PROBABILISTIC GRAPHICAL MODELS
CPSC 532¢ (Torics IN Al)
STAT 521A (TOPICS IN MULTIVARIATE ANALYSIS)

LECTURE 8

Kevin Murphy

Wednesday 6 October, 2004

ADMINISTRIVIA

e Next Monday: no class (thanksgiving)
e Next Wednesday: lecture by Brent Boerlage.

WHAT’S WRONG WITH VARIABLE ELIMINATION?

ORCONG

e Consider computing P(X;|y1.7) for each ¢ using variable
elimination. This would take O(N?) time.

e However, there is a lot of repeated computation.

P(Xilers) o< P(X1)ple1]X1)) P(XaX1)p(ea|Xo) >~ P(X5|Xo)p(es
X5 X

P(Xsler3) oc Y P(X1)p(er|X1)P(Xo|X1)p(ea] Xo) >~ P(X3|Xo)p(es|
X X3

P(Xslers) o< Y P(X1)pler|X1) Y P(Xa|X1)p(eal Xo)P(X3| Xo)p(es|
X X,

e We will show how to use caching to compute all N marginals in
O(N) time.

RECALL VARIABLE ELIMINATION

o(C)pn(D.C)

YD 0L L)Y on(L,G)D ¢u(H,G, 1) ¢s(S, Der(1)d ¢ G 1,D)> ¢
L S G H 1 D

C

SN s LS ou(L,G)Y éu(H G, J) Z ¢s(8,D)¢r(1) Y ¢G, 1, D)ri(D)

Va(D.GLI)

ZZ%(J,L,S)Z (L,G) Z¢H H,G,J) Z¢s (8. De:(1)7a(G 1)
L S

ws(IGS)

DY 0s(LLS) Y 6u(L,G) Y ¢u(H,G,) 5(G, S)

Y4 (H,G,J)

Z Zé](Jv L7 S) Z¢L<L7 G>T4(G7 J>T3(G7 Sl

¥5(G,J,L,S)

> > (L, S)7s(J, L, S)

we(;c] L)

1 (ED)

CLUSTER TREE

zsjmu,L,S)Zm(L,G)quH (H,G,.J) Z¢s S, Dér(1 ch 1,D) ;¢C(C)¢D<D7C>

¢ " ¥1(C,D)

¢5(J.L,8) > ¢n(L,G)> éu(H,G,J) Z¢>S (S, Dpr(I qu(c: I1,D)7i(D)

G

T

¥2(D,G,I)

s(J, L, S) ZmLGZ(bHHGJZsbsSI@()72(G, 1)

H I

¥3(I,G,S)

(J,L,S) L,G) (H,G,J)13(G, S
s Zm ijch) 73(G,)
Y4(H,G,J)

¢5(J,L,8) Y or(L, G)7u(G, J)73(G,)
s (G,J,L,S)
(b](J, L, S)T{)(J, L7 S)

e (S,J,L)

=[] =[] =[] QM =[]

(J, L)
7 (L,J)

{?

>
>
>
>
>
>

JUNCTION TREES

e A cluster graph is called a junction tree if it is a tree and if for
every X € (; N C;, then X occurs in every cluster in the (unique)
path between C; and C;. (The book incorrectly calls this the
running intersection property.)

e Thm 8.1.5: Variable elimination produces a junction tree.

e Pf: once a variable is encountered in the ordering, it occurs in all
factors that mention it until it is summed out. Once it has been
removed, it cannot be used again.

CONSTRUCTING AN ELIMINATION TREE

e The clusters (nodes) produced by variable elimination using order <
applied to G are (non-maximal) cliques in the induced graph Ig <.

e These clusters C; are called elimination sets.

e \We can connect the esets into a tree that satisfies the jtree
property in 2 steps:

1. Run the variable elimination algorithm. Let v; be the variable
eliminated at the i'th step, and C; be the set of variables in v;'s
bucket at that time (so 7; = >, 1i(C})).

2. Connect C; — C; if 7; goes into j's bucket, i.e., j is the largest
index of a vertex in C; \ {v;}.

e The etree has the property that residuals R; = C; \ S;; are
singleton sets, where \5;; = C; N C'; is the separator between 5;
and S5;.

EXAMPLE OF ETREE CONSTRUCTION

S

5o

YD oD ¢6(G.1,D) Y 6n(D,C)éo(C) D> ¢u(H,G) Y ds(S,1) > 61(L,G) Y ¢s(J, L, S)
G I D C H S L J
71(L,S)
YD oD 66(G.1,D) Y én(D,C)éo(C) D ¢u(H,G) Y ds(S, 1) Y ¢1(L, G)ri(L, S)
G I D C H S L
2 (G,S)
YD 6D 6(G.1,D) Y 6n(D,C)éo(C) Y ¢u(H,G) Y ds(S,)7a(G, S)
G I D C H S
73(G,I)
D (G D)y é6(G.1,D) Y ép(D,C)éc(C) Y ¢u(H,G)
G I D C H
74(G)
> (@)D er(Ds(G 1) 66(G,1,D) Y ¢p(D,C)éc(C)
G I D C
75(D)
> m(G) Y o1(1)7s(G. D) Y éc(G. 1, D)5(D)
G I D

Tg(G,I)

D> (@)Y érD)rs(G, (G, 1)
G

1

T7(G)

FROM ETREE TO JTREE OF MAXIMAL CLIQUES

e Thm 8.4.1: We can remove non-maximal cliques and preserve the
jtree property as follows.

o Let (', C; be a pair of cliques s.t. C'; C C;. By the jtree property,
C; is a subset of all cliques on the path from C'; to C;.

e Let (] be a neighbor of C; st C; C). We remove ('; and
connect all of its neighbors to (.

NS IS IS IS IS
LSG LSG LSG LSG LSG
SIG SIG SIG C= SIG SIG
CD CD CD CD CD
DIG DI/ DIG DIG DIG
G = |G G Ci= 16-

é CJZ/é/

HG HG HG HG HG

FROM CHORDAL GRAPH TO JTREE OF MAXIMAL CLIQUES

e Thm 8.4.1 shows that there is a jtree for F' whose cliques are the
maximal cliques in I .

e Suppose we are given the chordal graph Ip _; how can we find the
jtree directly?

e Step 1: find the maximal cliques of the chordal graph.

— Finding maximal cliques is in general NP-hard.

— But for chordal graphs, we can just run max cardinality search (or
some other elimination algorithm) and save the maximal cliques.

e Step 2: connect the cliques so as to satisfy the jtree property.

JUNCTION TREE PROPERTY

e Not every clique tree derived from a triangulated graph has the junc-
tion tree property.

/ \ ABD ABD

B D D) BD

e e

e Defn: the weight of a clique tree is
M—1
W(T)= > |5l
1=1
where M is the number of cliques and 5 are separators.

e So the left graph (that does not have the jtree property) has weight

{C, D}| + |{D}| = 3, whereas the right graph (that does have the
jtree property) has weight |{C, D}| + |{B, D}| = 4,

JTREE IFF MWST

e Thm: a clique tree is a junction tree iff it is a maximal weight span-
ning tree.

e Proof. For a tree, the number of times X ;. appears in all separators
is one less than the number of times Xk appears in all cliques:

M—1
ZleESk <ZleEC)
7=1 1=1

which becomes an inequality if the subgraph induced by X is a tree
(i.e., T is a jtree).

JTREE IFF MWST

=3

=3

I
ok
7

D

] =

1(Xk € S])

<o

I
MR
=

[l
_

[
=1

1(Xk € S])

i
_
<
Il

IA
] =
1

d X ey - 1]

k=1 Li=1

™=

1(Xk c Cz) — N
1

~. >@. >
M= 1M
Bl
Il

Ci| = N

e This is an equality iff 7" is a jtree.

e To make a jtree from a set of cliques of a chordal graph
— Build a junction graph, where weight on edge C; — C} is |5;;].
—Find MWST using Prim’s or Kruskal's algorithm.

FrROM BAYES NET TO JTREE

Intelligence

Jgraph Jtree

INITIALIZING CLIQUE TREES

Coherence

Intelligence

e The potential for clique c is initialized to the product of all assigned
factors from the model:

P(C) | PEI | PAILS)

MESSAGE PASSING IN CLIQUE TREES

e To compute P(.J), we find some clique that contains J (eg. C5)
and call it the root.

e \We then send messages from the leaves up to the root.

e A node C; can send to C; (closer to the root) once it has received
messages from all its other neighbors (.

e [he order to send the messages is called a schedule.

62—'3(G!|)

ZD (C,) %4 .,

COLLECT TO (C}

b1—2(D) = Y (C)

C
71—2(G17[7D) = Wg(G,I, D>51—>2(D)
52—>3(G7]) — Zﬂ_2(G717 D)

D
m3(G, S, 1) = 7(G, S, 1)63—3(G, 1)
03—5(G,8) = Y (G, S, 1)

I

01—5(G, J) = Z m(H,G,J)

7T5(G, J, S, L) = 7T5(G J S L)53—>5 G S 54-)5(G J

8,-3(G.))

ZDﬂo(Cz) X0, .,

COLLECT TO (f

01—2(D)

71—Q(CTY7 [7 D)
do—3(G, T)

7T5(G, J, S, L)
55—>3(G, S)

773(G7 Sv I)

= > ()
c
= Wg(G, I, D>51—>2(D)

=) m(G,1,D)
D
= Y m(H,G,J)

H
= (G, J, S, L)3s—s5(G, J)
=) (G, J.S,L)

J,L
= 7T3(G S 1 52—>3 G] 55—>3(G S)

62—»3(G 1)

ZDﬂo(Cz) X0, .,

(GENERAL PROCEDURE FOR UPWARDS PASS

% def function Ctree-VE-up({¢}, T, o, 1)

DT := mkRootedTree(T,)

{wg} = initializeCliques(¢,)
for ¢ € postorder(DT)
j = pa(DT,1)
§i—s; = VE-msg({p—; : k € ch(DT,i)},))

end

= %Q erCh(DT,’r) O—sr

SUB-FUNCTIONS

f o
de function initializeCliques(¢, a)

{¥)}
for 1:=1:C
VUG = pa(g)=i ¢

Oj—sj X function VE-msg({d;._;}, wg)

i (Cy) == VNC) T O
0i—j(5i) = 208) (C))

TREE TRAVERSAL ORDERS

preorder = [n, pre(T1l), pre(T2)] (parents then children)
inorder = (in(T1), n, in(T2)]
postorder = [post(T1), post(T2), n] (children then parents

A

ALNIRNVZ LN

DEPTH FIRST SEARCH OF A GRAPH

e See e.g., “Introduction to algorithms”, Cormen, Leiserson, Rivest

e Initialize all nodes white; when first discovered, paint gray; when
finished (all neighbors explored), paint black.

e d(u) = discovery time, f(u) = finish time, w(u) = predecessor in
the dfs ordering

(d, £, pi) = function dfs(G)
for each vertex u
color(u) := white
piCu) := []
time := 0
for each u
if color(u)==white
then dfs-visit(u)

DEPTH FIRST SEARCH OF A GRAPH

function dfs-visit(u)
color(u) := gray
d(u) := (time := time + 1)
for each v in neighbors(u)
if color(v) == white
then pi(v) := u;
dfs-visit(v)
elseif color(v) == gray
then cycle detected
color(u) := black
f(u) := (time := time + 1)

DEPTH FIRST SEARCH OF A GRAPH

Nodes labeled as d/f
@
50 &0 Se
@ @ @
2h eb ee
O
¢o oo

USES OF DFS

e For message passing on an undirected tree:

— We can root a tree at R and make all arcs point away from R by
starting the DFS at R and connecting 7(7)—+.

— preorder (parents then children) = nodes sorted by discovery time

— postorder (children then parents) = nodes sorted by finish time

e For visiting nodes in a DAG in a topological order (parents before

children)
— Topological order = nodes sorted by reverse finish time
e For checking if a DAG has cycles
— Run DFS, see if you ever encounter a back-edge to a gray node

e For finding strongly connected components

CORRECTNESS OF UPWARDS PASS

Ck~§ —

fi Cj Cr
ck”””

e Consider edge C; — C; in the clique tree. Let F(i—) be all factors
on the C; side, and V<(Z-_>]-> be all variables on the C’; side that are
not in 5;;.

e Thm 8.2.3: the message from 7 to 7 summarizes everything to the
left of the edge (since Sij separates the left from the right):

Sisj(Si)= 2 I @

Vali—j) 961 (i—y)

e Corollary 8.2.4: for the root clique,

- (Cr) = Z P’

X\C,

MEANING OF THE MESSAGES

P(DIC) P(G|1D) P(I) P(L|G) F’(HIGJ)
PO O PSIN | PAILS); |

eec.g., for edge C5 — (5,
F_(3—s) = {P(DIC), P(C), P(G|I, D), P(1), P(S|I)}
V (3_>5 — {C D [}
03—5(G, S) Z P(D|C)P(C)P(G|I, D)P(I)P(S|I)

MEANING OF THE MESSAGES

(02—~
& & & CL X1,X2—— C2:X2,X3—— C3:X3X4

e Partial messages may not be probability distributions unless the or-
dering is topologically consistent with a Bayes net.

e Causal order
S1—2(Xa) = Y P(X1)p(y1]X1) P(X2| X1)p(y2| X2) o< P(Xaly1:2)

69—3(X3) = > 612(X2) P(X3|Xa)p(y3|X3) o< P(X3ly1:3)

e Anti-causal order
03—2(X3) = Y P(Xy|X3)p(yal Xy) = plys] X3)

0o—1(X2) = Y 039(X0) P(X3| X2)p(y3| X3) = p(y3.4| X3)

COMPUTING MESSAGES FOR EACH EDGE

e If we collect to C5 (to compute P(J))

1: 2: 3: :
Cc,D G,I,D G,S,| WS,
5,.,(D): 8,.5(G.N) 8,.5(G.9)
S (C) |2o76(CxA 2] | 2, 7(Ca)x 8,

e If we collect to U3 (to compute P

GID GS GJSL HGJ

|
8,-2(0): 8,-5(G.): 65 {G.S): 5 (G)
2 7%(C) ZD”(C) o |2 MCo)x0,_|| 3 7%(C.)

e The messages 019, 093, 045 are the same in both cases.

e In general, if the root R is on the C; side, the message from C;—C);
is independent of R. If the root is on the C); side, the message from

C;—C; is independent of .

e Hence we can send an edge along each edge in both directions and
thereby compute all marginals in O(C') time.

SHAFER-SHENOY ALGORITHM

def function Ctree-VE-calibrate({¢}, T,)

{0/}
R := pickRoot (T
DT := mkRootedTree(T, R)
{wg} = initializeCliques(¢,)
(* Upwards pass *)
for 4 € postorder(DT)
J = pa(DT,1)
§i—sj = VE-msg({0;—; : k € ch(DT, i)}, 1))

SHAFER-SHENOY ALGORITHM

(* Downwards pass *)
for i € preorder(DT)
for j € ch(DT),1)
0i—sj = VE-msg({0f—; - k € N; \ j},0Y)
(* Combine *)
fori:=1:C
i = Tlken, Op—i

o >i S CkCr
ok’

CORRECTNESS OF SHAFER SHENOY

e Thm 8.2.7: After running the algorithm,
GG =) Pl(X.e)
X\C;
e Pf: the incoming messages 0;._,, are exactly the same as those

computed by making C; be the root; so correctness follows from the
correctness of collect-to-root (upwards pass).

e The posterior of any set of nodes contained in a clique can be com-
puted using

P(Cjle) = 1 (C;)/p(e)

where the likelihood of the evidence can be computed from any clique

ple) = ()

EXAMPLE OF DISTRIBUTING FROM ROOT ('

0;.3(G,S):
ZJ,L 5,(C5) %0, 5

0,.,5(G,I):

ZD m(C,) %4,

0,.,,(G.I):
ZS%(Cs) X053

0,.3(G.)):
ZD (C,) %3, .,

SHAFER SHENOY FOR HMMS

(02—~
& & & CL X1,X2—— C2:X2,X3—— C3:X3X4

(X, Xp1) = P(X1 | Xo)p (1| Xe41)
Sttt (Xpg1) = D 61t (X)) (X, Xpg1)
Xt

Spst—1(Xe) =) a1t Xy)0 (X, Xpi)
Xtt1

DH (X, Xpt1) = 01—t (XD 1t (X)V (X, Xy y1)

FORWARDS-BACKWARDS ALGORITHM FOR HMMS

@
@D
}—h

at(i) = 0p—1—¢(2) = P(Xt =1, y14)
Bi(i) & 5,y (i) = P(Yri1.7| Xt = 19)
&(i,5) © WH(Xy =i, Xer1 = j) = P(Xy = i, Xpa1 = Joy1p
Xpo = j1Xi =) @ A j)
Pyl X = i) © Bili)
arlf) = 3 ar1(1)AG, §)Bi(j)

Bi(i) = Y Bre1()A(i, §)Bi (4)
J

&4, 7) = ou(2)Brr1(7) Al j)Bt+1(')
(i) < P(Xy = ilyrr) o agli) OCthZ]

FORWARDS-BACKWARDS ALGORITHM, MATRIX-VECTOR FORM

T
® ® ® @

Bt = A(Bey1- * By
§e(i,7) = (i) Bi1(7) AL, J) Br41(d)
& = (at(ﬁm. * BM)T) x A
V(i) o aq(i)Be(5)

V¢ X Q. * By

HMM TRELLIS

O O

cgledle

e Forwards algorithm uses dynamic programming to efficiently sum
over all possible paths that state 7 at time ¢.

(i) o P(X; =i, y1:4)
= D) P, X = Ly) PG X) | p(yl Xe)
| Xu X1
= |) P(Xi = 1yre1) P(Xy| Xe1) | plwe] X2)
_thl
= Zat_l(Xt_1>P(Xt|Xt—1) p(ytht>
X1

