Probabilistic graphical models
CPSC 532C (Topics in AI)
Stat 521a (Topics in multivariate analysis)
Lecture 8

Kevin Murphy

Wednesday 6 October, 2004

What's Wrong with variable elimination?

- Consider computing $P\left(X_{i} \mid y_{1: N}\right)$ for each i using variable elimination. This would take $O\left(N^{2}\right)$ time.
- However, there is a lot of repeated computation.

$$
\begin{aligned}
& P\left(X_{1} \mid e_{1: 3}\right) \propto P\left(X_{1}\right) p\left(e_{1} \mid X_{1}\right) \sum_{X_{2}} P\left(X_{2} \mid X_{1}\right) p\left(e_{2} \mid X_{2}\right) \sum_{X_{3}} P\left(X_{3} \mid X_{2}\right) p\left(e_{3}\right. \\
& P\left(X_{2} \mid e_{1: 3}\right) \propto \sum_{X_{1}} P\left(X_{1}\right) p\left(e_{1} \mid X_{1}\right) P\left(X_{2} \mid X_{1}\right) p\left(e_{2} \mid X_{2}\right) \sum_{X_{3}} P\left(X_{3} \mid X_{2}\right) p\left(e_{3} \mid\right. \\
& P\left(X_{3} \mid e_{1: 3}\right) \propto \sum_{X_{1}} P\left(X_{1}\right) p\left(e_{1} \mid X_{1}\right) \sum_{X_{2}} P\left(X_{2} \mid X_{1}\right) p\left(e_{2} \mid X_{2}\right) P\left(X_{3} \mid X_{2}\right) p\left(e_{3} \mid\right.
\end{aligned}
$$

- Next Monday: no class (thanksgiving)
- Next Wednesday: lecture by Brent Boerlage.
- We will show how to use caching to compute all N marginals in $O(N)$ time.

Cluster tree

$\left.P(J)=\sum_{L} \sum_{S} \phi_{J}(J, L, S) \sum_{G} \phi_{L}(L, G) \sum_{H} \phi_{H}(H, G, J) \sum_{I} \phi_{S}(S, I) \phi_{I}(I) \sum_{D} \phi_{C} G, I, D\right) \sum_{C} \underbrace{\phi_{C}(C) \phi_{D}(D, C)}$
$=\sum_{L} \sum_{S} \phi_{J}(J, L, S) \sum_{G} \phi_{L}(L, G) \sum_{H} \phi_{H}(H, G, J) \sum_{I} \phi_{S}(S, I) \phi_{I}(I) \sum_{D} \underbrace{\left.\phi_{G} G, I, D\right) \tau_{1}(D)}_{v_{2}(D, G, I)}$
$=\sum_{L} \sum_{S} \phi_{J}(J, L, S) \sum_{G} \phi_{L}(L, G) \sum_{H} \phi_{H}(H, G, J) \sum_{I} \underbrace{\phi_{S}(S, I) \phi_{I}(I) \tau_{2}(G, I)}$
$=\sum_{L} \sum_{S} \phi_{J}(J, L, S) \sum_{G} \phi_{L}(L, G) \sum_{H} \underbrace{\phi_{H}(H, G, J)}_{\psi_{A}(H, G, J)} \tau_{3}(G, S)$
$=\sum_{L} \sum_{S} \phi_{J}(J, L, S) \sum_{G} \underbrace{\phi_{L}(L, G) \tau_{4}(G, J) \tau_{3}(G, S)}$
$=\sum_{L} \sum_{S} \underbrace{\phi_{J}(J, L, S) \tau_{5}(J, L, S)}$
$=\sum_{L} \tau_{\psi_{7}(J, L, L)}$

Constructing an elimination tree

- The clusters (nodes) produced by variable elimination using order \prec applied to G are (non-maximal) cliques in the induced graph $I_{G, \prec}$.
- These clusters C_{i} are called elimination sets.
- We can connect the esets into a tree that satisfies the jtree property in 2 steps:

1. Run the variable elimination algorithm. Let v_{i} be the variable eliminated at the i 'th step, and C_{i} be the set of variables in v_{i} 's bucket at that time (so $\tau_{i}=\sum_{v_{i}} \psi_{i}\left(C_{i}\right)$).
2. Connect $C_{i}-C_{j}$ if τ_{i} goes into j 's bucket, i.e., j is the largest index of a vertex in $C_{i} \backslash\left\{v_{i}\right\}$.

- The etree has the property that residuals $R_{i}=C_{i} \backslash S_{i j}$ are singleton sets, where $S_{i j}=C_{i} \cap C_{j}$ is the separator between S_{i} and S_{j}.

Junction trees

$$
\begin{aligned}
& 1: \mathrm{C}, \mathrm{D} \stackrel{\mathrm{D}}{\rightarrow} 2: \mathrm{G}, \mathrm{I}, \mathrm{D}, \mathrm{G}, \mathrm{I} \xrightarrow{\rightarrow} 3: \mathrm{G}, \mathrm{~S}, \mathrm{I} \\
& \underset{-\mathrm{G}, \mathrm{~J}, \mathrm{~S}, \mathrm{~L}, \mathrm{~S}, \mathrm{~S}, \mathrm{~L}}{\rightarrow} 6: \mathrm{J,S,L} \xrightarrow{\mathrm{~J}, \mathrm{~L}} 7: \mathrm{J}, \mathrm{~L} \\
& \uparrow \text { G,J } \\
& \text { 4: H,G,J }
\end{aligned}
$$

- A cluster graph is called a junction tree if it is a tree and if for every $X \in C_{i} \cap C_{j}$, then X occurs in every cluster in the (unique) path between C_{i} and C_{j}. (The book incorrectly calls this the running intersection property.)
- Thm 8.1.5: Variable elimination produces a junction tree.
- Pf: once a variable is encountered in the ordering, it occurs in all factors that mention it until it is summed out. Once it has been removed, it cannot be used again.

Example of etree construction


```
P(e)= \mp@subsup{\sum}{G}{}\mp@subsup{\sum}{I}{}\mp@subsup{\phi}{I}{}(I)}\mp@subsup{\sum}{D}{}\mp@subsup{\phi}{G}{}(G,I,D)\mp@subsup{\sum}{C}{}\mp@subsup{\phi}{D}{}(D,C)\mp@subsup{\phi}{C}{}(C)\mp@subsup{\sum}{H}{}\mp@subsup{\phi}{H}{}(H,G)\mp@subsup{\sum}{S}{}\mp@subsup{\phi}{S}{}(S,I)\mp@subsup{\sum}{L}{}\mp@subsup{\phi}{L}{}(L,G)\mp@subsup{\underbrace}{}{\mp@subsup{\sum}{J}{\mp@subsup{\sum}{J}{\prime}(J,L,S)}
```



```
    = \sum < < < |
```



```
    = \sum \mp@subsup{|}{G}{}\mp@subsup{\tau}{4}{}(G)}\mp@subsup{\sum}{I}{}\mp@subsup{\phi}{I}{}(I)\mp@subsup{\tau}{3}{}(G,I) \mp@subsup{\sum}{D}{}\mp@subsup{\phi}{G}{}(G,I,D)\mp@subsup{\underbrace}{C}{\mp@subsup{\sum}{C}{}\mp@subsup{\phi}{D}{}(D,C)\mp@subsup{\phi}{C}{}(C)
    = 但 龵(G)}\mp@subsup{\sum}{I}{}\mp@subsup{\phi}{I}{}(I)\mp@subsup{\tau}{3}{}(G,I) \mp@subsup{\sum}{D}{}\mp@subsup{\phi}{G}{}(G,I,D)\mp@subsup{\tau}{5}{\prime}(D
    * 
```


- Thm 8.4.1: We can remove non-maximal cliques and preserve the jtree property as follows.
- Let C_{j}, C_{i} be a pair of cliques s.t. $C_{j} \subset C_{i}$. By the jtree property, C_{j} is a subset of all cliques on the path from C_{j} to C_{i}.
- Let C_{l} be a neighbor of C_{j} st $C_{j} \subseteq C_{l}$. We remove C_{j} and connect all of its neighbors to C_{l}.

Junction tree property

- Not every clique tree derived from a triangulated graph has the junction tree property.

- Defn: the weight of a clique tree is

$$
W(T)=\sum_{j=1}^{M-1}\left|S_{j}\right|
$$

where M is the number of cliques and S_{j} are separators.

- So the left graph (that does not have the jtree property) has weight $|\{C, D\}|+|\{D\}|=3$, whereas the right graph (that does have the jtree property) has weight $|\{C, D\}|+|\{B, D\}|=4$,
- Thm 8.4.1 shows that there is a jtree for F whose cliques are the maximal cliques in $I_{F, \prec}$.
- Suppose we are given the chordal graph $I_{F, \prec \text {; how can we find the }}$ jtree directly?
- Step 1: find the maximal cliques of the chordal graph.
- Finding maximal cliques is in general NP-hard.
- But for chordal graphs, we can just run max cardinality search (or some other elimination algorithm) and save the maximal cliques.
- Step 2: connect the cliques so as to satisfy the jtree property.

Jtree iff MWST

- Thm: a clique tree is a junction tree iff it is a maximal weight spanning tree.
- Proof. For a tree, the number of times X_{k} appears in all separators is one less than the number of times X_{k} appears in all cliques:

$$
\sum_{j=1}^{M-1} 1\left(X_{k} \in S_{k}\right) \leq \sum_{i=1}^{M} 1\left(X_{k} \in C_{i}\right)-1
$$

which becomes an inequality if the subgraph induced by X_{k} is a tree (i.e., T is a jtree).

$$
\begin{aligned}
w(T) & =\sum_{j=1}^{M-1}\left|S_{j}\right| \\
& =\sum_{j=1}^{M-1} \sum_{k=1}^{N} 1\left(X_{k} \in S_{j}\right) \\
& =\sum_{k=1}^{N=1} \sum_{j=1}^{M-1} 1\left(X_{k} \in S_{j}\right) \\
& \leq \sum_{k=1}^{N}\left[\sum_{i=1}^{M} 1\left(X_{k} \in C_{i}\right)-1\right] \\
& =\sum_{i=1}^{M} \sum_{k=1}^{N} 1\left(X_{k} \in C_{i}\right)-N \\
& =\sum_{i=1}^{M}\left|C_{i}\right|-N
\end{aligned}
$$

- This is an equality iff T is a jtree.
- To make a jtree from a set of cliques of a chordal graph
- Build a junction graph, where weight on edge $C_{i}-C_{j}$ is $\left|S_{i j}\right|$.
- Find MWST using Prim's or Kruskal's algorithm.

Initializing clique trees

- The potential for clique c is initialized to the product of all assigned factors from the model:

$$
\pi_{j}\left(C_{j}\right)=\prod_{\phi: \alpha(\phi)=j} \phi
$$

Message passing in clique trees

- To compute $P(J)$, we find some clique that contains J (eg. C_{5}) and call it the root.
- We then send messages from the leaves up to the root.
- A node C_{i} can send to C_{j} (closer to the root) once it has received messages from all its other neighbors C_{k}.
- The order to send the messages is called a schedule.

$$
\begin{aligned}
\delta_{1 \rightarrow 2}(D) & =\sum_{C} \pi_{1}^{0}(C) \\
\pi_{2}(G, I, D) & =\pi_{2}^{0}(G, I, D) \delta_{1 \rightarrow 2}(D) \\
\delta_{2 \rightarrow 3}(G, I) & =\sum_{D} \pi_{2}(G, I, D) \\
\pi_{3}(G, S, I) & =\pi_{3}^{0}(G, S, I) \delta_{2 \rightarrow 3}(G, I) \\
\delta_{3 \rightarrow 5}(G, S) & =\sum_{I} \pi_{3}(G, S, I) \\
\delta_{4 \rightarrow 5}(G, J) & =\sum_{H} \pi_{4}^{0}(H, G, J)
\end{aligned}
$$

$$
\pi_{5}(G, J, S, L)=\pi_{5}^{0}(G, J, S, L) \delta_{3 \rightarrow 5}(G, S) \delta_{4 \rightarrow 5}(G, J)
$$

GENERAL PROCEDURE FOR UPWARDS PASS

```
\(\psi_{r}^{1} \stackrel{\text { def }}{=}\) function Ctree-VE-up \((\{\phi\}, T, \alpha, r)\)
\(D T:=\mathrm{mkRooted}\) Tree \((T, r)\)
\(\left\{\psi_{i}^{0}\right\}:=\) initializeCliques \((\phi, \alpha)\)
for \(i \in\) postorder \((D T)\)
    \(j:=p a(D T, i)\)
    \(\delta_{i \rightarrow j}:=\mathrm{VE}-\operatorname{msg}\left(\left\{\delta_{k \rightarrow i}: k \in \operatorname{ch}(D T, i)\right\}, \psi_{i}^{0}\right)\)
end
\(\psi_{r}^{1}:=\psi_{r}^{0} \prod_{k \in c h(D T, r)} \delta_{k \rightarrow r}\)
\[
\begin{aligned}
& \delta_{i \rightarrow j}:=\mathrm{VE}-\mathrm{msg}\left(\left\{\delta_{k \rightarrow i}: k \in \operatorname{ch}(D T, i)\right\}, \psi_{i}^{0}\right) \\
& \text { end } \\
& \psi_{r}^{1}:=\psi_{r}^{0} \prod_{k \in c h(D T, r)} \delta_{k \rightarrow r}
\end{aligned}
\]
```

Collect to C_{3}

$$
\begin{aligned}
& \delta_{1 \rightarrow 2}(D)=\sum_{C} \pi_{1}^{0}(C) \\
& \pi_{2}(G, I, D)=\pi_{2}^{0}(G, I, D) \delta_{1 \rightarrow 2}(D) \\
& \delta_{2 \rightarrow 3}(G, I)=\sum_{D} \pi_{2}(G, I, D) \\
& \delta_{4 \rightarrow 5}(G, J)=\sum_{H} \pi_{4}^{0}(H, G, J) \\
& \pi_{5}(G, J, S, L)=\pi_{5}^{0}(G, J, S, L) \delta_{4 \rightarrow 5}(G, J) \\
& \delta_{5 \rightarrow 3}(G, S)=\sum_{J, L} \pi_{5}(G, J, S, L) \\
& \pi_{3}(G, S, I)=\pi_{3}^{0}(G, S, I) \delta_{2 \rightarrow 3}(G, I) \delta_{5 \rightarrow 3}(G, S)
\end{aligned}
$$

Sub-Functions

$$
\begin{aligned}
& \left\{\psi_{i}^{0}\right\} \stackrel{\text { def }}{=} \text { function initializeCliques }(\phi, \alpha) \\
& \text { for } \quad i:=1: C \\
& \psi_{i}^{0}\left(C_{i}\right)=\prod_{\phi: \alpha(\phi)=i} \phi \\
& \delta_{i \rightarrow j} \stackrel{\text { def }}{=} \text { function VE-msg }\left(\left\{\delta_{k \rightarrow i}\right\}, \psi_{i}^{0}\right) \\
& \psi_{i}^{1}\left(C_{i}\right):=\psi_{i}^{0}\left(C_{i}\right) \prod_{k} \delta_{k \rightarrow i} \\
& \delta_{i \rightarrow j}\left(S_{i, j}\right):=\sum_{C_{i} \backslash S_{i j}} \psi_{i}^{1}\left(C_{i}\right)
\end{aligned}
$$

$\underset{\mathrm{Ck}}{ } \rightarrow \mathrm{Cj} \rightleftharpoons \mathrm{Cr}$
Ck^{\prime}

Tree Traversal orders
preorder $=[n, \operatorname{pre}(T 1)$, pre(T2)] (parents then children) inorder $=[i n(\mathrm{~T} 1), \mathrm{n}, \mathrm{in}(\mathrm{T} 2)]$
postorder $=[$ post(T1), post(T2), $n]$ (children then parents.

- See e.g., "Introduction to algorithms", Cormen, Leiserson, Rivest
- Initialize all nodes white; when first discovered, paint gray; when finished (all neighbors explored), paint black.
- $d(u)=$ discovery time, $f(u)=$ finish time, $\pi(u)=$ predecessor in the dfs ordering

```
(d, f, pi) = function dfs(G)
for each vertex u
    color(u) := white
    pi(u) := []
time := 0
for each u
    if color(u)==white
    then dfs-visit(u)
```

Depth first search of a graph

Nodes labeled as d / f

function dfs-visit(u)
color(u) := gray
d(u) := (time := time + 1)
for each v in neighbors (u)
if color(v) == white
then $p i(v):=u$; dfs-visit(v)
elseif color(v) == gray
then cycle detected
color(u) := black
$\mathrm{f}(\mathrm{u})$:= (time := time + 1)

$$
\mathrm{Ck}-{ }_{\mathrm{Ci}} \nsim \mathrm{Cj} \curvearrowleft \mathrm{Cr}
$$

- For message passing on an undirected tree:
- We can root a tree at R and make all arcs point away from R by starting the DFS at R and connecting $\pi(i) \rightarrow i$.
- preorder (parents then children) = nodes sorted by discovery time
- postorder (children then parents) $=$ nodes sorted by finish time
- For visiting nodes in a DAG in a topological order (parents before children)
- Topological order $=$ nodes sorted by reverse finish time
- For checking if a DAG has cycles
- Run DFS, see if you ever encounter a back-edge to a gray node
- For finding strongly connected components

MEANing OF THE MESSAGES

- e.g., for edge $C_{3}-C_{5}$,

$$
\begin{aligned}
F_{\prec(3 \rightarrow 5)} & =\{P(D \mid C), P(C), P(G \mid I, D), P(I), P(S \mid I)\} \\
V_{\prec(3 \rightarrow 5)} & =\{C, D, I\} \\
\delta_{3 \rightarrow 5}(G, S) & =\sum_{C, D, I} P(D \mid C) P(C) P(G \mid I, D) P(I) P(S \mid I)
\end{aligned}
$$

Ck^{2}

- Consider edge $C_{i}-C_{j}$ in the clique tree. Let $F_{\prec(i \rightarrow j)}$ be all factors on the C_{i} side, and $V_{\prec(i \rightarrow j)}$ be all variables on the C_{i} side that are not in $S_{i j}$.
- Thm 8.2.3: the message from i to j summarizes everything to the left of the edge (since $S_{i j}$ separates the left from the right):

$$
\delta_{i \rightarrow j}\left(S_{i j}\right)=\sum_{V_{\prec(i \longrightarrow j)}} \prod_{\notin F_{\prec(i \longrightarrow j)}} \phi
$$

- Corollary 8.2.4: for the root clique,

$$
\pi_{r}\left(C_{r}\right)=\sum_{X \backslash C_{r}} P^{\prime}(X)
$$

MEANING OF THE MESSAGES

- Partial messages may not be probability distributions unless the ordering is topologically consistent with a Bayes net.
- Causal order

$$
\begin{aligned}
\delta_{1 \rightarrow 2}\left(X_{2}\right) & =\sum_{X_{1}} P\left(X_{1}\right) p\left(y_{1} \mid X_{1}\right) P\left(X_{2} \mid X_{1}\right) p\left(y_{2} \mid X_{2}\right) \propto P\left(X_{2} \mid y_{1: 2}\right) \\
\delta_{2 \rightarrow 3}\left(X_{3}\right) & =\sum_{X_{2}} \delta_{1 \rightarrow 2}\left(X_{2}\right) P\left(X_{3} \mid X_{2}\right) p\left(y_{3} \mid X_{3}\right) \propto P\left(X_{3} \mid y_{1: 3}\right)
\end{aligned}
$$

- Anti-causal order

$$
\begin{aligned}
& \delta_{3 \rightarrow 2}\left(X_{3}\right)=\sum_{X_{4}} P\left(X_{4} \mid X_{3}\right) p\left(y_{4} \mid X_{4}\right)=p\left(y_{4} \mid X_{3}\right) \\
& \delta_{2 \rightarrow 1}\left(X_{2}\right)=\sum_{X_{3}} \delta_{3 \rightarrow 2}\left(X_{2}\right) P\left(X_{3} \mid X_{2}\right) p\left(y_{3} \mid X_{3}\right)=p\left(y_{3: 4} \mid X_{3}\right)
\end{aligned}
$$

- If we collect to C_{5} (to compute $P(J)$)

- If we collect to C_{3} (to compute $P(G)$)

$$
\begin{aligned}
& \sum_{\left.\sum_{c}, \pi_{0}(1) C_{1}\right)}^{c_{1}\left(C_{1}\right)}
\end{aligned}
$$

- The messages $\delta_{1 \rightarrow 2}, \delta_{2 \rightarrow 3}, \delta_{4 \rightarrow 5}$ are the same in both cases.
- In general, if the root R is on the C_{j} side, the message from $C_{i} \rightarrow C_{j}$ is independent of R. If the root is on the C_{i} side, the message from $C_{j} \rightarrow C_{i}$ is independent of R.
- Hence we can send an edge along each edge in both directions and thereby compute all marginals in $O(C)$ time.

Shafer-Shenoy algorithm

```
(* Downwards pass *)
for \(i \in \operatorname{preorder}(D T)\)
    for \(j \in \operatorname{ch}(D T, i)\)
        \(\delta_{i \rightarrow j}=\mathrm{VE}-\operatorname{msg}\left(\left\{\delta_{k \rightarrow i}: k \in N_{i} \backslash j\right\}, \psi_{i}^{0}\right)\)
(* Combine *)
for \(i:=1: C\)
    \(\psi_{i}^{1}:=\psi_{i}^{0} \prod_{k \in N_{i}} \delta_{k \rightarrow i}\)
                \(\mathrm{Cj}_{\mathrm{Ci}}=\mathrm{Ck}-\mathrm{Cr}\)
                    \(\mathrm{Ck}^{\circ} /\)
```

$\left\{\psi_{i}^{1}\right\} \stackrel{\text { def }}{=}$ function Ctree-VE-calibrate $(\{\phi\}, T, \alpha)$

```
R:= pickRoot(T)
DT := mkRootedTree(T,R)
{\psi}\mp@subsup{i}{0}{0}}:= initializeCliques(\phi,\alpha
(* Upwards pass *)
for }i\in\operatorname{postorder(DT)
    j:= pa(DT,i)
    \delta}\mp@subsup{|}{->j}{}:=\textrm{VE}-\textrm{msg}({\mp@subsup{\delta}{k->i}{}:k\in\operatorname{ch}(DT,i)},\mp@subsup{\psi}{i}{0}
                                    Ck- 
                            Ck
```


Correctness of Shafer Shenoy

- Thm 8.2.7: After running the algorithm,

$$
\psi_{i}^{1}\left(C_{i}\right)=\sum_{X \backslash C_{i}} P^{\prime}(X, e)
$$

- Pf: the incoming messages $\delta_{k \rightarrow i}$ are exactly the same as those computed by making C_{i} be the root; so correctness follows from the correctness of collect-to-root (upwards pass).
- The posterior of any set of nodes contained in a clique can be computed using

$$
P\left(C_{i} \mid e\right)=\psi_{i}^{1}\left(C_{i}\right) / p(e)
$$

where the likelihood of the evidence can be computed from any clique

$$
p(e)=\sum_{c_{i}} \psi_{i}^{1}\left(c_{i}\right)
$$

Forwards-Backwards algorithm for HMMs

$$
\begin{aligned}
\alpha_{t}(i) & \stackrel{\text { def }}{=} \delta_{t-1 \rightarrow t}(i)=P\left(X_{t}=i, y_{1: t}\right) \\
\beta_{t}(i) & \stackrel{\text { def }}{=} \delta_{t \rightarrow t-1}(i)=p\left(y_{t+1: T} \mid X_{t}=i\right) \\
\xi_{t}(i, j) & \stackrel{\text { def }}{=} \psi_{t}^{1}\left(X_{t}=i, X_{t+1}=j\right)=P\left(X_{t}=i, X_{t+1}=j, y_{1: T}\right. \\
P\left(X_{t+1}=j \mid X_{t}=i\right) & \stackrel{\text { def }}{=} A(i, j) \\
p\left(y_{t} \mid X_{t}=i\right) & \stackrel{\text { def }}{=} B_{t}(i) \\
\alpha_{t}(j) & =\sum_{i} \alpha_{t-1}(i) A(i, j) B_{t}(j) \\
\beta_{t}(i) & =\sum_{j} \beta_{t+1}(j) A(i, j) B_{t+1}(j) \\
\xi_{t}(i, j) & =\alpha_{t}(i) \beta_{t+1}(j) A(i, j) B_{t+1}(j) \\
\gamma_{t}(i) & \stackrel{\text { def }}{=} P\left(X_{t}=i \mid y_{1: T}\right) \propto \alpha_{t}(i) \beta_{t}(j) \propto \sum_{j} \xi_{t}(i, j)
\end{aligned}
$$

Shafer Shenoy for HMMs

$\mathrm{X}_{1} \rightarrow \mathrm{X}_{2} \rightarrow \mathrm{X}_{3} \rightarrow \mathrm{X}_{4}$

(11) (12) (13) (4)
$\mathrm{C} 1: \mathrm{X} 1, \mathrm{X} 2-\mathrm{C} 2: \mathrm{X} 2, \mathrm{X} 3-\mathrm{C} 3: \mathrm{X} 3, \mathrm{X} 4$

$$
\begin{aligned}
\psi_{t}^{0}\left(X_{t}, X_{t+1}\right) & =P\left(X_{t+1} \mid X_{t}\right) p\left(y_{t+1} \mid X_{t+1}\right) \\
\delta_{t \rightarrow t+1}\left(X_{t+1}\right) & =\sum_{X_{t}} \delta_{t-1 \rightarrow t}\left(X_{t}\right) \psi_{t}^{0}\left(X_{t}, X_{t+1}\right) \\
\delta_{t \rightarrow t-1}\left(X_{t}\right) & =\sum_{X_{t+1}} \delta_{t+1 \rightarrow t}\left(X_{t+1}\right) \psi_{t}^{0}\left(X_{t}, X_{t+1}\right) \\
\psi_{t}^{1}\left(X_{t}, X_{t+1}\right) & =\delta_{t-1 \rightarrow t}\left(X_{t}\right) \delta_{t+1 \rightarrow t}\left(X_{t+1}\right) \psi_{t}^{0}\left(X_{t}, X_{t+1}\right)
\end{aligned}
$$

Forwards-backwards algorithm, matrix-vector form

$$
\begin{aligned}
\alpha_{t}(j) & =\sum_{i} \alpha_{t-1}(i) A(i, j) B_{t}(j) \\
\alpha_{t} & =\left(A^{T} \alpha_{t-1}\right) \cdot * B_{t} \\
\beta_{t}(i) & =\sum_{j} \beta_{t+1}(j) A(i, j) B_{t+1}(j) \\
\beta_{t} & =A\left(\beta_{t+1} \cdot * B_{t+1}\right) \\
\xi_{t}(i, j) & =\alpha_{t}(i) \beta_{t+1}(j) A(i, j) B_{t+1}(j) \\
\xi_{t} & =\left(\alpha_{t}\left(\beta_{t+1} \cdot * B_{t+1}\right)^{T}\right) \cdot * A \\
\gamma_{t}(i) & \propto \alpha_{t}(i) \beta_{t}(j) \\
\gamma_{t} & \propto \alpha_{t} \cdot * \beta_{t}
\end{aligned}
$$

- Forwards algorithm uses dynamic programming to efficiently sum over all possible paths that state i at time t.

$$
\begin{aligned}
\alpha_{t}(i) & \stackrel{\text { def }}{=} P\left(X_{t}=i, y_{1: t}\right) \\
& =\left[\sum_{X_{1}} \cdots \sum_{X_{t-1}} P\left(X_{1}, \ldots, X_{t}-1, y_{1: t-1}\right) P\left(X_{t} \mid X_{t-1}\right)\right] p\left(y_{t} \mid X_{t}\right) \\
& =\left[\sum_{X_{t-1}} P\left(X_{t}-1, y_{1: t-1}\right) P\left(X_{t} \mid X_{t-1}\right)\right] p\left(y_{t} \mid X_{t}\right) \\
& =\left[\sum_{X_{t-1}} \alpha_{t-1}\left(X_{t-1}\right) P\left(X_{t} \mid X_{t-1}\right)\right] p\left(y_{t} \mid X_{t}\right)
\end{aligned}
$$

