
CS540 Machine learning
Lecture 12

Feature selection
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Outline

• Problem formulation

• Filter methods
• Wrapper methods

• L1 methods



Feature selection

• If predictive accuracy is the goal, often best to keep 
all predictors and use L2 regularization

• We often want to select a subset of the inputs that 
are “most relevant” for predicting the output, to get 
sparse models – interpretability, speed, possibly 
better predictive accuracy



Bayesian formulation

• Let m specify which of the 2d subsets of variables 
to use (bit vector)

p(m|D) ∝ p(D|m)p(m)

p(D|m) =

∫ ∏

i

p(yi|xi,w,m)p(w|m)dw



Statistical problem

• What if we cannot evaluate marginal likelihood p(D|m)?
• Cannot use MLE since will always pick largest subset



Penalized likelihood

• Common to pick the model that minimizes

• Eg complexity(m) = #chosen variables
• For linear regression

J(m) = − log p(D|m) + λcomplexity(m)

J(m) = RSS(w) + λ||w||0, w = (X(:,m)TX(:,m))−1X(:,m)Ty



Computational problem

• 2^d subsets to evaluate



Filter methods

• Compute “relevance” of Xj to Y marginally

• Computationally efficient



Correlation coefficient

• Measures extent to which 
X_j and Y are linearly 
related

ρXj ,Y =
Cov(Xj , Y )√

Var (Xj)Var (Y )



Anscombe’s quartet

ρ=0.81



Mutual information

• Can model non linear non Gaussian dependencies

• If assume p(X,Y) is Gaussian, recover correlation 
coef. Can use non-parametric density estimates to 
get better estimate.

• For discrete data, can estimate p(X,Y) by counting.

I(Xj , Y ) =

∫ ∫
p(xj , y) log

p(xj, y)

p(xj)p(y)
dxjdy

I(Xj , Y ) =
∑

xj

∑

y

p(xj, y) log
p(xj , y)

p(xj)p(y)

p̂(xj = a, y = b) =

∑
i I(xij = a, y = b)

n



MI for NB with binary features

I(Xj , Y ) =
1∑

x=0

C∑

c=1

p(Xj = x, y = c) log
p(Xj = x|y = c)p(y = c)

p(Xj = x)p(y = c)

=
1∑

x=0

∑

c

p(Xj = x|y = c)p(y = c) log
p(Xj = x|y = c)

p(Xj = x)

=
∑

c

p(Xj = 1|y = c)p(y = c) log
p(Xj = 1|y = c)

p(Xj = 1)

+
∑

c

p(Xj = 0|y = c)p(y = c) log
p(Xj = 0|y = c)

p(Xj = 0)

=
∑

c

[
θjcπc log

θjc
θj
+ (1− θjc)πc log

1− θjc
1− θj

]



What’s wrong with filter methods

• Interaction effects (eg SNPs)



Wrapper methods

• Perform discrete search in model space
• “Wrap” search around standard model fitting
• Forwards selection, backwards selection, heuristic 

algorithms (GAs, SLS, SA, etc)
• Need efficient way to evaluate score of models m’ in 

neighborhood of m



Forward selection for linear regression

• At each step, add feature that maximally reduces 
residual error.

• If choose j, should set its weight to be the 
orthogonal projection of r onto column j

J(wj) = ||r− xjwj ||22 = rT r+ w2jx
T
j xj − 2wjxTj r

dJ

dwj
= 0

ŵj =
xTj r

xTj xj

homework



Choosing the best feature

• Inserting formula for optimal w_j

•
If features are unit norm, we pick j with largest inner 
product (smallest angle) to r

J(ŵj) = rT r+
(xTj r)

2

xTj xj
− 2

(xTj r)
2

xTj xj
= rT r−

(xTj r)
2

xTj xj

k = argmin
j

J(ŵj) = argmax
j

(xTj r)
2

xTj xj

k = argmin
j

J(ŵj) = argmax
j
(xTj r)

2



Orthogonal least squares

• Once chosen k, project onto subspace orthogonal 
to 1:k

Algorithm 1: Forward stepwiseselection (Orthogonal least squares)

r← y, used ← ∅, unused ← 1 ton1

repeat2

k ← argmax
j∈unused x

T
j r3

r← r− (xTk r)xk4

movek from unused to used5

foreach j ∈ unused do6

xj ← xj − (xTj xk)xk7

xj ← xj/||xj ||8

until stopping criterion is met9



L1 is convex relaxation of L0

• For linear regression

J0(m) = RSS(w) + λ||w||0

||w||0 =
d∑

j=1

I(|wj | > 0)

J1(m) = RSS(w) + λ||w||1

||w||1 =

d∑

j=1

|wj |



Lasso

J(w) = RSS(w) + λ||w||1 J(w) = RSS(w) + λ||w||22



Whence sparsity?

• Ridge prior: all points on unit circle equal under the 
prior

• Lasso prior: points on corner of simples more 
probable a priori

||(1, 0)||2 = ||(1/
√
2, 1/

√
2||2 = 1

||(1, 0)||1 = 1 < ||(1/
√
2, 1/

√
2||1 =

√
2



Lasso as MAP estimation

p(w) =

d∏

j=1

DE(wj|0, τ)

DE(wj|µ, τ) =
1

2τ
exp(−|wj − µ|

τ
)

ŵ = argmax
w

log p(w|D) = argmax
w

log p(w) + log p(D|w)

= argmax
w

−1
τ

d∑

j=1

|wj | −
1

2σ2
||y −Xw||22

ŵ = argmin
w

RSS(w) + λ||w||1

λ
def
=

2σ2

τ



Regularization path

dof(λ) s(λ) = ||w(λ)||1/||wls||1
Listing 1: :

0 0 0 0 0 0 0 0
0.4279 0 0 0 0 0 0 0
0.5015 0.0735 0 0 0 0 0 0
0.5610 0.1878 0 0 0.0930 0 0 0
0.5622 0.1890 0 0.0036 0.0963 0 0 0
0.5797 0.2456 0 0.1435 0.2003 0 0 0.0901
0.5864 0.2572 -0.0321 0.1639 0.2082 0 0 0.1066
0.6994 0.2910 -0.1337 0.2062 0.3003 -0.2565 0 0.2452
0.7164 0.2926 -0.1425 0.2120 0.3096 -0.2890 -0.0209 0.2773



Lambda max

• Lambda=0 is OLS/MLE

• Max value sets all weights to 0

J(w) = RSS(w) + λ||w||1

λmax = ||2XTy||∞ = 2max
j
|yTx:,j | Homework


