]
\end{aligned}
$$

What's wrong with filter methods

- Interaction effects (eg SNPs)

$$
\left[\begin{array}{cc}
x_{2}^{+} \\
+t^{+} & 0_{0}^{0} 0 \\
0 & 0 \\
0 & 0 \\
0 & 0
\end{array} t^{+t_{+}^{+}}\right.
$$

Wrapper methods

- Perform discrete search in model space
- "Wrap" search around standard model fitting
- Forwards selection, backwards selection, heuristic algorithms (GAs, SLS, SA, etc)
- Need efficient way to evaluate score of models m' in neighborhood of m
$\{1,2,3\}\{2,3,4\}\{1,3,4\}\{1,2,4\}$
$\begin{array}{llllll}\{1,2\} & \{1,3\} & \{1,4\} & \{2,3\} & \{2,4\} & \{3,4\}\end{array}$
$\{1\} \quad\{2\} \quad\{3\} \quad\{4\}$

Forward selection for linear regression

- At each step, add feature that maximally reduces residual error.
- If choose j , should set its weight to be the orthogonal projection of r onto column j

$$
\begin{array}{rlr}
J\left(w_{j}\right) & =\left\|\mathbf{r}-\mathbf{x}_{j} w_{j}\right\|_{2}^{2}=\mathbf{r}^{T} \mathbf{r}+w_{j}^{2} \mathbf{x}_{j}^{T} \mathbf{x}_{j}-2 w_{j} \mathbf{x}_{j}^{T} \mathbf{r} \\
\frac{d J}{d w_{j}} & =0 \quad \text { homework } \\
\hat{w}_{j} & =\frac{\mathbf{x}_{j}^{T} \mathbf{r}}{\mathbf{x}_{j}^{T} \mathbf{x}_{j}}
\end{array}
$$

Choosing the best feature

- Inserting formula for optimal $\mathbf{w} \mathbf{j}$

$$
\begin{aligned}
J\left(\hat{w}_{j}\right) & =\mathbf{r}^{T} \mathbf{r}+\frac{\left(\mathbf{x}_{j}^{T} \mathbf{r}\right)^{2}}{\mathbf{x}_{j}^{T} \mathbf{x}_{j}}-2 \frac{\left(\mathbf{x}_{j}^{T} \mathbf{r}\right)^{2}}{\mathbf{x}_{j}^{T} \mathbf{x}_{j}}=\mathbf{r}^{T} \mathbf{r}-\frac{\left(\mathbf{x}_{j}^{T} \mathbf{r}\right)^{2}}{\mathbf{x}_{j}^{T} \mathbf{x}_{j}} \\
k & =\arg \min _{j} J\left(\hat{w}_{j}\right)=\arg \max _{j} \frac{\left(\mathbf{x}_{j}^{T} \mathbf{r}\right)^{2}}{\mathbf{x}_{j}^{T} \mathbf{x}_{j}}
\end{aligned}
$$

If features are unit norm, we pick j with largest inner product (smallest angle) to r

$$
k=\arg \min _{j} J\left(\hat{w}_{j}\right)=\arg \max _{j}\left(\mathbf{x}_{j}^{T} \mathbf{r}\right)^{2}
$$

Orthogonal least squares

- Once chosen k, project onto subspace orthogonal to 1 :k

```
Algorithm 1: Forward stepwise selection (Orthogonal least squares)
\(\mathbf{1} \mathbf{r} \leftarrow \mathbf{y}\), used \(\leftarrow \emptyset\), unused \(\leftarrow 1\) to \(n\)
2 repeat
\(3 \mid k \leftarrow \arg \max _{j \in \text { unused }} \mathbf{x}_{j}^{T} \mathbf{r}\)
\(4 \quad \mathbf{r} \leftarrow \mathbf{r}-\left(\mathbf{x}_{k}^{T} \mathbf{r}\right) \mathbf{x}_{k}\)
5 move \(k\) from unused to used
\(6 \quad\) foreach \(j \in\) unused do
\(7 \quad \mathbf{x}_{j} \leftarrow \mathbf{x}_{j}-\left(\mathbf{x}_{j}^{T} \mathbf{x}_{k}\right) \mathbf{x}_{k}\)
8
\(\mathbf{x}_{j} \leftarrow \mathbf{x}_{j} /\left\|\mathbf{x}_{j}\right\|\)
9 until stopping criterion is met
```


L1 is convex relaxation of L0

- For linear regression

$$
\begin{aligned}
J_{0}(m)=R S S(\mathbf{w})+\lambda\|\mathbf{w}\|_{0} & \\
\|\mathbf{w}\|_{0} & =\sum_{j=1}^{d} I\left(\left|w_{j}\right|>0\right) \\
J_{1}(m)=R S S(\mathbf{w})+\lambda\|\mathbf{w}\|_{1} & \\
\|\mathbf{w}\|_{1} & =\sum_{j=1}^{d}\left|w_{j}\right|
\end{aligned}
$$

Lasso

$$
J(\mathbf{w})=R S S(\mathbf{w})+\lambda\|\mathbf{w}\|_{1} \quad J(\mathbf{w})=R S S(\mathbf{w})+\lambda\|\mathbf{w}\|_{2}^{2}
$$

Whence sparsity?

- Ridge prior: all points on unit circle equal under the prior

$$
\|(1,0)\|_{2}=\|\left(1 / \sqrt{2}, 1 / \sqrt{2} \|_{2}=1\right.
$$

- Lasso prior: points on corner of simples more probable a priori

$$
\|(1,0)\|_{1}=1<\|\left(1 / \sqrt{2}, 1 / \sqrt{2} \|_{1}=\sqrt{2}\right.
$$

Lasso as MAP estimation

$$
\begin{aligned}
p(\mathbf{w}) & =\prod_{j=1}^{d} D E\left(w_{j} \mid 0, \tau\right) \\
D E\left(w_{j} \mid \mu, \tau\right) & =\frac{1}{2 \tau} \exp \left(-\frac{\left|w_{j}-\mu\right|}{\tau}\right) \\
\hat{\mathbf{w}} & =\arg \max _{\mathbf{W}} \log p(\mathbf{w} \mid \mathcal{D})=\arg \max _{\mathbf{W}} \log p(\mathbf{w})+\log p(\mathcal{D} \mid \mathbf{w}) \\
& =\arg \max _{\mathbf{W}}-\frac{1}{\tau} \sum_{j=1}^{d}\left|w_{j}\right|-\frac{1}{2 \sigma^{2}}\|\mathbf{y}-\mathbf{X} \mathbf{w}\|_{2}^{2} \\
\hat{\mathbf{w}} & =\arg \min _{\mathbf{W}} R S S(\mathbf{w})+\lambda\|\mathbf{w}\|_{1} \\
\lambda & \stackrel{\text { def }}{=} \frac{2 \sigma^{2}}{\tau}
\end{aligned}
$$

Regularization path

Listing 1: :

0	0	0	0	0	0	0	0
0.4279	0	0	0	0	0	0	0
0.5015	0.0735	0	0	0	0	0	0
0.5610	0.1878	0	0	0.0930	0	0	0
0.5622	0.1890	0	0.0036	0.0963	0	0	0
0.5797	0.2456	0	0.1435	0.2003	0	0	0.0901
0.5864	0.2572	-0.0321	0.1639	0.2082	0	0	0.1066
0.6994	0.2910	-0.1337	0.2062	0.3003	-0.2565	0	0.2452
0.7164	0.2926	-0.1425	0.2120	0.3096	-0.2890	-0.0209	0.2773

Lambda max

- Lambda=0 is OLS/MLE
- Max value sets all weights to 0

$$
\begin{aligned}
& J(\mathbf{w})=R S S(\mathbf{w})+\lambda\|\mid \mathbf{w}\|_{1} \\
& \lambda_{\max }=\left\|2 \mathbf{X}^{T} \mathbf{y}\right\|_{\infty}=2 \max _{j}\left|\mathbf{y}^{T} \mathbf{x}_{:, j}\right| \quad \text { Homework }
\end{aligned}
$$

