
Probabilistic graphical models
CPSC 532c (Topics in AI)

Stat 521a (Topics in multivariate analysis)

Lecture 9

Kevin Murphy

Monday 18 October 2004

Administrivia

• HW4 due today

Review

• Variable elimination can be used to answer a single query, P (Xq|e).

• VarElim requires an elimination ordering; you can use elimOrderGreedy
to find this.

• VarElim implicitly creates an elimination tree (a junction tree with
non-maximal cliques).

• You can create a jtree of maximal cliques by triangulating and using
max weight spanning tree.

• Given a jtree, we can compute P (Xc|e) for all cliques c using belief
propagation (BP).

Belief propagation

• There are 2 variants of BP, which we will cover today:

• Shafer-Shenoy, that multiplies by all-but-one incoming message:

δi→j = f

∏

k∈Ni\{j}

δk→i

• Lauritzen-Spiegelhalter, that multiplies by all incoming messages and
then divides out by one

δi→j = f

(∏

k∈Ni
δk→i

δj→i

)

Cr
Ck

Ck’

Ci Cj

Shafer-Shenoy algorithm

{ψ1
i }

def
= function Ctree-VE-calibrate({φ}, T, α)

R := pickRoot(T)
DT := mkRootedTree(T,R)

{ψ0
i } := initializeCliques(φ, α)

(* Upwards pass *)
for i ∈ postorder(DT)

j := pa(DT, i)

δi→j := VE-msg({δk→i : k ∈ ch(DT, i)}, ψ0
i)

Cr
Ck

Ck’

Ci Cj

Sub-functions

{ψ0
i }

def
= function initializeCliques(φ, α)

for i := 1 : C

ψ0
i (Ci) =

∏

φ:α(φ)=i φ

δi→j
def
= function VE-msg({δk→i}, ψ

0
i)

ψ1
i (Ci) := ψ0

i (Ci)
∏

k δk→i

δi→j(Si,j) :=
∑

Ci\Sij
ψ1
i (Ci)

Shafer-Shenoy algorithm

(* Downwards pass *)
for i ∈ preorder(DT)

for j ∈ ch(DT, i)

δi→j = VE-msg({δk→i : k ∈ Ni \ j}, ψ
0
i)

(* Combine *)
for i := 1 : C

ψ1
i := ψ0

i

∏

k∈Ni
δk→i

Cj

Ck’

Ci CrCk

Shafer Shenoy for HMMs
. . .X X X

Y Y Y

1 2 3 4

1 3 4

X

2Y C1: X1,X2 C2:X2,X3 C3:X3,X4

ψ0
t (Xt, Xt+1) = P (Xt+1|Xt)p(yt+1|Xt+1)

δt→t+1(Xt+1) =
∑

Xt

δt−1→t(Xt)ψ
0
t (Xt, Xt+1)

δt→t−1(Xt) =
∑

Xt+1

δt+1→t(Xt+1)ψ
0
t (Xt, Xt+1)

ψ1
t (Xt, Xt+1) = δt−1→t(Xt)δt+1→t(Xt+1)ψ

0
t (Xt, Xt+1)

Forwards-backwards algorithm for HMMs

αt(i)
def
= δt−1→t(i) = P (Xt = i, y1:t)

βt(i)
def
= δt→t−1(i) = p(yt+1:T |Xt = i)

ξt(i, j)
def
= ψ1

t (Xt = i,Xt+1 = j) = P (Xt = i,Xt+1 = j, y1:T)

P (Xt+1 = j|Xt = i)
def
= A(i, j)

p(yt|Xt = i)
def
= Bt(i)

αt(j) =
∑

i

αt−1(i)A(i, j)Bt(j)

βt(i) =
∑

j

βt+1(j)A(i, j)Bt+1(j)

ξt(i, j) = αt(i)βt+1(j)A(i, j)Bt+1(j)

γt(i)
def
= P (Xt = i|y1:T) ∝ αt(i)βt(j) ∝

∑

j

ξt(i, j)

Forwards-backwards algorithm, matrix-vector form
. . .X X X

Y Y Y

1 2 3 4

1 3 4

X

2Y

αt(j) =
∑

i

αt−1(i)A(i, j)Bt(j)

αt = (ATαt−1). ∗Bt

βt(i) =
∑

j

βt+1(j)A(i, j)Bt+1(j)

βt = A(βt+1. ∗Bt+1)

ξt(i, j) = αt(i)βt+1(j)A(i, j)Bt+1(j)

ξt =
(

αt(βt+1. ∗Bt+1)
T
)

. ∗ A

γt(i) ∝ αt(i)βt(j)

γt ∝ αt. ∗ βt

HMM trellis

• Forwards algorithm uses dynamic programming to efficiently sum
over all possible paths that state i at time t.

αt(i)
def
= P (Xt = i, y1:t)

=

∑

X1

. . .
∑

Xt−1

P (X1, . . . , Xt − 1, y1:t−1)P (Xt|Xt−1)

 p(yt|Xt)

=

∑

Xt−1

P (Xt − 1, y1:t−1)P (Xt|Xt−1)

 p(yt|Xt)

=

∑

Xt−1

αt−1(Xt−1)P (Xt|Xt−1)

 p(yt|Xt)

Avoiding numerical underflow in HMMs

• αt(j)
def
= P (Xt = j, y1:t) is a tiny number

• Hence in practice we use

α̂t(j)
def
= P (Xt = j|y1:t) =

P (Xt, yt|y1:t−1)

p(yt|y1:t−1)

=

∑

i P (Xt−1 = i|y1:t−1)P (Xt = j|Xt−1 = i)p(yt|Xt = j)

p(yt|y1:t−1)

=
1

ct

∑

i

α̂t−1(i)A(i, j)Bt(j)

where

ct
def
= P (yt|y1:t−1) =

∑

j

∑

i

α̂t−1(i)A(i, j)Bt(j)

log p(y1:T) = log p(y1)p(y2|y1)p(y3|y1:2) . . . = log

T∏

t=1

ct =

T∑

t=1

log ct

Avoiding numerical underflow in Shafer Shenoy

•We always normalize all the messages

δ̂i→j =
1

zi
VE-msg(δ̂k→i, ψ

0
i)

• By keeping track of the normalization constants during the collect-
to-root, we can compute the log-likelihood

log p(e) =
∑

i

log zi

Shafer-Shenoy for pairwise MRFs

• Consider an MRF with one potential per edge

P (X) =
1

Z

∏

<ij>

ψij(Xi, Xj)
∏

i

φi(Xi)

•We can generalize the forwards-backwards algorithm as follows:

mij(xj) =
∑

xi

φi(xi)ψij(xi, xj)
∏

k∈Ni\{j}

mji(xi)

bi(xi) ∝ φi(xi)
∏

j∈Ni

mji(xi)

• In matrix-vector form, this becomes

mij = φi. ∗ ψ
T
ij

∏

k

mki

bi ∝ φi. ∗
∏

j∈Ni

mji

Message passing with division

• The posterior is the product of all incoming messages

πi(Ci) = π0
i (Ci)

∏

k∈Ni

δk→i(Sik)

• The message from i to j is the product of all incoming messages
excluding δj→i:

Cr
Ck

Ck’

Ci Cj

δi→j(Sij) =
∑

Ci\Sij

π0
i (Ci)

∏

k∈Ni\{j}

δk→i(Sik)

=
∑

Ci\Sij

π0
i (Ci)

∏

k∈Ni
δk→i(Sik)

δj→i(Sij)

=

∑

Ci\Sij
πi(Ci)

δj→i(Sij)

Lauritzen-Spiegelhalter algorithm

{ψi}
def
= function Ctree-BP-two-pass({φ}, T, α)

R := pickRoot(T)
DT := mkRootedTree(T,R)
{ψi} := initializeCliques(φ, α)
µi,j := 1 (* initialize messages for each edge *)
(* Upwards pass *)
for i ∈ postorder(DT)

j := pa(DT, i)
[
ψj, µi,j

]
:= BP-msg(ψi, ψj, µi,j)

Cr
Ck

Ck’

Ci Cj

Lauritzen-Spiegelhalter algorithm

(* Downwards pass *)
for i ∈ preorder(DT)

for j ∈ ch(DT, i)
[
ψj, µij

]
:= BP-msg(ψi, ψj, µi,j)

[
ψj, µi,j

] def
= function BP-msg(ψi, ψj, µi,j)

δij :=
∑

Ci\Sij
ψi

ψj := ψj ∗
δi→j
µi,j

µi,j := δi→j

Cj

Ck’

Ci CrCk

Properties of BP

• µi,j stores the most recent message sent alone edge Ci − Cj, in
either direction.

•We can send messages in any order, including multiple times,
because the recipient divides out by the old µi,j, to avoid
overcounting.

• Hence the algorithm can be run in a parallel, distributed fashion.

• ψi ∝ P (Ci|e
′) contains the product of all received messages so far

(summarizing evidence e′); it is our best partial guess (belief) about
P (Ci|e).

Parallel BP

(* send *)
for i = 1 : C

for j ∈ Ni
δoldi→j = δi→j

δi→j =
∑

Ci\Sij
ψi

end
end
(* receive *)
for i = 1 : C

for j ∈ Ni

ψi := ψi ∗
δj→i

δoldi→j

end
end

Using a clique tree to answer queries

•We can enter evidence about Xi by multiplying a local evidence
factor into any potential that contains Xi in its scope.

• After the tree is calibrated, we can compute P (Xq|e) for any q
contained in a clique (e.g., a node and its parents).

• If new evidence arrives about Xi, we pick a clique Cr that contains
Xi and distribute the evidence (downwards pass from Cr).

Separator sets

•Define the separator sets on each edge to be Sij = Ci ∩ CJ .

• Thm 8.1.8: Let Xi be all the nodes to the “left” of Sij and Xj be
all the nodes to the “right”. Then Xi ⊥ Xj|Sij.

•ABCDE ⊥ DEF |DE, i.e., ABC ⊥ F |DE.

F

A B

C

E

D
DEFABC C CDE DE

Clique tree as a distribution

• Consider Markov net A− B − C with clique tree

C1 : A,B − C2 : B,C

• After BP has converged, we have

ψ1(A,B) = PF (A,B), ψ2(B,C) = PF (B,C)

• In addition, neighboring cliques agree on their intersection, e.g.
∑

A

ψ1(A,B) =
∑

C

ψ2(B,C) = PF (B)

• Hence the joint is

P (A,B,C) = P (A,B)P (C|B) = P (A,B)
P (B,C)

P (B)

= ψ1(A,B)
ψ2(B,C)
∑

cψ2(B, c)
= ψ1(A,B)

ψ2(B,C)
∑

aψ1(a, c)

= ψ1(A,B)
ψ2(B,C)

µ1,2(B)

Clique tree as a distribution

•Defn 8.9: The clique tree invariant for T is

πT =
∏

φ =

∏

i∈T ψi(Ci)
∏

<ij∈T> µi,j(Si,j)

• Initially, the clique tree over all factors satisfies the invariant since
µi,j = 1 and all the factors φ are assigned to cliques.

• Thm 8.3.6: Each step of BP maintains the clique invariant.

Message passing maintains clique invariant

• Proof. Suppose Ci sends to Cj resulting in new message µnewi,j and
new potential

ψnewj = ψj
µnewij

µij
Then

πT =

∏

i′ ψ
new
i′∏

<ij>′ µnew
i′,j′

=
ψnewj

∏

i′ 6=j ψi′

µnewij

∏

<ij>′ 6=(i,j) µi′,j′

=
ψjµ

new
ij

µij

∏

i′ 6=j ψi′

µnewij

∏

<ij>′ 6=(i,j) µi′,j′

=

∏

i′ ψi′∏

<ij>′ µi′,j′

Proof of correctness of BP

•Message passing does not change the invariant, so the clique tree
always represents the distribution as a whole.

• However, we want to show that when the algorithm has converged,
the clique potentials represent correct marginals.

•Defn 8.3.7. Ci is ready to transmit to Cj when Ci has
received informed messages from all its neighbors except from Cj; a
message from Ci to Cj is informed if it is sent when Ci is ready
to transmit to Cj.

• e.g., leaf nodes are always ready to transmit.

•Defn 8.3.8: A connected subtree T ′ is fully informed if, for each
Ci ∈ T ′ and each Cj 6∈ T ′, we have that Cj has sent an informed
message to Ci.

• Thm 8.3.9: After running BP, then πT ′ = PF (Scope(T ′)) for any
fully informed connected subtree T ′.

Proof of correctness of BP

• Corollary 8.3.10: If all nodes in T are fully informed, then
πT = PF (Scope(T)). Hence πi = PF (Ci).

• Claim: There is a scheduling such that all nodes can become fully
informed (namely postorder/ preorder).

•Defn 8.3.11. A clique tree is said to be calibrated if for each
edge Ci − Cj, they agree on their intersection

∑

Ci\Sij

ψi(Ci) =
∑

Cj\Sij

ψj(Cj)

• Claim: if all nodes are fully informed, the clique tree is calibrated.
Hence any further message passing will have no effect.

Out-of-clique queries

• To compute P (Xq|e) where q is not contained with a clique, we
look at the smallest subtree that contains q, and perform variable
elimination on those factors.

• e.g. Consider Markov net A− B − C −D with clique tree

C1 : A,B − C2 : B,C − C3 : C,D

•We can compute P (B,D) as follows

P (B,D) =
∑

C

P (B,C,D)

=
∑

C

π2(B,C)π3(C,D)

µ2,3(C)

=
∑

C

P (B|C)P (C,D)

= VarElim({π2,
π3

µ2,3
}, {B,D})

Viterbi decoding (finding the MPE)

• Let x∗1:n = arg maxx1:N P (x1:N) be (one of the) most probable
assignments.

•We can compute p∗ = P (x∗1:N) using the max product algorithm.

• e.g., A→ B.

P (a∗, b∗) = max
a

max
b
P (a)P (b|a)

= max
a

max
b
φA(a)φB(b, a)

= max
a
φA(a) max

b
φB(b, a)

︸ ︷︷ ︸

τB(a)

= max
a
φA(a)τB(a)

︸ ︷︷ ︸

τA(∅)

•We can push max inside products.

• (max,
∏

) and (
∑
,
∏

) are both commutative semi-rings.

Viterbi decoding (finding the MPE)

•Max-product gives us p∗ = maxx1:N P (x1:N), but not
x∗1:N = arg maxx1:N P (x1:N).

• To compute the most probable assignment, we need to do
max-product followed by a traceback procedure.

• e.g., A→ B.

•We cannot find the most probable value for A unless we know what
B we would choose in response.

• So when we compute τB(a) = maxb φB(b, a), also store

λB(a) = arg max
b
φB(b, a)

•When we compute τA(∅) = maxa φA(a)τA(a), we also compute

a∗ = arg max
a
φA(a)τA(a)

• Then traceback: b∗ = λB(a∗).

More complex example

IntelligenceDifficulty

Grade

Letter

SAT

p∗ = max
G

max
L

φL(L,G) max
D

φD(D) max
I
φI(I)φG(G, I,D) max

S
φS(I, S)

More complex example

p∗ = max
G

max
L

φL(L,G) max
D

φD(D) max
I
φI(I)φG(G, I,D) max

S
φS(I, S)

︸ ︷︷ ︸

τ1(I)

= max
G

max
L

φL(L,G) max
D

φD(D) max
I
φI(I)φG(G, I,D)τ1(I)

︸ ︷︷ ︸

τ2(G,D)

= max
G

max
L

φL(L,G) max
D

φD(D)τ2(G,D)
︸ ︷︷ ︸

τ3(G)

= max
G

max
L

φL(L,G)τ3(G)
︸ ︷︷ ︸

τ4(G)

= max
G

τ4(G)
︸ ︷︷ ︸

τ5(∅)

= 0.184

Traceback

p∗ = max
G

max
L

φL(L,G) max
D

φD(D) max
I
φI(I)φG(G, I,D) max

S
φS(I, S)

︸ ︷︷ ︸

τ1(I)

= max
G

max
L

φL(L,G) max
D

φD(D) max
I
φI(I)φG(G, I,D)τ1(I)

︸ ︷︷ ︸

τ2(G,D)

= max
G

max
L

φL(L,G) max
D

φD(D)τ2(G,D)
︸ ︷︷ ︸

τ3(G)

= max
G

max
L

φL(L,G)τ3(G)
︸ ︷︷ ︸

τ4(G)

= max
G

τ4(G)
︸ ︷︷ ︸

τ5(∅)

λ5(∅) = arg max
g
τ4(g) = g∗

λ4(g) = arg max
l
φL(L,G)τ3(g), l

∗ = λ4(g
∗)

λ3(g) = arg max
d
φD(d)τ2(G, d), d

∗ = λ3(g
∗)

λ2(g, d) = arg max
i
φI(i)φG(G, i,D)τ1(i), i

∗ = λ2(g
∗, d∗)

λ1(i) = arg max
s
φS(I, s), s∗ = λ1(i

∗)

Finding K-most probable assignments

• There may be several (m1) assignments with the same highest

probability, call them x
(1,1)
1:n , . . . , x

(1,m1)
1:n .

• These can be found by breaking ties in the argmax.

• The second most probable assignment(s) after these,

x
(2,1)
1:n , . . . , x

(2,m2)
1:n , must differ in at least one assignment,.

• Hence we assert evidence that the next assignment must be distinct
from all m1 MPEs, and re-run Viterbi.

• Project idea: implement this and compare to the loopy belief
propagation version to be discussed later.

• This is often used to produce the “N-best list” in speech
recognition; these hypotheses are then re-ranked using more
sophisticated (discriminative) models.

Marginal MAP (max-sum-product)

IntelligenceDifficulty

Grade

Letter

SAT

p∗ = max
L

max
S

∑

G

φL(L,G)
∑

I

φI(I)φS(S, I)
∑

D

φG(G, I,D)

•We can easily modify the previous algorithms to cope with
examples such as this.

• However, max and sum do not commute!

max
X

∑

Y

φ(X,Y) 6=
∑

Y

max
X

φ(X,Y)

• Hence we must use a constrained elimination ordering, in which we
sum out first, then max out.

Constrained elimination orderings may induce large
cliques

X1 XnX2
. . .

Y1 YnY2

p∗ = max
Y1,...,Yn

∑

X1,...,Xn

P (Y1:n, X1:n)

•We must eliminate all the Xi’s first, which induces a huge clique
over all the Yi’s!

• Thm: exact max-marginal inference is NP-hard even in
tree-structured graphical models.

• An identical problem arises with decision diagrams, where we must
sum out random variables before maxing out action variables.

• An identical problem arises with “hybrid networks”, where we must
sum out discrete random variables before integrating out Gaussian
random variables (ch 11).

