Probabilistic graphical models CPSC 532C (Topics in AI)
 Stat 521A (TOpics in multivariate analysis)

Lecture 9

Kevin Murphy

Monday 18 October 2004

- HW4 due today

Review

- Variable elimination can be used to answer a single query, $P\left(X_{q} \mid e\right)$.
- VarElim requires an elimination ordering; you can use elimOrderGreedy to find this.
- VarElim implicitly creates an elimination tree (a junction tree with non-maximal cliques).
- You can create a jtree of maximal cliques by triangulating and using max weight spanning tree.
- Given a jtree, we can compute $P\left(X_{c} \mid e\right)$ for all cliques c using belief propagation (BP).

BELIEF PROPAGATION

- There are 2 variants of BP, which we will cover today:
- Shafer-Shenoy, that multiplies by all-but-one incoming message:

$$
\delta_{i \rightarrow j}=f\left(\prod_{k \in N_{i} \backslash\{j\}} \delta_{k \rightarrow i}\right)
$$

- Lauritzen-Spiegelhalter, that multiplies by all incoming messages and then divides out by one

$$
\begin{gathered}
\delta_{i \rightarrow j}=f\left(\frac{\prod_{k \in N_{i}} \delta_{k \rightarrow i}}{\delta_{j \rightarrow i}}\right) \\
\mathrm{Ck}_{\mathrm{Ck}} \neq \mathrm{Cj}=\mathrm{Cr}
\end{gathered}
$$

Shafer-Shenoy algorithm

$\left\{\psi_{i}^{1}\right\} \stackrel{\text { def }}{=}$ function Ctree-VE-calibrate $(\{\phi\}, T, \alpha)$
$R:=\operatorname{pickRoot}(T)$
$D T:=$ mkRootedTree (T, R)
$\left\{\psi_{i}^{0}\right\}:=$ initializeCliques (ϕ, α)
(* Upwards pass ${ }^{*}$)
for $\quad i \in \operatorname{postorder}(D T)$
$j:=p a(D T, i)$
$\delta_{i \rightarrow j}:=\mathrm{VE}-\operatorname{msg}\left(\left\{\delta_{k \rightarrow i}: k \in \operatorname{ch}(D T, i)\right\}, \psi_{i}^{0}\right)$

SUB-FUNCTIONS

$\left\{\psi_{i}^{0}\right\} \stackrel{\text { def }}{=}$ function initializeCliques (ϕ, α)
for $\quad i:=1: C$

$$
\psi_{i}^{0}\left(C_{i}\right)=\prod_{\phi: \alpha(\phi)=i} \phi
$$

$\delta_{i \rightarrow j} \stackrel{\text { def }}{=}$ function VE-msg $\left(\left\{\delta_{k \rightarrow i}\right\}, \psi_{i}^{0}\right)$
$\psi_{i}^{1}\left(C_{i}\right):=\psi_{i}^{0}\left(C_{i}\right) \prod_{k} \delta_{k \rightarrow i}$
$\delta_{i \rightarrow j}\left(S_{i, j}\right):=\sum_{C_{i} \backslash S_{i j}} \psi_{i}^{1}\left(C_{i}\right)$

SHAFER-SHENOY ALGORITHM

(* Downwards pass *)
for $i \in \operatorname{preorder}(D T)$

$$
\begin{aligned}
& \text { for } j \in \operatorname{ch}(D T, i) \\
& \quad \delta_{i \rightarrow j}=\operatorname{VE}-\operatorname{msg}\left(\left\{\delta_{k \rightarrow i}: k \in N_{i} \backslash j\right\}, \psi_{i}^{0}\right)
\end{aligned}
$$

(* Combine *)
for $i:=1: C$
$\psi_{i}^{1}:=\psi_{i}^{0} \prod_{k \in N_{i}} \delta_{k \rightarrow i}$

Shafer Shenoy for HMMs

	$\mathrm{C} 1: \mathrm{X} 1, \mathrm{X} 2-\mathrm{C} 2: \mathrm{X} 2, \mathrm{X} 3-\mathrm{C} 3: \mathrm{X} 3, \mathrm{X} 4$

$$
\begin{aligned}
\psi_{t}^{0}\left(X_{t}, X_{t+1}\right) & =P\left(X_{t+1} \mid X_{t}\right) p\left(y_{t+1} \mid X_{t+1}\right) \\
\delta_{t \rightarrow t+1}\left(X_{t+1}\right) & =\sum_{X_{t}} \delta_{t-1 \rightarrow t}\left(X_{t}\right) \psi_{t}^{0}\left(X_{t}, X_{t+1}\right) \\
\delta_{t \rightarrow t-1}\left(X_{t}\right) & =\sum_{X_{t+1}} \delta_{t+1 \rightarrow t}\left(X_{t+1}\right) \psi_{t}^{0}\left(X_{t}, X_{t+1}\right) \\
\psi_{t}^{1}\left(X_{t}, X_{t+1}\right) & =\delta_{t-1 \rightarrow t}\left(X_{t}\right) \delta_{t+1 \rightarrow t}\left(X_{t+1}\right) \psi_{t}^{0}\left(X_{t}, X_{t+1}\right)
\end{aligned}
$$

$$
\begin{aligned}
\alpha_{t}(i) & \stackrel{\text { def }}{=} \delta_{t-1 \rightarrow t}(i)=P\left(X_{t}=i, y_{1: t}\right) \\
\beta_{t}(i) & \stackrel{\text { def }}{=} \delta_{t \rightarrow t-1}(i)=p\left(y_{t+1: T} \mid X_{t}=i\right) \\
\xi_{t}(i, j) & \stackrel{\text { def }}{=} \psi_{t}^{1}\left(X_{t}=i, X_{t+1}=j\right)=P\left(X_{t}=i, X_{t+1}=j, y_{1: T}\right. \\
P\left(X_{t+1}=j \mid X_{t}=i\right) & \stackrel{\text { def }}{=} A(i, j) \\
p\left(y_{t} \mid X_{t}=i\right) & \stackrel{\text { def }}{=} B_{t}(i) \\
\alpha_{t}(j) & =\sum_{i} \alpha_{t-1}(i) A(i, j) B_{t}(j) \\
\beta_{t}(i) & =\sum_{j} \beta_{t+1}(j) A(i, j) B_{t+1}(j) \\
\xi_{t}(i, j) & =\alpha_{t}(i) \beta_{t+1}(j) A(i, j) B_{t+1}(j) \\
\gamma_{t}(i) & \stackrel{\text { def }}{=} P\left(X_{t}=i \mid y_{1: T}\right) \propto \alpha_{t}(i) \beta_{t}(j) \propto \sum_{j} \xi_{t}(i, j)
\end{aligned}
$$

FORWARDS-BACKWARDS ALGORITHM, MATRIX-VECTOR FORM

$$
\begin{aligned}
\alpha_{t}(j) & =\sum_{i} \alpha_{t-1}(i) A(i, j) B_{t}(j) \\
\alpha_{t} & =\left(A^{T} \alpha_{t-1}\right) \cdot * B_{t} \\
\beta_{t}(i) & =\sum_{j} \beta_{t+1}(j) A(i, j) B_{t+1}(j) \\
\beta_{t} & =A\left(\beta_{t+1} \cdot * B_{t+1}\right) \\
\xi_{t}(i, j) & =\alpha_{t}(i) \beta_{t+1}(j) A(i, j) B_{t+1}(j) \\
\xi_{t} & =\left(\alpha_{t}\left(\beta_{t+1} \cdot * B_{t+1}\right)^{T}\right) \cdot * A \\
\gamma_{t}(i) & \propto \alpha_{t}(i) \beta_{t}(j) \\
\gamma_{t} & \propto \alpha_{t} \cdot * \beta_{t}
\end{aligned}
$$

- Forwards algorithm uses dynamic programming to efficiently sum over all possible paths that state i at time t.

$$
\begin{aligned}
\alpha_{t}(i) & \stackrel{\text { def }}{=} P\left(X_{t}=i, y_{1: t}\right) \\
& =\left[\sum_{X_{1}} \cdots \sum_{X_{t-1}} P\left(X_{1}, \ldots, X_{t}-1, y_{1: t-1}\right) P\left(X_{t} \mid X_{t-1}\right)\right] p\left(y_{t} \mid X_{t}\right) \\
& =\left[\sum_{X_{t-1}} P\left(X_{t}-1, y_{1: t-1}\right) P\left(X_{t} \mid X_{t-1}\right)\right] p\left(y_{t} \mid X_{t}\right) \\
& =\left[\sum_{X_{t-1}} \alpha_{t-1}\left(X_{t-1}\right) P\left(X_{t} \mid X_{t-1}\right)\right] p\left(y_{t} \mid X_{t}\right)
\end{aligned}
$$

Avoiding numerical underflow in HMMs

- $\alpha_{t}(j) \stackrel{\text { def }}{=} P\left(X_{t}=j, y_{1: t}\right)$ is a tiny number
- Hence in practice we use

$$
\begin{aligned}
\hat{\alpha}_{t}(j) & \stackrel{\text { def }}{=} P\left(X_{t}=j \mid y_{1: t}\right)=\frac{P\left(X_{t}, y_{t} \mid y_{1: t-1}\right)}{p\left(y_{t} \mid y_{1: t-1}\right)} \\
& =\frac{\sum_{i} P\left(X_{t-1}=i \mid y_{1: t-1}\right) P\left(X_{t}=j \mid X_{t-1}=i\right) p\left(y_{t} \mid X_{t}=j\right)}{p\left(y_{t} \mid y_{1: t-1}\right)} \\
& =\frac{1}{c_{t}} \sum_{i} \hat{\alpha}_{t-1}(i) A(i, j) B_{t}(j)
\end{aligned}
$$

where

$$
c_{t} \stackrel{\text { def }}{=} P\left(y_{t} \mid y_{1: t-1}\right)=\sum_{j} \sum_{i} \hat{\alpha}_{t-1}(i) A(i, j) B_{t}(j)
$$

$\log p\left(y_{1: T}\right)=\log p\left(y_{1}\right) p\left(y_{2} \mid y_{1}\right) p\left(y_{3} \mid y_{1: 2}\right) \ldots=\log \prod_{t=1}^{T} c_{t}=\sum_{t=1}^{T} \log c_{t}$

Avoiding numerical underflow in Shafer Shenoy

- We always normalize all the messages

$$
\hat{\delta}_{i \rightarrow j}=\frac{1}{z_{i}} \mathrm{VE}-\operatorname{msg}\left(\hat{\delta}_{k \rightarrow i}, \psi_{i}^{0}\right)
$$

- By keeping track of the normalization constants during the collect-to-root, we can compute the log-likelihood

$$
\log p(e)=\sum_{i} \log z_{i}
$$

Shafer-Shenoy for pairwise MRFs

- Consider an MRF with one potential per edge

$$
P(X)=\frac{1}{Z} \prod_{<i j>} \psi_{i j}\left(X_{i}, X_{j}\right) \prod_{i} \phi_{i}\left(X_{i}\right)
$$

- We can generalize the forwards-backwards algorithm as follows:

$$
\begin{aligned}
m_{i j}\left(x_{j}\right) & =\sum_{x_{i}} \phi_{i}\left(x_{i}\right) \psi_{i j}\left(x_{i}, x_{j}\right) \prod_{k \in N_{i} \backslash\{j\}} m_{j i}\left(x_{i}\right) \\
b_{i}\left(x_{i}\right) & \propto \phi_{i}\left(x_{i}\right) \prod_{j \in N_{i}} m_{j i}\left(x_{i}\right)
\end{aligned}
$$

- In matrix-vector form, this becomes

$$
\begin{aligned}
m_{i j} & =\phi_{i} \cdot * \psi_{i j}^{T} \prod_{k} m_{k i} \\
b_{i} & \propto \phi_{i} \cdot * \prod_{j \in N_{i}} m_{j i}
\end{aligned}
$$

Message passing WITH DIVISION

- The posterior is the product of all incoming messages

$$
\pi_{i}\left(C_{i}\right)=\pi_{i}^{0}\left(C_{i}\right) \prod_{k \in N_{i}} \delta_{k \rightarrow i}\left(S_{i k}\right)
$$

- The message from i to j is the product of all incoming messages excluding $\delta_{j \rightarrow i}$:

$$
\begin{aligned}
\delta_{i \rightarrow j}\left(S_{i j}\right) & =\sum_{C_{i} \backslash S_{i j}} \pi_{i}^{0}\left(C_{i}\right) \prod_{k \in N_{i} \backslash\{j\}} \delta_{k \rightarrow i}\left(S_{i k}\right) \\
& =\sum_{C_{i} \backslash S_{i j}} \pi_{i}^{0}\left(C_{i}\right) \frac{\prod_{k \in N_{i}} \delta_{k \rightarrow i}\left(S_{i k}\right)}{\delta_{j \rightarrow i}\left(S_{i j}\right)} \\
& =\frac{\sum_{C_{i} \backslash S_{i j}} \pi_{i}\left(C_{i}\right)}{\delta_{j \rightarrow i}\left(S_{i j}\right)}
\end{aligned}
$$

$\left\{\psi_{i}\right\} \stackrel{\text { def }}{=}$ function Ctree-BP-two-pass $(\{\phi\}, T, \alpha)$
$R:=\operatorname{pickRoot}(T)$
$D T:=\mathrm{mkRooted}$ Tree (T, R)
$\left\{\psi_{i}\right\}:=$ initializeCliques (ϕ, α)
$\mu_{i, j}:=1$ (* initialize messages for each edge *)
(* Upwards pass *)
for $\quad i \in \operatorname{postorder}(D T)$

$$
\begin{aligned}
& j:=p a(D T, i) \\
& {\left[\psi_{j}, \mu_{i, j}\right]:=\operatorname{BP}-\operatorname{msg}\left(\psi_{i}, \psi_{j}, \mu_{i, j}\right)}
\end{aligned}
$$

(* Downwards pass *)
for $i \in \operatorname{preorder}(D T)$

$$
\begin{aligned}
& \text { for } j \in \operatorname{ch}(D T, i) \\
& {\left[\psi_{j}, \mu_{i j}\right]:=\operatorname{BP}-\operatorname{msg}\left(\psi_{i}, \psi_{j}, \mu_{i, j}\right)}
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\psi_{j}, \mu_{i, j}\right] \stackrel{\text { def }}{=} \text { function BP-msg }\left(\psi_{i}, \psi_{j}, \mu_{i, j}\right)} \\
& \delta_{i j}:=\sum_{C_{i} \backslash S_{i j}} \psi_{i} \\
& \psi_{j}:=\psi_{j} * \frac{\delta_{i} \rightarrow j}{\mu_{i, j}} \\
& \mu_{i, j}:=\delta_{i \rightarrow j}
\end{aligned}
$$

Properties of BP

- $\mu_{i, j}$ stores the most recent message sent alone edge $C_{i}-C_{j}$, in either direction.
- We can send messages in any order, including multiple times, because the recipient divides out by the old $\mu_{i, j}$, to avoid overcounting.
- Hence the algorithm can be run in a parallel, distributed fashion.
- $\psi_{i} \propto P\left(C_{i} \mid e^{\prime}\right)$ contains the product of all received messages so far (summarizing evidence e^{\prime}); it is our best partial guess (belief) about $P\left(C_{i} \mid e\right)$.

```
(* send \({ }^{*}\) )
```

for $i=1: C$
for $j \in N_{i}$
$\delta_{i \rightarrow j}^{o l d}=\delta_{i \rightarrow j}$
$\delta_{i \rightarrow j}=\sum_{C_{i} \backslash S_{i j}} \psi_{i}$
end
end
(* receive *)
for $i=1: C$
for $j \in N_{i}$

$$
\psi_{i}:=\psi_{i} * \frac{\delta_{j \rightarrow i} \rightarrow i}{\delta_{i \rightarrow j}^{o l d}}
$$

end
end

Using a clique tree to Answer queries

- We can enter evidence about X_{i} by multiplying a local evidence factor into any potential that contains X_{i} in its scope.
- After the tree is calibrated, we can compute $P\left(X_{q} \mid e\right)$ for any q contained in a clique (e.g., a node and its parents).
- If new evidence arrives about X_{i}, we pick a clique C_{r} that contains X_{i} and distribute the evidence (downwards pass from C_{r}).

SEPARATOR SETS

- Define the separator sets on each edge to be $S_{i j}=C_{i} \cap C_{J}$.
- Thm 8.1.8: Let X_{i} be all the nodes to the "left" of $S_{i j}$ and X_{j} be all the nodes to the "right". Then $X_{i} \perp X_{j} \mid S_{i j}$.
- $A B C D E \perp D E F \mid D E$, i.e., $A B C \perp F \mid D E$.

Clique tree as a distribution

- Consider Markov net $A-B-C$ with clique tree

$$
C 1: A, B-C 2: B, C
$$

- After BP has converged, we have

$$
\psi_{1}(A, B)=P_{F}(A, B), \psi_{2}(B, C)=P_{F}(B, C)
$$

- In addition, neighboring cliques agree on their intersection, e.g.

$$
\sum_{A} \psi_{1}(A, B)=\sum_{C} \psi_{2}(B, C)=P_{F}(B)
$$

- Hence the joint is

$$
\begin{aligned}
P(A, B, C) & =P(A, B) P(C \mid B)=P(A, B) \frac{P(B, C)}{P(B)} \\
& =\psi_{1}(A, B) \frac{\psi_{2}(B, C)}{\sum_{c} \psi_{2}(B, c)}=\psi_{1}(A, B) \frac{\psi_{2}(B, C)}{\sum_{a} \psi_{1}(a, c)} \\
& =\psi_{1}(A, B) \frac{\psi_{2}(B, C)}{\mu_{1,2}(B)}
\end{aligned}
$$

CLique TREE AS A DISTRIBUTION

- Defn 8.9: The clique tree invariant for T is

$$
\pi_{T}=\prod \phi=\frac{\prod_{i \in T} \psi_{i}\left(C_{i}\right)}{\prod_{<i j \in T>} \mu_{i, j}\left(S_{i, j}\right)}
$$

- Initially, the clique tree over all factors satisfies the invariant since $\mu_{i, j}=1$ and all the factors ϕ are assigned to cliques.
- Thm 8.3.6: Each step of BP maintains the clique invariant.

Message passing maintains CLIqUE Invariant

- Proof. Suppose C_{i} sends to C_{j} resulting in new message $\mu_{i, j}^{n e w}$ and new potential

$$
\psi_{j}^{n e w}=\psi_{j} \frac{\mu_{i j}^{n e w}}{\mu_{i j}}
$$

Then

$$
\begin{aligned}
\pi_{T} & =\frac{\prod_{i^{\prime}} \psi_{i^{\prime}}^{n e w}}{\prod_{<i j>^{\prime}} \mu_{i^{\prime}, j^{\prime}}^{n e w}} \\
& =\frac{\psi_{j}^{n e w} \prod_{i^{\prime} \neq j} \psi_{i^{\prime}}}{\mu_{i j}^{n e w} \prod_{<i j>^{\prime} \neq(i, j)} \mu_{i^{\prime}, j^{\prime}}} \\
& =\frac{\psi_{j} \mu_{i j}^{n e w} \frac{\prod_{i^{\prime} \neq j} \psi_{i^{\prime}}}{\mu_{i j}} \frac{\mu_{i j}^{n e w} \prod_{<i j>^{\prime} \neq(i, j)} \mu_{i^{\prime}, j^{\prime}}}{}}{} \\
& =\frac{\prod_{i^{\prime}} \psi_{i^{\prime}}}{\prod_{<i j>^{\prime}} \mu_{i^{\prime}, j^{\prime}}}
\end{aligned}
$$

Proof of correctness of BP

- Message passing does not change the invariant, so the clique tree always represents the distribution as a whole.
- However, we want to show that when the algorithm has converged, the clique potentials represent correct marginals.
- Defn 8.3.7. C_{i} is ready to transmit to C_{j} when C_{i} has received informed messages from all its neighbors except from C_{j}; a message from C_{i} to C_{j} is informed if it is sent when C_{i} is ready to transmit to C_{j}.
- e.g., leaf nodes are always ready to transmit.
- Defn 8.3.8: A connected subtree T^{\prime} is fully informed if, for each $C_{i} \in T^{\prime}$ and each $C_{j} \notin T^{\prime}$, we have that C_{j} has sent an informed message to C_{i}.
- Thm 8.3.9: After running BP , then $\pi_{T^{\prime}}=P_{F}\left(\operatorname{Scope}\left(T^{\prime}\right)\right)$ for any fully informed connected subtree T^{\prime}.

Proof of correctness of BP

- Corollary 8.3.10: If all nodes in T are fully informed, then $\pi_{T}=P_{F}(\operatorname{Scope}(T))$. Hence $\pi_{i}=P_{F}\left(C_{i}\right)$.
- Claim: There is a scheduling such that all nodes can become fully informed (namely postorder/ preorder).
- Defn 8.3.11. A clique tree is said to be calibrated if for each edge $C_{i}-C_{j}$, they agree on their intersection

$$
\sum_{C_{i} \backslash S_{i j}} \psi_{i}\left(C_{i}\right)=\sum_{C_{j} \backslash S_{i j}} \psi_{j}\left(C_{j}\right)
$$

- Claim: if all nodes are fully informed, the clique tree is calibrated. Hence any further message passing will have no effect.

OUT-OF-CLIQUE QUERIES

- To compute $P\left(X_{q} \mid e\right)$ where q is not contained with a clique, we look at the smallest subtree that contains q, and perform variable elimination on those factors.
- e.g. Consider Markov net $A-B-C-D$ with clique tree

$$
C 1: A, B-C 2: B, C-C 3: C, D
$$

- We can compute $P(B, D)$ as follows

$$
\begin{aligned}
P(B, D) & =\sum_{C} P(B, C, D) \\
& =\sum_{C} \frac{\pi_{2}(B, C) \pi_{3}(C, D)}{\mu_{2,3}(C)} \\
& =\sum_{C} P(B \mid C) P(C, D) \\
& =\operatorname{VarElim}\left(\left\{\pi_{2}, \frac{\pi_{3}}{\mu_{2,3}}\right\},\{B, D\}\right)
\end{aligned}
$$

Viterbi decoding (finding the MPE)

- Let $x_{1: n}^{*}=\arg \max _{x_{1: N}} P\left(x_{1: N}\right)$ be (one of the) most probable assignments.
- We can compute $p^{*}=P\left(x_{1: N}^{*}\right)$ using the max product algorithm.
- e.g., $A \rightarrow B$.

$$
\begin{aligned}
P\left(a^{*}, b^{*}\right) & =\max _{a} \max _{b} P(a) P(b \mid a) \\
& =\max _{a} \max _{b} \phi_{A}(a) \phi_{B}(b, a) \\
& =\max _{a} \phi_{A}(a) \underbrace{\max _{b} \phi_{B}(b, a)}_{b} \\
& =\underbrace{\max _{a} \phi_{A}(a) \tau_{B}(a)}_{\tau_{A}(\emptyset)}
\end{aligned}
$$

- We can push max inside products.
- (\max , Π) and $\left(\sum, \Pi\right)$ are both commutative semi-rings.

Viterbi decoding (finding the MPE)

- Max-product gives us $p^{*}=\max _{x_{1: N}} P\left(x_{1: N}\right)$, but not $x_{1: N}^{*}=\arg \max _{x_{1: N}} P\left(x_{1: N}\right)$.
- To compute the most probable assignment, we need to do max-product followed by a traceback procedure.
- e.g., $A \rightarrow B$.
- We cannot find the most probable value for A unless we know what B we would choose in response.
- So when we compute $\tau_{B}(a)=\max _{b} \phi_{B}(b, a)$, also store

$$
\lambda_{B}(a)=\arg \max _{b} \phi_{B}(b, a)
$$

- When we compute $\tau_{A}(\emptyset)=\max _{a} \phi_{A}(a) \tau_{A}(a)$, we also compute

$$
a^{*}=\arg \max _{a} \phi_{A}(a) \tau_{A}(a)
$$

- Then traceback: $b^{*}=\lambda_{B}\left(a^{*}\right)$.

More complex example

$$
p^{*}=\max _{G} \max _{L} \phi_{L}(L, G) \max _{D} \phi_{D}(D) \max _{I} \phi_{I}(I) \phi_{G}(G, I, D) \max _{S} \phi_{S}(I, S)
$$

More COMPLEX EXAMPLE

$$
\begin{aligned}
p^{*} & =\max _{G} \max _{L} \phi_{L}(L, G) \max _{D} \phi_{D}(D) \max _{I} \phi_{I}(I) \phi_{G}(G, I, D) \underbrace{\max _{S} \phi_{S}(I, S)}_{\tau_{1}(I)} \\
& =\max _{G} \max _{L} \phi_{L}(L, G) \max _{D} \phi_{D}(D) \underbrace{\max _{I} \phi_{I}(I) \phi_{G}(G, I, D) \tau_{1}(I)}_{\tau_{2}(G, D)} \\
& =\max _{G} \max _{L} \phi_{L}(L, G) \underbrace{\max _{D} \phi_{D}(D) \tau_{2}(G, D)}_{\tau_{3}(G)} \\
& =\max _{G} \underbrace{\max _{L} \phi_{L}(L, G) \tau_{3}(G)}_{\tau_{4}(G)} \\
& =\underbrace{\max _{G} \tau_{4}(G)}_{\tau_{5}(\emptyset)} \\
& =0.184
\end{aligned}
$$

Traceback

$$
\begin{aligned}
& p^{*}=\max _{G} \max _{L} \phi_{L}(L, G) \max _{D} \phi_{D}(D) \max _{I} \phi_{I}(I) \phi_{G}(G, I, D) \underbrace{\max _{S} \phi_{S}(I, S)}_{\tau_{1}(I)} \\
& =\max _{G} \max _{L} \phi_{L}(L, G) \max _{D} \phi_{D}(D) \underbrace{\max _{I} \phi_{I}(I) \phi_{G}(G, I, D) \tau_{1}(I)}_{\tau_{2}(G, D)} \\
& =\max _{G} \max _{L} \phi_{L}(L, G) \underbrace{\max _{D} \phi_{D}(D) \tau_{2}(G, D)}_{\tau_{3}(G)} \\
& =\max _{G} \underbrace{\max _{L} \phi_{L}(L, G) \tau_{3}(G)}_{\tau_{4}(G)} \\
& =\underbrace{\max _{G} \tau_{4}(G)}_{\tau_{5}(\emptyset)} \\
& \lambda_{5}(\emptyset)=\arg \max _{g} \tau_{4}(g)=g^{*} \\
& \lambda_{4}(g)=\arg \max _{l} \phi_{L}(L, G) \tau_{3}(g), l^{*}=\lambda_{4}\left(g^{*}\right) \\
& \lambda_{3}(g)=\arg \max _{d} \phi_{D}(d) \tau_{2}(G, d), d^{*}=\lambda_{3}\left(g^{*}\right) \\
& \lambda_{2}(g, d)=\arg \max _{i} \phi_{I}(i) \phi_{G}(G, i, D) \tau_{1}(i), i^{*}=\lambda_{2}\left(g^{*}, d^{*}\right) \\
& \lambda_{1}(i)=\arg \max _{s} \phi_{S}(I, s), s^{*}=\lambda_{1}\left(i^{*}\right)
\end{aligned}
$$

Finding K-most probable assignments

- There may be several $\left(m_{1}\right)$ assignments with the same highest probability, call them $x_{1: n}^{(1,1)}, \ldots, x_{1: n}^{\left(1, m_{1}\right)}$.
- These can be found by breaking ties in the argmax.
- The second most probable assignment(s) after these, $x_{1: n}^{(2,1)}, \ldots, x_{1: n}^{\left(2, m_{2}\right)}$, must differ in at least one assignment,.
- Hence we assert evidence that the next assignment must be distinct from all m_{1} MPEs, and re-run Viterbi.
- Project idea: implement this and compare to the loopy belief propagation version to be discussed later.
- This is often used to produce the "N-best list" in speech recognition; these hypotheses are then re-ranked using more sophisticated (discriminative) models.

Marginal MAP (max-Sum-Product)

$$
p^{*}=\max _{L} \max _{S} \sum_{G} \phi_{L}(L, G) \sum_{I} \phi_{I}(I) \phi_{S}(S, I) \sum_{D} \phi_{G}(G, I, D)
$$

- We can easily modify the previous algorithms to cope with examples such as this.
- However, max and sum do not commute!

$$
\max _{X} \sum_{Y} \phi(X, Y) \neq \sum_{Y} \max _{X} \phi(X, Y)
$$

- Hence we must use a constrained elimination ordering, in which we sum out first, then max out.

Constrained elimination orderings may induce large

 CLIQUES$$
p^{*}=\max _{Y_{1}, \ldots, Y_{n}} \sum_{X_{1}, \ldots, X_{n}}^{y_{1}} P
$$

- We must eliminate all the X_{i} 's first, which induces a huge clique over all the Y_{i} 's!
- Thm: exact max-marginal inference is NP-hard even in tree-structured graphical models.
- An identical problem arises with decision diagrams, where we must sum out random variables before maxing out action variables.
- An identical problem arises with "hybrid networks", where we must sum out discrete random variables before integrating out Gaussian random variables (ch 11).

