PROBABILISTIC GRAPHICAL MODELS
CPSC 532¢ (Torics IN Al)
STAT 521A (TOPICS IN MULTIVARIATE ANALYSIS)

LECTURE 7

Kevin Murphy

Monday 4 October, 2004

VARIABLE ELIMINATION ALGORITHM

ADMINISTRIVIA

e Homework 3 due Wednesday, 9.30am;
send by email to crowley@cs.ubc.ca.

WORKING RIGHT TO LEFT (PEELING)

Coherence

e Key idea 1: push sum inside products.
e Key idea 2: use (non-serial) dynamic programming to cache shared
subexpressions.

= 220000 0 PODLGS L)

L S G H I

ZZZZZZZP P(D|C)P(I)P(G|I, D)P(S|I)P(L|G)P(J|L, S)P(H|G, .J)

G H I D C

ZZZZZZZ})( )6p(D, C)or(1)éa(G, 1, D)s(S, 1)ér (L, G)b5(J, L, S)ou(H, G, J)
ZZ@,JLS ZQLL(‘ ZOHHC J) Zobsmf Z(:JGID Zo(v )ép(D, C)

Py = 33 ¢s(J,L,S) ZOLL G) ZQHHG J) ZOSS[OI Zo(cz D) Z o(C)¢p(D, C)
L s
_\,—/
T1(D)
= Y 3 65(0,L,9)> 6r(L,G) Z@H H,G,J) Zog S, DI Zo(o I1,D)r(D)
L s G
T5(G,I)

= DD 0L S) D el G) D ou(H, G D) Y 65(S, Dgr(1)7a(G, 1)
L S G H I

3(G,S)

= Y AL ) Y 6uL.G) D éulH, G, ) (G, S)
L S G H
(G.T)

= DD 01 L.S) Y en(L.G)m(G, J)7s(G. S)

L S G

75(J.L.S)
= Y3 65, L, S)s(J, L, S)
L S

76(J.L)

ZT() J, L
\Lﬂ,_/
()



BUCKET ELIMINATION COMPUTING THE PARTITION FUNCTION

e We first multiply together all factors that mention C' to create ¢1(C, D),

s Let
and store the result in C's bucket: °te 1
ZZO;JLSZOLLCZOHHGJZosb[oj ZO(GIDZO( g::ch P(X1.,) = EP,(XLH)
) 1
e Then we sum out C' to make 7((D): =7 H%(Xc)
=300 L8 D 6u(LG) S ou(H. G, J)Z (8. Der(I Zo@ 1.D) Z ,(C, D) ¢
b ¢ " — e For Bayes nets, Z = 1 (since each ¢. is a CPD).
e and multiply into D's bucket to make (G, I, D): e If we marginalize out all variables except (), the result is
= 6;(J, L, S oL (L,G)S  ou(H,G,J bs(S, Nor(D)S &G, I, D)ri(D F o X
D2) SMERA)D SCILE SEALALNI) SUREV BT W 4O Q) ;QH@( ¢)
o X1 ¢

e Then we sum out D to make (G, I): _
e Hence if Q = 0, we get
:ZZ@J(<77L~,5)Z(f)L(L:G)ZOH(H«,G- J)Z@S(SJ)@I(I)ZU?Q(G-[:D)
L S G H 1 D

e = [[eclx0=2

. . ) Xl,n ¢
e and multiply into I's bucket to make ¥3(G, S, I), etc.
DEALING WITH EVIDENCE DEALING WITH EVIDENCE
e Method 1: we instantiate observed variables to their observed e Once we instantiate evidence, the final factor is
values, .by taking the appropriate “slices” of the factors F(Q,e) = Pl(@ )
eecg., evidence [ =1, H =0:
P(J,I=1H=0)= e Hence
220, (J,L,S) EoL(L Q)ou(H =0,G, 1)és(S. T = 1)ér(I =1) 3 6.1 =1,D) Y 6¢(C)én(D, C) PQle) P(Q,e) P(Q,e)
D C [ = =
P(e P(¢ e
e Method 2: we multiply in local evidence factors ¢;(X;) for each (¢) /Zq/ (')
node. If X; is observed to have value z7, we set _ (1/2)P(Q,e)
$i(X;) = 0(X;, x7). (1/2) >y P'(de)
P(J,I=1H=0)= - F(Q,e)
XL:%:@J(J,L.S);@L@.G)EH:@H(H G, .1)5(11,0)2:@,9(5‘1)@,( (1 ZO(C I, D)XC: 6c(C)ép(D, C) = Zq’ F(d,e)

e and

=3 "Pld.e)=(1/2)3_F(de)
q ¢



ORDERING 1

Py =330, JLSZOLLCZOHHGJZosb[oj ZO(GIDZO( Nép(D,C)
L S

G

(D)

= D3N (LS D 6L, G) ZoH H,G,J) Zos (S, Der(I ZO(G 1, D)ri(D)
S G
—,_/

L
(GLI)

= D3 N (LS D 6L, G) ZoH H,G,J) > ¢s(S, Ner(Dm(G. 1)
I

L S G

5(G.S)
=Y D6, L,S)Y 6L, G)D bu(H, G, J)3(G, S)
L s e} H
—
7(G,J)

= Y > "6,(J,L,S) Y 6u(L, GG, ))ms(G, 9)
S a

L

75(J,L,S)
= Y "> 6, L, S)5(J, L, S)
L S

76(J,L)

= Y (L)

L
72(J)

ELIMINATION AS GRAPH TRANSFORMATION

DIFFERENT ORDERING

e Start by moralizing the graph (if necessary), so all terms in each
factor form a (sub)clique.

e When we eliminate a variable X;, we connect it to all variables that
share a factor with X; (to reflect new factor 7;). Such edges are

called “fill-in edges” (e.g., > ; mduces G S).

Coherence

= > > (D)D" 01 LS) Y er(Dés(S, 1) Y é6(G, 1, D)ér(L, )éu(H, G, J)
D C g T G

H L
71(1,D,L,J,H)
= 33 (D)3 DD 6L LS) Y di(D)gs(S, )L, D, L, J, H)
D C H L S I
m5(D,L,S,J,H)
= Y 3" 60(D.O)Y 3D 6(1 L S)n(D, L, S, J, H)
D C H L S
73(D,L,J,H)
= 3> on(D.O)Y Y n(D, L, H)
D C H L
(D, J,H)
=YD 6n(D.0)> (D, J H)
D C H
75(D,J)
=Y 6p(D.C)r5(D, J)
D C

CLIQUES AND FACTORS

e Let /i - be the (undirected) graph induced by applying variable
elimination to GG using ordering <.

e Thm 7.3.4: Every factor generating by VE is a subclique of /¢y .

e Thm 7.3.4: Every maximal clique of /;  corresponds to an
intermediate term created by VE.

ecg, <= (C,D,I,H ,G,S, L), max cliques =
{C.D}A{D,1,G}{G,L,S,J} {G,J H}{G, 1,5}

Tntelligence




COMPLEXITY OF VARIABLE ELIMINATION

e Consider an ordering <.

e Define the induced width of the graph as the size of the largest
factor (induced clique) minus 1:

Wa < = max || — 1
(3

e Define the width of the graph as the minimal induced width:

e e.g., width of an undirected tree is 1 (cliques = edges).
e Thm: the complexity of VarElim is O(NVWa+1),

MAX CARDINALITY SEARCH

CHORDAL (TRIANGULATED) GRAPHS

e An undirected graph is chordal is every loop
X1 —Xo—---— X} — Xy for k> 4 has a chord, i.e., an edge
X; — X for non-adjacent i, j.

e Thm 7.3.6: every induced graph is chordal.

e The left graph is not chordal, because the cycle 2 —6 —8 —4 — 2
does not have any of the chords 2 — 8 or 6 — 4.

e The right graph is chordal; the max cliques are

TRIANGULATION

e Thm 7.3.9: X — Y is a fill-in edge iff there is a path
X—Z1—Zp—=Yst. Z;<Xand Z; <Y foralli=1,... k.

e Hence should try to find nodes X where many of their neightbors
Z are already ordered, so X < Z

function pi = max-cardinality-search(H)
mark all nodes as unmarked
for i=N downto 1
X = the unmarked variable with the largest
number of marked neighbors
pi(X) =1
mark X
end

e Thm 7.3.10: if G is chordal, and < = max cardinality ordering,
then Iy  has no fill-in edges.

e Thm 7.3.8: finding the ordering < which minimizes the max
induced clique size, WG7<, is NP-hard.

e Max cardinality ordering is only optimal if GG is already triangulated.

e In practice, people use greedy (one-step-lookahead) algorithms:

function pi = find-elim-order-greedy(H, score-fn)
for i=1:N
X = the node that minimizes score-fn(H, X)
pi(X) =1
Add edges between all neighbors of X
Remove X from H
end



TRIANGULATION: HEURISTIC COST FUNCTIONS score(H, X)

CONDITIONING

e Min-fill (min discrepancy): minimize number of fill-ins.

e Min-size: minimize size of induced clique, |Cy|.

e Min-weight: minimize number of states of induced clique,
I[Ljec, lvjl-

e Min-weight works best in practice: a 3-clique of binary nodes is
better than a 2-clique of ternary nodes, since 23 < 32,

INEFFICIENCIES OF CUTSET CONDITIONING

Al
B,

oie

e If we condition on U, we repeatedly call VarElim once for each
value of |U|.

e This may involved redundant work.

O

o Left: if we condition on Aj., we repeatedly eliminate
Al —_—> s e — Ak—l'

e Right: if we condition on Ay, Ay, ..., Aj, we break all the loops,

but the cutset has size V¥/2 whereas VarElim would take O(kV?).

e We can instantiate some hidden variables, perform VarElim on the
rest, and then repeat for each possible value, e.g.,

= Z P(J)I =i)P(I =)

e If the resulting subgraph is a tree, this is called cutset conditioning.

CONDITIONING VS VARELIM IS SPACE-TIME TRADEOFF

e Thm 7.5.6: Conditioning on L takes the same amount of time as it
would to do VarElim on a modified graph, in which we connect L

to all other nodes (i.e., add L to every factor).

e Thm 7.5.7: The space required is that needed to store the induced
cliques in the subgraph created by removing all links from L (i.e.,
remove L from every factor).

e Hence conditioning takes less space but more time.



EXPLOITING LOCAL STRUCTURE

e VarElim exploits the factorization properties implied by the graph to
push sums inside products.

e Hence VarElim works for any kind of factor.

e However, some factors have local structure which can be exploited
to further speed up inference.
e Two main methods:
1. Make local structure graphically explicit (by adding extra nodes),
then run stand VarElim on expanded graph; or
2. Implement the > and x operators for structured factors in a
special way.
e We will focus on the first method, since it can be used to speed up
any graph-based inference engine.

e David Poole has focused on the second method (structured
VarElim).

EXPLOITING INDEPENDENCE OF CAUSAL INFLUENCE (ICI)

INDEPENDENCE OF CAUSAL INFLUENCE (ICI)

e Assumes deterministic function can be represented by f(x1..) =
1 B xo® - P ) where @ is commutative and asssociative.

e State-space of tree is O(|Z|?), chain O(|Z|?|X]).

e In general, a node with k parents creates a factor of size Vit to
represent its CPD P(Y'| X ).

e Hence it takes O(Vkﬂ) time to eliminate this clique, and there are
O(VF+1) parameters to learn.

e If the parents X; do not interact with each other (only with the
child), the family can be eliminated in O(k) time, and there are
only O(k) parameters to learn.

e e.g., noisy-or, generalized linear model

4
X;
PY =01X1) =a0 ][ ¢
i=1

EXPLOITING CONTEXT SPECIFIC INDEPENDENCE (CSI)

e Suppose P(Y'|A, X1.4) is represented as a decision tree. Then we
can make the structure explicit using multiplexer nodes.




MORE COMPLEX EXAMPLE

e (Recursive) conditioning provides a simpler method of exploiting CSI.

e Project idea: implement both methods and compare.

STOCHASTIC CONTEXT FREE GRAMMARS (SCFGS)

STOCHASTIC CONTEXT FREE GRAMMARS (SCFGS)

e Represent production rule X — Y Z by a binary variable R{, and
X —Y'Z" by Ro. If Ry = 1, the structure of the graph is different
than if Ry = 1.

1 j k N 1 § K N
e See “Case-factor diagrams for structured probabilistic modeling”,
McAllester, Collins, Pereira, UAI 2004.

e Project idea: implement this algorithm and compare to inside-outside
algorithm.

e If you construct a graphical model given a grammar and a sentence of
length N, the treewidth is O(V), suggesting inference takes O(2%).

e However, we can do exact inference using the inside-outside algorithm
in O(N?) time.
e The reason is that there is a lot of CSI.



