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Abstract

The field of legal reasoning is full
of logical subtleties and probabilis-
tic pitfalls. I survey a number of
these, pointing out some of the prob-
lems and ambiguities, and various
attempts to deal with them. Some
celebrated court cases are used for
illustration.
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1 Introduction

Although the disciplines of Statistics and Law
might seem far apart, they share some fun-
damental interests — in particular, the in-
terpretation of evidence, testing of hypothe-
ses, and decision-making under uncertainty.
However, their differing backgrounds and ap-
proaches can often lead to misunderstandings,
such as in the celebrated “Collins case” [17].

In recent years it has become apparent that
problems arising in legal settings raise some
fascinating and delicate issues of statistical
logic, and that, in turn, proper application
of statistical reasoning has a role to play in
the pursuit of justice. In this paper I explore
some of these logical issues, with reference to
some real cases: see [6] for some further back-
ground.

2 Sudden infant deaths

There have been a number of recent cases in
the UK where two or more young children in
a family have died suddenly from no obvious
cause, and, even though there is no specifi-
cally incriminating evidence, their mother has
been convicted of murdering them. In the
case of Sally Clark, a paediatrician testified
at trial that the probability P that her two
sons would have died of SIDS (unexplained
natural causes) was 1 in 73 million. That fig-
ure was widely and properly criticised, but it
can not be denied that P is extremely small.
The question is: What are we to make of such
“statistical evidence”?

2.1 The prosecutor’s fallacy

The correct interpretation P = Pr(€ | G)
(where & denotes the evidence — here the
fact of two infant deaths — G denotes “guilt”
and G “innocence”) is easily distorted into:
P =Pr(G | £). After all, to say that there is
1 chance in 73 million that the children died
of natural causes appears to be just the same
as saying that this is the probability that the
mother did not kill them — seemingly over-
whelming evidence for her being guilty. This
mistaken “transposition of the conditional” is
so common in court, where it usually favours
the prosecution, that it has been termed “the
prosecutor’s fallacy” (see [18] for a clear ac-
count of the prosecutor’s fallacy, and sugges-
tions as to how it might be avoided). It would
have been hard for Sally Clarks’s jury to ig-
nore this seemingly powerful argument, and
they did in fact convict.
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2.2 Counter-argument

There is an obvious counter-argument in this
case, which T presented at appeal. We are
comparing two alternative hypotheses: two
deaths by SIDS, and two deaths by murder.
If the chance of the former is relevant, should
not that of the latter be equally relevant? Us-
ing UK data, one could argue for a double
murder figure of around 1 in 2 billion, to set
against the SIDS figure of 1 in 73 million. One
can see prosecution and defence brandishing
their respective figures in adversarial combat,
but the correct approach is to realise that it is
their relative, not absolute, values that mat-
ter. In fact, their ratio (1/2 billion)/(1/73
million) = 0.0365 can be interpreted as the
odds on guilt given the evidence of the two
deaths, implying a guilt probability of only
3.5%.

In the event, although the appeal court ac-
cepted that there had been some problems
with the presentation of the statistical evi-
dence at trial, it was not interested in prop-
erly identifying and understanding the logical
issues involved. Sally Clark was eventually
cleared on entirely unrelated grounds.

3 Identification evidence

Many criminal cases revolve about the issue of
identity: is the suspect S the same person as
the perpetrator C' of the crime? Similar issues
arise in civil cases, such as disputed paternity.

Forensic trace evidence is often brought in
such cases. From the crime scene we obtain
information I that can be assumed to ap-
ply to the criminal C' — thus we may have a
fingerprint, a footprint, fibres, or eye-witness
evidence of sex, age, race, etc. With advances
in DNA technology, it is now common to ob-
tain a DNA profile of the criminal from bio-
logical material left at the scene of the crime.
In addition, we have similar information Ig
about the suspect S, for example his DNA
profile. When this matches the crime sample,
i.e. Is = I, = x, say, that is clearly evidence
in favour of the two samples having the same
source. But how are we properly to weigh and

apply this evidence?

One relevant feature of match evidence is the
match probability P: this is the frequency
with which the characteristic  occurs in the
population at large. In the case of DNA pro-
filing, the match probability can be estimated
from population figures and genetic theory.
Very tiny match probabilities, even as small
as one in one billion, are now routine.

3.1 The prosecutor’s fallacy

We henceforth implicitly condition on the sus-
pect’s characteristic: Ig = x. The match
probability can be written as P = Pr(I¢ = z |
C # S). If we describe this as “the probabil-
ity that the crime sample came from some one
other than S5”, we are immediately in danger
of committing the prosecutor’s fallacy of § 2.1,
which interprets P as Pr(C # S | Ic = z), i.e.
the probability, in the light of the match, that
S is innocent — implying that the probability
of guilt G is 1 — P. If say P = 0.0000001, the
jury or judge might well understand that the
probability is only 1 in 10 million that S is
not guilty, and convict.

3.2 The defence argument

A counter-argument along the lines of §2.2
does not succeed here, since the probability
of a match under the alternative hypothesis
of guilt is unity.

Instead the defence might point out that there
are N + 1 (say) people who could have com-
mitted this crime. One of these is truly guilty,
and so matches the crime trace; while we
would expect to see approximately NP inno-
cent matches out of the remaining N innocent
individual. We thus expect a total of 1 + NP
matching individuals, of whom just 1 is guilty.
If all we know about S is that he matches, the
probability he is guilty is 1/(1+ N P). Taking
N = 30 million and again P = 0.0000001, we
would expect 3 innocent matches, for a final
guilt probability of 1 in 4 — which is certainly
not evidence “beyond a reasonable doubt”.



3.3 Some other arguments

The above defence argument can be varied in
a number of ways [4], many of which are in-
tuitively appealing — and have been recom-
mended for use — but are in fact fallacious.

In all cases we assume that, prior to any ev-
idence, any of the N 4 1 individuals in the
population is equally likely to be guilty, and
that the only evidence £ against S is that of
the match: Ig = I = z. For illustration we
take N =100, P = 0.004.

Let M denote the unknown number of indi-
viduals ¢ having I, = z. We suppose that,
before any samples are measured, M has the
binomial distribution Bin(N + 1; P). We have
Pr(G | £, M) = M !, and the final guilt prob-
ability, Pr(G | £), can be obtained by taking
the expectation of this quantity with respect
to the conditional distribution of M, given the
evidence £.

1. The evidence tells us that M > 1, and
simple conditioning on this yields

Pr(G|E)=BM™' | M >1).

For M ~ Bin(N + 1; P) this is not easily
expressed in closed form, but can be cal-
culated: for our numbers it evaluates to
0.902.

2. An alternative argument is that, given
the evidence, we know that there is one
guilty match, and, out of the remaining
N innocent individuals, each has, inde-
pendently, probability P of supplying a
match. So the conditional distribution of
M is 1+ Bin(N; P). Using this to take
the expectation of M~ yields

1—(1-p)N+t
(N+1)P

Pr(G|€) =

which, for our values, gives 0.824.

3. Finally, the correct approach.

We can consider the total evidence (I¢ =
x,Is = x) as the results, both successes,
of two draws, with replacement (since C
and S could be the same individual),

from the population. The probability of
this, given M = m, is m~? (for m > 1),
and, using Bayes’s Theorem, the result-
ing conditional distribution of M is

Pr(M=m|Ic=uzIs=1x)
N
— cm( >Pm1 (1_P)me+1
m — 1
(m=1,...,N+1),

where the normalising constant is ¢ =
1/(1 + NP). Taking the expectation of
M~ with respect to this distribution
then yields

Pr(G | £) = 1/(1 + NP),

in agreement with the original (and much
simpler) defence argument. This evalu-
ates numerically to 0.714.

The above is just one example of the pitfalls
besetting logical and probabilistic reasoning
in cases at law: see [1, 10, 11, 12] for a num-
ber of other subtle issues of interpretation of
forensic identification evidence.

3.4 Bayes

A serious problem with both the prosecution
and the defence arguments is that they do not
allow for the incorporation of any other evi-
dence in the case. The coherent approach to
combining identification and other evidence
is through Bayes’s Theorem: Posterior Odds
(on G) = Prior Odds x Likelihood Ratio,
where the other evidence is accounted for in
the prior odds, and the likelihood ratio based
on evidence £ (where here £ is the match ev-
idence “Ic = Ig = 2”) is defined by:

_ Pr(€]G)

LR = ———.
Pr(€ | G)

(1)

Because there is typically a subjective element
in assessing prior probabilities, it is often ar-
gued that experts should confine their evi-
dence to assessment of the more “objective”
likelihood ratio, leaving the court to apply
Bayes’s Theorem with its own prior inputs.
(However, see §§ 4 and 5 below concerning



ambiguities in the definition of the likelihood
ratio.)

In the case of identification evidence we can
(usually) take Pr(€ | G) =1, Pr(£ | G) = P,
so that the likelihood ratio is 1/P. If the prior
probability of guilt is 7, the posterior proba-
bility is w/(m + P — wP). This agrees (ap-
proximately) with the argument of the prose-
cutor when 7 = 0.5, and (exactly) with that
of the defence when all N 4 1 potential cul-
prits are a priori equally likely to be the guilty
party. This might be seen as support for the
defence argument in the absence of any other
evidence.

An interesting application of Bayes’s Theorem
was in the 1995 trial of Denis John Adams for
sexual assault. The only prosecution evidence
was a DNA match, with match probability as-
sessed between 1 in 2 million and 1 in 200 mil-
lion. The defence relied on the fact that the
victim did not identify Adams at an identifi-
cation parade, and also said that he did not
look like the man who had raped her. In ad-
dition Adams’s girlfriend testified that he had
been with her at the time of the crime.

On the basis that the criminal was likely to
be a local male aged between about 18-60, the
prior probability of guilt, before any evidence,
might be assessed at around one in 200,000.
The likelihood ratio based on the DNA match
is 1/P = 2 million, say. That based on the vic-
tim’s non-recognition of Adams could be as-
sessed at, say, 0.1/0.9 = 1/9, and that based
on his girlfriend’s alibi at, say, 0.25/0.5 =
1/2. Assuming suitable independence, the
posterior odds on guilt become (1/200,000) x
(2,000,000) x (1/9) x (1/2) = 5/9, correspond-
ing to a posterior probability of 35% (though
rising to 98% if we take P = 1 in 200 million).

In the actual case this argument was al-
lowed at trial (although it does not seem to
have impressed the jury, who convicted), but
ruled out on appeal, on the basis that ex-
plaining how to think about probabilistic evi-
dence “usurps the function of the jury”, which
“must apply its common sense”. Unfortu-
nately that leaves the door wide open to the
prosecutor’s fallacy and other tempting but

misleading arguments.

4 Database search

In some cases where a DNA profile is found
at the crime scene there may be no obvious
suspect. Then a trawl may be made through
a police computer DNA database in the hope
that it will throw up a match. Suppose this
happens: how, if at all, does the fact of the
database search affect the strength of the ev-
idence against a suspect so identified?

For definiteness, suppose that the database D
is of size n = 10,000, that the match probabil-
ity of the crime profile is P = 1 in 1 million,
and that exactly one profile — that of S, say
— in the database is found to match.

One intuition is that the database search
has eliminated 9,999 individuals who would
otherwise have remained alternative suspects.
Given the very large initial number of alter-
native suspects, this has the effect of render-
ing the evidence in favour of S’s guilt very
marginally stronger. The relevant likelihood
ratio is still close to 1 million.

An entirely different intuition proceeds
by analogy with frequentist statistical ap-
proaches to testing multiple hypotheses. This
would adjust the match probability to take
account of the 10,000 possible ways of obtain-
ing a match in the database, replacing it by
the value, close to 10,000 x (1 in 1 million)
= 1/100, of the probability of finding a match
in the database, if it does not include the
criminal. And a match probability of only 1
in 100 is vastly weaker evidence than one of 1
in 1 million. In particular, it corresponds to a
likelihood ratio in favour of guilt of 100, rather
than 1 million. Stockmarr [22] has argued in
favour of this likelihood ratio of 100, which re-
lates directly to the hypothesis Hp that some
one in the database is guilty, as against that
of 1 million, which relates to the hypothesis
Hg that S is guilty — on the grounds that the
former hypothesis is data-independent, while
the latter can not even be specified in advance
of performing the search. However, while such
data-dependence can affect frequentist infer-
ences, its relevance to likelihood inference is



arguable.

A way of bridging the apparent chasm be-
tween these two intuitions appears when we
realise that the prior probability of Hp is
about 10,000 times larger than that of Hg.
When we move between these hypotheses, this
difference in prior odds cancels exactly with
the difference in the associated likelihood ra-
tios, so that both approaches lead to the iden-
tical posterior probability (whether for Hg or
for Hp being unimportant, since these be-
come logically equivalent once we have found
that S is the unique profile in D matching the
crime sample).

While this may resolve the conceptual para-
dox, a practical problem remains. If “objec-
tivity” requires that we offer likelihood ra-
tios, rather than posterior probabilities, in ev-
idence, which should we give? — and how can
we ensure that their meaning and use is prop-
erly appreciated?

For further (heated) discussion of these issues
see [2, 15, 22, 16, 5.

5 Multiple perpetrators and stains

A similar problem [19, 20] arises when we
know there were two criminals, two distinct
DNA stains (say one on a pillow, one on a
sheet) have been found at the scene of the
crime, and there is a single suspect, S, who
matches one of them — say the pillow stain
— with its associated match probability P.
How is the strength of the evidence against S
affected by the multiplicity of stains?

Once again there is a choice of hypotheses
to compare, these being logically equivalent
in the light of the findings, but not in ad-
vance. A first approach compares “S left one
of the two stains” with “S did not leave ei-
ther stain’; a second compares “S left the pil-
low stain” with “S did not leave either stain”;
and yet a third compares “S left the pillow
stain” with “S did not leave the pillow stain”.
Under some assumptions, the associated like-
lihood ratios are, respectively, %P, P, and
1P x (2 —6)/(1 — 6), where § is the prior
probability that S is guilty. And once again,

the differences between these disappear after
they are combined with their varying relevant
prior odds. In [8] I argue that it is the first
of these likelihood ratios that relates most di-
rectly to the relevant issue: that of the guilt
of S. But one must also take into account the
knowledge that there were two culprits, which
effectively doubles the prior probability of S’s
guilt as compared with a single-suspect case.

6 Mixed stains

In many cases, e.g. involving a rape or scuf-
fle, a crime trace may clearly' be a mixture of
biological material from more than one indi-
vidual. We may or may not know how many
contributors are involved, or the identity of
some of them. It is sometimes possible to sep-
arate out the components of different contrib-
utors, e.g. by taking into account the differing
amounts of DNA at different bands, but this
is unreliable.

Suppose we have a suspect S who “matches”
the crime trace, in that all his bands are con-
tained in it. What is the strength of the DNA
evidence against him? This can involve com-
plex and subtle calculations and be sensitive
to assumptions made.

6.1 O. J. Simpson

In the celebrated trial of O. J. Simpson for
double murder, one of the crime samples could
be explained as a mixture of blood from Simp-
son and one of the victims, Ron Goldman.
At a certain locus, Simpson had genotype
AB, Goldman AC, and the crime sample had
ABC. In pre-trial depositions?, the prosecu-
tion argued that the relevant match proba-
bility P should be taken as the frequency of
Simpson’s genotype AB — about 5%. (Such
a P would be multiplied by similar figures
calculated for other loci to obtain an over-
all match probability). The defence argued
that P should be the total probability of any
of the genotypes, AA, AB, AC, BB, BC, CC,
that would have “matched” the crime sample:

!For example, because it has more than two bands

at some locus.
2http://tinyurl.com/2fhsx



about 39%.

However, on the assumption that the mix-
ture consists of Goldman and the culprit,
the culprit must have type AB, BB or BC.
These have combined probability 21%, and it
is the reciprocal of this figure for P that yields
the correct likelihood ratio. If we did not
know Goldman’s genotype, or thought that
the other contributor was some one else, we
need to conduct a more complex calculation
to obtain the relevant likelihood ratio. Inter-
preting this as P~!, we again obtain P ~ 21%
(though this is an accidental concurrence of
two potentially different figures).

7 Missing suspect

When a suspect, or other relevant party, is
not available for DNA profiling, useful infor-
mation can sometimes be obtained by profil-
ing relatives — although the analysis then re-
quired can be both conceptually and compu-
tationally challenging.

7.1 Hanratty

In 1962 James Hanratty was executed for rape
and murder. In 1998 a DNA profile, assumed
to be from the culprit, was extracted from
some items that had been stored since the
crime. Its associated match probability was
around 1 in 2.5 million. Ever ready to fall
for the prosecutor’s fallacy, the Press duly
reported this as “There is a 1 in 2.5 mil-
lion chance that Hanratty was not the A6
killer” — even though, since Hanratty’s DNA
was unavailable, there was no more evidence
against him than against any one else.

Hanratty’s mother and brother now offered
their own DNA for profiling — and this failed
to exclude him. Again reports of the above
match probability circulated as evidence of
his guilt. In fact, the actual likelihood ratio,
based on the indirect evidence of his relatives’
DNA, was around 440.

Finally his body was exhumed, and a direct
match obtained. Although the defence at-
tempted to attribute this to contamination, it
is generally agreed that the case is now closed.

7.2 Disputed paternity

Problems of disputed paternity necessarily re-
solve around indirect “matching” of the DNA
of the putative father with the true father.
When profiles from mother, child and puta-
tive father are available, the likelihood ratio
in favour of paternity can be calculated by
standard formulae. When the putative fa-
ther’s profile is unavailable, profiles may be
obtained from his relatives: for example, two
full brothers, and an undisputed child and its
(different) mother. Although the logical steps
in calculating the likelihood ratio are clear in
principle (though not always so to the foren-
sic and other experts directly involved in such
work), the computational difficulties of imple-
menting them can be severe.

8 Bayesian networks

The technology of Bayesian networks [3] has
proved valuable in addressing complex prob-
lems of DNA interpretation: Figure 1 shows a
graphical representation of the paternity case
described in §7.2: see [14] for further details.

Figure 1: Bayes net representation of a com-
plex paternity case

This technology is also being applied to prob-
lems such as mixed stains [21], mutation
[13, 7], contamination and laboratory errors;
and, more generally, as a decision aid for rep-
resenting and manipulating mixed masses of
evidence [9].

9 Conclusions

Seemingly straightforward problems of legal
reasoning can quickly lead to complexity, con-
troversy and confusion: the above examples



are just a few amongst many. The whole field
forms a particularly challenging testbed for
the whole range of ideas and dialogues about
reasoning under uncertainty.
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