
Probabilistic graphical models
CPSC 532c (Topics in AI)

Stat 521a (Topics in multivariate analysis)

Lecture 7

Kevin Murphy

Monday 4 October, 2004

Administrivia

• Homework 3 due Wednesday, 9.30am;
send by email to crowley@cs.ubc.ca.

Variable elimination algorithm

IntelligenceD if f icu lty

G r a d e

L etter

S A T

J o b
H a p p y

C o h er ence

• Key idea 1: push sum inside products.

• Key idea 2: use (non-serial) dynamic programming to cache shared
subexpressions.

P (J) =
∑

L

∑

S

∑

G

∑

H

∑

I

∑

D

∑

C

P (C,D, I,G, S, L, J,H)

=
∑

L

∑

S

∑

G

∑

H

∑

I

∑

D

∑

C

P (C)P (D|C)P (I)P (G|I,D)P (S|I)P (L|G)P (J |L, S)P (H|G, J)

=
∑

L

∑

S

∑

G

∑

H

∑

I

∑

D

∑

C

φC(C)φD(D,C)φI(I)φG(G, I,D)φS(S, I)φL(L,G)φJ(J, L, S)φH(H,G, J)

=
∑

L

∑

S

φJ(J, L, S)
∑

G

φL(L,G)
∑

H

φH(H,G, J)
∑

I

φS(S, I)φI(I)
∑

D

φ(G, I,D)
∑

C

φC(C)φD(D,C)

Working right to left (peeling)

P (J) =
∑

L

∑

S

φJ(J, L, S)
∑

G

φL(L,G)
∑

H

φH(H,G, J)
∑

I

φS(S, I)φI(I)
∑

D

φ(G, I,D)
∑

C

φC(C)φD(D,C)

︸ ︷︷ ︸

τ1(D)

=
∑

L

∑

S

φJ(J, L, S)
∑

G

φL(L,G)
∑

H

φH(H,G, J)
∑

I

φS(S, I)φI(I)
∑

D

φ(G, I,D)τ1(D)

︸ ︷︷ ︸

τ2(G,I)

=
∑

L

∑

S

φJ(J, L, S)
∑

G

φL(L,G)
∑

H

φH(H,G, J)
∑

I

φS(S, I)φI(I)τ2(G, I)

︸ ︷︷ ︸

τ3(G,S)

=
∑

L

∑

S

φJ(J, L, S)
∑

G

φL(L,G)
∑

H

φH(H,G, J)

︸ ︷︷ ︸

τ4(G,J)

τ3(G,S)

=
∑

L

∑

S

φJ(J, L, S)
∑

G

φL(L,G)τ4(G, J)τ3(G,S)

︸ ︷︷ ︸

τ5(J,L,S)

=
∑

L

∑

S

φJ(J, L, S)τ5(J, L, S)

︸ ︷︷ ︸

τ6(J,L)

=
∑

L

τ6(J, L)

︸ ︷︷ ︸

τ7(J)

Bucket elimination

• We first multiply together all factors that mention C to create ψ1(C,D),
and store the result in C’s bucket:
P (J) =

∑

L

∑

S

φJ(J, L, S)
∑

G

φL(L,G)
∑

H

φH(H,G, J)
∑

I

φS(S, I)φI(I)
∑

D

φ(G, I,D)
∑

C

φC(C)φD(D,C)
︸ ︷︷ ︸

ψ1(C,D)

• Then we sum out C to make τ1(D):

P (J) =
∑

L

∑

S

φJ(J, L, S)
∑

G

φL(L,G)
∑

H

φH(H,G, J)
∑

I

φS(S, I)φI(I)
∑

D

φ(G, I,D)
∑

C

ψ1(C,D)

︸ ︷︷ ︸

τ1(D)

• and multiply into D’s bucket to make ψ2(G, I,D):

P (J) =
∑

L

∑

S

φJ(J, L, S)
∑

G

φL(L,G)
∑

H

φH(H,G, J)
∑

I

φS(S, I)φI(I)
∑

D

φ(G, I,D)τ1(D)
︸ ︷︷ ︸

ψ2(G,I,D)

• Then we sum out D to make τ2(G, I):

P (J) =
∑

L

∑

S

φJ(J, L, S)
∑

G

φL(L,G)
∑

H

φH(H,G, J)
∑

I

φS(S, I)φI(I)
∑

D

ψ2(G, I,D)

︸ ︷︷ ︸

τ2(G,I)

• and multiply into I’s bucket to make ψ3(G,S, I), etc.

Computing the partition function

• Let

P (X1:n) =
1

Z
P ′(X1:n)

=
1

Z

∏

c

φc(Xc)

• For Bayes nets, Z = 1 (since each φc is a CPD).

• If we marginalize out all variables except Q, the result is

F (Q) =
∑

X1:n\Q

∏

c

φc(Xc)

• Hence if Q = ∅, we get

F (∅) =
∑

X1:n

∏

c

φc(Xc) = Z

Dealing with evidence

• Method 1: we instantiate observed variables to their observed
values, by taking the appropriate “slices” of the factors

• e.g., evidence I = 1, H = 0:
P (J, I = 1, H = 0) =

∑

L

∑

S

φJ(J, L, S)
∑

G

φL(L,G)φH(H = 0, G, J)φS(S, I = 1)φI(I = 1)
∑

D

φ(G, I = 1, D)
∑

C

φC(C)φD(D,C)

• Method 2: we multiply in local evidence factors φi(Xi) for each
node. If Xi is observed to have value x∗i , we set
φi(Xi) = δ(Xi, x

∗
i).

P (J, I = 1, H = 0) =
∑

L

∑

S

φJ(J, L, S)
∑

G

φL(L,G)
∑

H

φH(H,G, J)δ(H, 0)
∑

I

φS(S, I)φI(I)δ(I, 1)
∑

D

φ(G, I,D)
∑

C

φC(C)φD(D,C)

Dealing with evidence

• Once we instantiate evidence, the final factor is

F (Q, e) = P ′(Q, e)

• Hence

P (Q|e) =
P (Q, e)

P (e)
=

P (Q, e)
∑

q′ P (q′, e)

=
(1/Z)P ′(Q, e)

(1/Z)
∑

q′ P
′(q′, e)

=
F (Q, e)

∑

q′ F (q′, e)

• and
P (e) =

∑

q′

P (q′, e) = (1/Z)
∑

q′

F (q′, e)

Ordering 1

P (J) =
∑

L

∑

S

φJ(J, L, S)
∑

G

φL(L,G)
∑

H

φH(H,G, J)
∑

I

φS(S, I)φI(I)
∑

D

φ(G, I,D)
∑

C

φC(C)φD(D,C)

︸ ︷︷ ︸

τ1(D)

=
∑

L

∑

S

φJ(J, L, S)
∑

G

φL(L,G)
∑

H

φH(H,G, J)
∑

I

φS(S, I)φI(I)
∑

D

φ(G, I,D)τ1(D)

︸ ︷︷ ︸

τ2(G,I)

=
∑

L

∑

S

φJ(J, L, S)
∑

G

φL(L,G)
∑

H

φH(H,G, J)
∑

I

φS(S, I)φI(I)τ2(G, I)

︸ ︷︷ ︸

τ3(G,S)

=
∑

L

∑

S

φJ(J, L, S)
∑

G

φL(L,G)
∑

H

φH(H,G, J)

︸ ︷︷ ︸

τ4(G,J)

τ3(G,S)

=
∑

L

∑

S

φJ(J, L, S)
∑

G

φL(L,G)τ4(G, J)τ3(G,S)

︸ ︷︷ ︸

τ5(J,L,S)

=
∑

L

∑

S

φJ(J, L, S)τ5(J, L, S)

︸ ︷︷ ︸

τ6(J,L)

=
∑

L

τ6(J, L)

︸ ︷︷ ︸

τ7(J)

Different ordering

P (J) =
∑

D

∑

C

φD(D,C)
∑

H

∑

L

∑

S

φJ(J, L, S)
∑

I

φI(I)φS(S, I)
∑

G

φG(G, I,D)φL(L,)φH(H,G, J)

︸ ︷︷ ︸

τ1(I,D,L,J,H)

=
∑

D

∑

C

φD(D,C)
∑

H

∑

L

∑

S

φJ(J, L, S)
∑

I

φI(I)φS(S, I)τ1(I,D, L, J,H)

︸ ︷︷ ︸

τ2(D,L,S,J,H)

=
∑

D

∑

C

φD(D,C)
∑

H

∑

L

∑

S

φJ(J, L, S)τ2(D,L, S, J,H)

︸ ︷︷ ︸

τ3(D,L,J,H)

=
∑

D

∑

C

φD(D,C)
∑

H

∑

L

τ3(D,L, J,H)

︸ ︷︷ ︸

τ4(D,J,H)

=
∑

D

∑

C

φD(D,C)
∑

H

τ4(D, J,H)

︸ ︷︷ ︸

τ5(D,J)

=
∑

D

∑

C

φD(D,C)τ5(D, J)

︸ ︷︷ ︸

τ6(D,J)

=
∑

D

τ6(D, J)

︸ ︷︷ ︸

τ7(J)

Elimination as graph transformation

• Start by moralizing the graph (if necessary), so all terms in each
factor form a (sub)clique.

• When we eliminate a variable Xi, we connect it to all variables that
share a factor with Xi (to reflect new factor τi). Such edges are
called “fill-in edges” (e.g.,

∑

I induces G− S).

IntelligenceD if f icu lty

G r a d e

L etter

S A T

J o b
H a p p y

C o h er ence

IntelligenceD if f icu lty

G r a d e

L etter

S A T

J o b
H a p p y

C o h er ence

IntelligenceD if f icu lty

G r a d e

L etter

S A T

J o b
H a p p y

C o h er ence

IntelligenceD if f icu lty

G r a d e

L etter

S A T

J o b
H a p p y

C o h er ence

Cliques and factors

• Let IG,≺ be the (undirected) graph induced by applying variable
elimination to G using ordering ≺.

• Thm 7.3.4: Every factor generating by VE is a subclique of IG,≺.

• Thm 7.3.4: Every maximal clique of IG,≺ corresponds to an
intermediate term created by VE.

• e.g., ≺= (C,D, I,H,G, S, L), max cliques =

{C,D}, {D, I,G}, {G,L, S, J}, {G, J,H}, {G, I, S}

IntelligenceD if f icu lty

G r a d e

L etter

S A T

J o b
H a p p y

C o h er ence

IntelligenceD if f icu lty

G r a d e

L etter

S A T

J o b
H a p p y

C o h er ence

Complexity of variable elimination

• Consider an ordering ≺.

• Define the induced width of the graph as the size of the largest
factor (induced clique) minus 1:

WG,≺ = max
i

|ψi| − 1

• Define the width of the graph as the minimal induced width:

WG = min
≺
WG,≺

• e.g., width of an undirected tree is 1 (cliques = edges).

• Thm: the complexity of VarElim is O(NVWG+1).

Chordal (triangulated) graphs

• An undirected graph is chordal is every loop
X1 −X2 − · · · −Xk −X1 for k ≥ 4 has a chord, i.e., an edge
Xi −Xj for non-adjacent i, j.

• Thm 7.3.6: every induced graph is chordal.

• The left graph is not chordal, because the cycle 2 − 6 − 8 − 4 − 2
does not have any of the chords 2 − 8 or 6 − 4.

• The right graph is chordal; the max cliques are

{1, 2, 4}, {2, 3, 6}, {4, 7, 8}, {6, 8, 9}, {2, 4, 5, 6}, {4, 5, 6, 8}

8

1

5

9

2 3

4
6

7 8

1

5

9

2 3

4
6

7

Max cardinality search

• Thm 7.3.9: X − Y is a fill-in edge iff there is a path
X −Z1− · · ·Zk−Y s.t. Zi ≺ X and Zi ≺ Y for all i = 1, . . . , k.

• Hence should try to find nodes X where many of their neightbors
Z are already ordered, so X ≺ Z

function pi = max-cardinality-search(H)

mark all nodes as unmarked

for i=N downto 1

X = the unmarked variable with the largest

number of marked neighbors

pi(X) = i

mark X

end

• Thm 7.3.10: if G is chordal, and ≺ = max cardinality ordering,
then IG,≺ has no fill-in edges.

Triangulation

• Thm 7.3.8: finding the ordering ≺ which minimizes the max
induced clique size, WG,≺, is NP-hard.

• Max cardinality ordering is only optimal if G is already triangulated.

• In practice, people use greedy (one-step-lookahead) algorithms:

function pi = find-elim-order-greedy(H, score-fn)

for i=1:N

X = the node that minimizes score-fn(H, X)

pi(X) = i

Add edges between all neighbors of X

Remove X from H

end

Triangulation: heuristic cost functions score(H,X)

• Min-fill (min discrepancy): minimize number of fill-ins.

• Min-size: minimize size of induced clique, |Ct|.

• Min-weight: minimize number of states of induced clique,
∏

j∈Ct
|vj|.

• Min-weight works best in practice: a 3-clique of binary nodes is
better than a 2-clique of ternary nodes, since 23 < 32.

Conditioning

• We can instantiate some hidden variables, perform VarElim on the
rest, and then repeat for each possible value, e.g.,

P (J) =
∑

i

P (J |I = i)P (I = i)

• If the resulting subgraph is a tree, this is called cutset conditioning.

Difficulty

G r a d e

L e tte r

S A T

J o b

C o h e r e n ce

I n te llig e n ce

Inefficiencies of cutset conditioning

D

C

A2

B

Ak

A1

. .
 .

D

CkBk

Ak

.�.
�.

A2

C1B1

A1

• If we condition on U , we repeatedly call VarElim once for each
value of |U |.

• This may involved redundant work.

• Left: if we condition on Ak, we repeatedly eliminate
A1 → · · · → Ak−1.

• Right: if we condition on A2, A4, . . . , Ak, we break all the loops,

but the cutset has size V k/2, whereas VarElim would take O(kV 3).

Conditioning vs VarElim is space-time tradeoff

• Thm 7.5.6: Conditioning on L takes the same amount of time as it
would to do VarElim on a modified graph, in which we connect L
to all other nodes (i.e., add L to every factor).

IntelligenceD if f icu lty

G r a d e

L etter

S A T

J o b
H a p p y

C o h er ence

• Thm 7.5.7: The space required is that needed to store the induced
cliques in the subgraph created by removing all links from L (i.e.,
remove L from every factor).

• Hence conditioning takes less space but more time.

Exploiting local structure

• VarElim exploits the factorization properties implied by the graph to
push sums inside products.

• Hence VarElim works for any kind of factor.

• However, some factors have local structure which can be exploited
to further speed up inference.

• Two main methods:

1. Make local structure graphically explicit (by adding extra nodes),
then run stand VarElim on expanded graph; or

2. Implement the
∑

and × operators for structured factors in a
special way.

• We will focus on the first method, since it can be used to speed up
any graph-based inference engine.

• David Poole has focused on the second method (structured
VarElim).

Independence of causal influence (ICI)

• In general, a node with k parents creates a factor of size V k+1 to
represent its CPD P (Y |X1:k).

• Hence it takes O(V k+1) time to eliminate this clique, and there are
O(V k+1) parameters to learn.

• If the parents Xi do not interact with each other (only with the
child), the family can be eliminated in O(k) time, and there are
only O(k) parameters to learn.

• e.g., noisy-or, generalized linear model
X1

Y

Z1

X4

Z4

X2

Z2

X3

Z3

P (Y = 0|X1:4) = q0

4∏

i=1

q
Xi
i

Exploiting Independence of Causal Influence (ICI)

X1

Y

Z1

X4

Z4

X2

Z2

X3

Z3

Y

X1 X4X2 X3

O1 O2

Y

X1 X4X2 X3

O1 O2 O3

• Assumes deterministic function can be represented by f (x1:k) =
x1 ⊕ x2 ⊕ · · · ⊕ xk where ⊕ is commutative and asssociative.

• State-space of tree is O(|Z|3), chain O(|Z|2|X|).

Exploiting Context specific independence (CSI)

• Suppose P (Y |A,X1:4) is represented as a decision tree. Then we
can make the structure explicit using multiplexer nodes.

Y

X1 X4X2 X3

A
Y

X1 X4X2 X3

A
Ya1 Ya0

• If Y ⊥ X3, X4|A = 1 and Y ⊥ X1, X2|A = 0, then

Y

X1 X4X2 X3

A
Ya1 Ya0

More complex example

A

B

C
b1

a0 a1

b0

c1c0

D
d1d0

D
d1d0

Y
A

Ya1 Ya0

D

B

Ya1b1 Ya1b0
C

Ya1b0c0Ya1b0c1

• (Recursive) conditioning provides a simpler method of exploiting CSI.

• Project idea: implement both methods and compare.

Stochastic context free grammars (SCFGs)

• If you construct a graphical model given a grammar and a sentence of
length N , the treewidth is O(N), suggesting inference takes O(2N).

• However, we can do exact inference using the inside-outside algorithm
in O(N3) time.

• The reason is that there is a lot of CSI.

Stochastic context free grammars (SCFGs)

• Represent production rule X → Y Z by a binary variable R1, and
X → Y ′Z ′ by R2. If R1 = 1, the structure of the graph is different
than if R2 = 1.

N

Y Z

X

1 i j k

Z’

X

1 Nj’i’ k’

Y’

• See “Case-factor diagrams for structured probabilistic modeling”,
McAllester, Collins, Pereira, UAI 2004.

• Project idea: implement this algorithm and compare to inside-outside
algorithm.

