Probabilistic graphical models CPSC 532C (Topics in AI)
 Stat 521A (Topics in multivariate analysis)

Lecture 7

Kevin Murphy

Monday 4 October, 2004

Administrivia

- Homework 3 due Wednesday, 9.30am; send by email to crowley@cs.ubc.ca.

VARIABLE ELIMINATION ALGORITHM

- Key idea 1: push sum inside products.
- Key idea 2: use (non-serial) dynamic programming to cache shared subexpressions.

$$
\begin{aligned}
P(J) & =\sum_{L} \sum_{S} \sum_{G} \sum_{H} \sum_{I} \sum_{D} \sum_{C} P(C, D, I, G, S, L, J, H) \\
& =\sum_{L} \sum_{S} \sum_{G} \sum_{H} \sum_{I} \sum_{D} \sum_{C} P(C) P(D \mid C) P(I) P(G \mid I, D) P(S \mid I) P(L \mid G) P(J \mid L, S) P(H \mid G, J) \\
& =\sum_{L} \sum_{S} \sum_{G} \sum_{H} \sum_{I} \sum_{D} \sum_{C} \phi_{C}(C) \phi_{D}(D, C) \phi_{I}(I) \phi_{G}(G, I, D) \phi_{S}(S, I) \phi_{L}(L, G) \phi_{J}(J, L, S) \phi_{H}(H, G, J) \\
& \left.=\sum_{L} \sum_{S} \phi_{J}(J, L, S) \sum_{G} \phi_{L}(L, G) \sum_{H} \phi_{H}(H, G, J) \sum_{I} \phi_{S}(S, I) \phi_{I}(I) \sum_{D} \phi_{(} G, I, D\right) \sum_{C} \phi_{C}(C) \phi_{D}(D, C)
\end{aligned}
$$

Working Right To Left (PEELING)

$$
\begin{aligned}
& \left.P(J)=\sum_{L} \sum_{S} \phi_{J}(J, L, S) \sum_{G} \phi_{L}(L, G) \sum_{H} \phi_{H}(H, G, J) \sum_{I} \phi_{S}(S, I) \phi_{I}(I) \sum_{D} \phi_{(} G, I, D\right) \underbrace{\sum_{C} \phi_{C}(C) \phi_{D}(D, C)}_{\tau_{1}(D)} \\
& =\sum_{L} \sum_{S} \phi_{J}(J, L, S) \sum_{G} \phi_{L}(L, G) \sum_{H} \phi_{H}(H, G, J) \sum_{I} \phi_{S}(S, I) \phi_{I}(I) \underbrace{\left.\sum_{D} \phi_{(} G, I, D\right) \tau_{1}(D)}_{\tau_{2}(G, I)} \\
& =\sum_{L} \sum_{S} \phi_{J}(J, L, S) \sum_{G} \phi_{L}(L, G) \sum_{H} \phi_{H}(H, G, J) \underbrace{\sum_{I} \phi_{S}(S, I) \phi_{I}(I) \tau_{2}(G, I)}_{\tau_{3}(G, S)} \\
& =\sum_{L} \sum_{S} \phi_{J}(J, L, S) \sum_{G} \phi_{L}(L, G) \underbrace{\sum_{H} \phi_{H}(H, G, J)}_{\tau_{4}(G, J)} \tau_{3}(G, S) \\
& =\sum_{L} \sum_{S} \phi_{J}(J, L, S) \underbrace{\sum_{G} \phi_{L}(L, G) \tau_{4}(G, J) \tau_{3}(G, S)}_{\tau_{5}(J, L, S)} \\
& =\sum_{L} \underbrace{\sum_{S} \phi_{J}(J, L, S) \tau_{5}(J, L, S)}_{\tau_{6}(J, L)} \\
& =\underbrace{\sum_{L} \tau_{6}(J, L)}_{\tau_{7}(J)}
\end{aligned}
$$

Bucket elimination

- We first multiply together all factors that mention C to create $\psi_{1}(C, D)$, and store the result in C 's bucket:

$$
\left.P(J)=\sum_{L} \sum_{S} \phi_{J}(J, L, S) \sum_{G} \phi_{L}(L, G) \sum_{H} \phi_{H}(H, G, J) \sum_{I} \phi_{S}(S, I) \phi_{\phi_{I}}(I) \sum_{D} \phi_{\phi} G, I, D\right) \sum_{C} \underbrace{\phi_{C}(C) \phi_{D}(D, C)}_{\psi_{I}(C, D)}
$$

- Then we sum out C to make $\tau_{1}(D)$:

$$
\left.P(J)=\sum_{L} \sum_{S} \phi_{J}(J, L, S) \sum_{G} \phi_{L}(L, G) \sum_{H} \phi_{H}(H, G, J) \sum_{I} \phi_{S}(S, I) \phi_{I}(I) \sum_{D} \phi_{(} G, I, D\right) \underbrace{\sum_{C} \psi_{1}(C, D)}_{\tau_{1}(D)}
$$

- and multiply into D 's bucket to make $\psi_{2}(G, I, D)$:

$$
P(J)=\sum_{L} \sum_{S} \phi_{J}(J, L, S) \sum_{G} \phi_{L}(L, G) \sum_{H} \phi_{H}(H, G, J) \sum_{I} \phi_{S}(S, I) \phi_{I}(I) \sum_{D} \underbrace{\phi_{i}(G, I, D) \tau_{1}(D)}_{\psi_{2}(G, I, D)}
$$

- Then we sum out D to make $\tau_{2}(G, I)$:

$$
P(J)=\sum_{L} \sum_{S} \phi_{J}(J, L, S) \sum_{G} \phi_{L}(L, G) \sum_{H} \phi_{H}(H, G, J) \sum_{I} \phi_{S}(S, I) \phi_{I}(I) \underbrace{\sum_{D} \psi_{2}(G, I, D)}_{\tau_{2}(G, I)}
$$

- and multiply into I 's bucket to make $\psi_{3}(G, S, I)$, etc.

Computing the partition function

- Let

$$
\begin{aligned}
P\left(X_{1: n}\right) & =\frac{1}{Z} P^{\prime}\left(X_{1: n}\right) \\
& =\frac{1}{Z} \prod_{c} \phi_{c}\left(X_{c}\right)
\end{aligned}
$$

- For Bayes nets, $Z=1$ (since each ϕ_{c} is a CPD).
- If we marginalize out all variables except Q, the result is

$$
F(Q)=\sum_{X_{1: n} \backslash Q} \prod_{c} \phi_{c}\left(X_{c}\right)
$$

- Hence if $Q=\emptyset$, we get

$$
F(\emptyset)=\sum_{X_{1: n}} \prod_{c} \phi_{c}\left(X_{c}\right)=Z
$$

DEALING WITH EVIDENCE

- Method 1: we instantiate observed variables to their observed values, by taking the appropriate "slices" of the factors
- e.g., evidence $I=1, H=0$:

$$
\begin{aligned}
& P(J, I=1, H=0)= \\
& \left.\quad \sum_{L} \sum_{S} \phi_{J}(J, L, S) \sum_{G} \phi_{L}(L, G) \phi_{H}(H=0, G, J) \phi_{S}(S, I=1) \phi_{I}(I=1) \sum_{D} \phi_{(} G, I=1, D\right) \sum_{C} \phi_{C}(C) \phi_{D}(D, C)
\end{aligned}
$$

- Method 2: we multiply in local evidence factors $\phi_{i}\left(X_{i}\right)$ for each node. If X_{i} is observed to have value x_{i}^{*}, we set $\phi_{i}\left(X_{i}\right)=\delta\left(X_{i}, x_{i}^{*}\right)$.

$$
\sum_{L}^{P(J, I=1, H=0)=} \sum_{S} \phi_{J}(J, L, S) \sum_{G} \phi_{L}(L, G) \sum_{H} \phi_{H}(H, G, J) \delta(H, 0) \sum_{I} \phi_{S}(S, I) \phi_{I}(I) \delta(I, 1) \sum_{D} \phi_{\phi}(G, I, D) \sum_{C} \phi_{C}(C) \phi_{D}(D, C)
$$

Dealing WITH EVIDENCE

- Once we instantiate evidence, the final factor is

$$
F(Q, e)=P^{\prime}(Q, e)
$$

- Hence

$$
\begin{aligned}
P(Q \mid e) & =\frac{P(Q, e)}{P(e)}=\frac{P(Q, e)}{\sum_{q^{\prime}} P\left(q^{\prime}, e\right)} \\
& =\frac{(1 / Z) P^{\prime}(Q, e)}{(1 / Z) \sum_{q^{\prime}} P^{\prime}\left(q^{\prime}, e\right)} \\
& =\frac{F(Q, e)}{\sum_{q^{\prime}} F\left(q^{\prime}, e\right)}
\end{aligned}
$$

- and

$$
P(e)=\sum_{q^{\prime}} P\left(q^{\prime}, e\right)=(1 / Z) \sum_{q^{\prime}} F\left(q^{\prime}, e\right)
$$

Ordering 1

$$
\begin{aligned}
P(J) & \left.=\sum_{L} \sum_{S} \phi_{J}(J, L, S) \sum_{G} \phi_{L}(L, G) \sum_{H} \phi_{H}(H, G, J) \sum_{I} \phi_{S}(S, I) \phi_{I}(I) \sum_{D} \phi_{(} G, I, D\right) \underbrace{\sum_{C} \phi_{C}(C) \phi_{D}(D, C)}_{\tau_{1}(D)} \\
& =\sum_{L} \sum_{S} \phi_{J}(J, L, S) \sum_{G} \phi_{L}(L, G) \sum_{H} \phi_{H}(H, G, J) \sum_{I} \phi_{S}(S, I) \phi_{I}(I) \underbrace{\left.\sum_{D} \phi_{1} G, I, D\right) \tau_{1}(D)}_{\tau_{2}(G, I)} \\
& =\sum_{L} \sum_{S} \phi_{J}(J, L, S) \sum_{G} \phi_{L}(L, G) \sum_{H} \phi_{H}(H, G, J) \underbrace{\sum_{I} \phi_{S}(S, I) \phi_{I}(I) \tau_{2}(G, I)}_{\tau_{3}(G, S)} \\
& =\sum_{L} \sum_{S} \phi_{J}(J, L, S) \sum_{G}^{\sum_{T} \phi_{L}(L, G) \underbrace{\sum_{H} \phi_{H}(H, G, J, S)}_{\tau_{4}(G, J)} \tau_{3}(G, S)} \\
& =\underbrace{\sum_{L} \sum_{S} \phi_{J}(J, L, S) \underbrace{\sum_{G} \phi_{L}(L, G) \tau_{4}(G, J) \tau_{3}(G, S)}_{\tau_{G}}}_{\tau_{6}(J, L)} \\
& =\underbrace{\sum_{S} \sum_{S} \phi_{J}(J, L, S) \tau_{5}(J, L, S)}_{\tau_{7}(J)} \\
& =\underbrace{}_{\sum_{L} \tau_{6}(J, L)}
\end{aligned}
$$

Different ordering

$$
\begin{aligned}
& P(J)=\sum_{D} \sum_{C} \phi_{D}(D, C) \sum_{H} \sum_{L} \sum_{S} \phi_{J}(J, L, S) \sum_{I} \phi_{I}(I) \phi_{S}(S, I) \underbrace{}_{G_{G} \phi_{G}(G, I, D) \phi_{L}(L,) \phi_{H}(H, G, J)} \\
& =\sum_{D} \sum_{C} \phi_{D}(D, C) \sum_{H} \sum_{L} \sum_{S} \phi_{J}(J, L, S) \underbrace{\sum_{I} \phi_{I}(I) \phi_{S}(S, I) \tau_{1}(I, D, L, J, H)}_{\tau_{2}(D, L, S, J, H)} \\
& =\sum_{D} \sum_{C} \phi_{D}(D, C) \sum_{H} \sum_{L} \underbrace{\sum_{S} \phi_{J}(J, L, S) \tau_{2}(D, L, S, J, H)} \\
& =\sum_{D} \sum_{C} \phi_{D}(D, C) \sum_{H} \underbrace{\sum_{L} \tau_{3}(D, L, J, H)}_{\tau_{4}(D, J, H)} \\
& =\sum_{D} \sum_{C} \phi_{D}(D, C) \underbrace{\sum_{H} \tau_{4}(D, J, H)}_{\tau_{5}(D, J)} \\
& =\sum_{D} \underbrace{\sum_{C} \phi_{D}(D, C) \tau_{5}(D, J)}_{\tau_{6}(D, J)} \\
& =\underbrace{\sum_{D} \tau_{6}(D, J)}_{\tau_{7}(J)}
\end{aligned}
$$

ELIMINATION AS GRAPH TRANSFORMATION

- Start by moralizing the graph (if necessary), so all terms in each factor form a (sub)clique.
- When we eliminate a variable X_{i}, we connect it to all variables that share a factor with X_{i} (to reflect new factor τ_{i}). Such edges are called "fill-in edges" (e.g., \sum_{I} induces $G-S$).

Cliques and factors

- Let $I_{G, \prec}$ be the (undirected) graph induced by applying variable elimination to G using ordering \prec.
- Thm 7.3.4: Every factor generating by VE is a subclique of $I_{G, \prec}$.
- Thm 7.3.4: Every maximal clique of $I_{G, \prec}$ corresponds to an intermediate term created by VE.
- e.g., $\prec=(C, D, I, H, G, S, L)$, max cliques $=$

$$
\{C, D\},\{D, I, G\},\{G, L, S, J\},\{G, J, H\},\{G, I, S\}
$$

Complexity of variable elimination

- Consider an ordering \prec.
- Define the induced width of the graph as the size of the largest factor (induced clique) minus 1:

$$
W_{G, \prec}=\max _{i}\left|\psi_{i}\right|-1
$$

- Define the width of the graph as the minimal induced width:

$$
W_{G}=\min _{\prec} W_{G, \prec}
$$

- e.g., width of an undirected tree is 1 (cliques $=$ edges).
- Thm: the complexity of $\operatorname{VarElim}$ is $O\left(N V^{W_{G}+1}\right)$.

Chordal (TRiangulated) GRaphs

- An undirected graph is chordal is every loop $X_{1}-X_{2}-\cdots-X_{k}-X_{1}$ for $k \geq 4$ has a chord, i.e., an edge $X_{i}-X_{j}$ for non-adjacent i, j.
- Thm 7.3.6: every induced graph is chordal.
- The left graph is not chordal, because the cycle $2-6-8-4-2$ does not have any of the chords $2-8$ or $6-4$.
- The right graph is chordal; the max cliques are

MAX CARDINALITY SEARCH

- Thm 7.3.9: $X-Y$ is a fill-in edge iff there is a path $X-Z_{1}-\cdots Z_{k}-Y$ s.t. $Z_{i} \prec X$ and $Z_{i} \prec Y$ for all $i=1, \ldots, k$.
- Hence should try to find nodes X where many of their neightbors Z are already ordered, so $X \prec Z$
function pi $=$ max-cardinality-search(H)
mark all nodes as unmarked
for $i=N$ downto 1
X = the unmarked variable with the largest number of marked neighbors
$\mathrm{pi}(\mathrm{X})=\mathrm{i}$
mark X
end
- Thm 7.3.10: if G is chordal, and $\prec=\max$ cardinality ordering, then $I_{G, \prec}$ has no fill-in edges.

TRIANGULATION

- Thm 7.3.8: finding the ordering \prec which minimizes the max induced clique size, $W_{G, \prec}$, is NP-hard.
- Max cardinality ordering is only optimal if G is already triangulated.
- In practice, people use greedy (one-step-lookahead) algorithms:
function pi = find-elim-order-greedy(H, score-fn)
for $\mathrm{i}=1: \mathrm{N}$
$\mathrm{X}=$ the node that minimizes score-fn(H, X)
pi(X) = i
Add edges between all neighbors of X
Remove X from H
end

Triangulation: heuristic cost functions score (H, X)

- Min-fill (min discrepancy): minimize number of fill-ins.
- Min-size: minimize size of induced clique, $\left|C_{t}\right|$.
- Min-weight: minimize number of states of induced clique, $\prod_{j \in C_{t}}\left|v_{j}\right|$.
- Min-weight works best in practice: a 3-clique of binary nodes is better than a 2-clique of ternary nodes, since $2^{3}<3^{2}$.

Conditioning

- We can instantiate some hidden variables, perform VarElim on the rest, and then repeat for each possible value, e.g.,

$$
P(J)=\sum_{i} P(J \mid I=i) P(I=i)
$$

- If the resulting subgraph is a tree, this is called cutset conditioning.

InEFFICIENCIES OF CUTSET CONDITIONING

- If we condition on U, we repeatedly call VarElim once for each value of $|U|$.
- This may involved redundant work.
- Left: if we condition on A_{k}, we repeatedly eliminate $A_{1} \rightarrow \cdots \rightarrow A_{k-1}$.
- Right: if we condition on $A_{2}, A_{4}, \ldots, A_{k}$, we break all the loops, but the cutset has size $V^{k / 2}$, whereas VarElim would take $O\left(k V^{3}\right)$.

Conditioning vs VarELim is space-Time Tradeoff

- Thm 7.5.6: Conditioning on L takes the same amount of time as it would to do VarElim on a modified graph, in which we connect L to all other nodes (i.e., add L to every factor).

- Thm 7.5.7: The space required is that needed to store the induced cliques in the subgraph created by removing all links from L (i.e., remove L from every factor).
- Hence conditioning takes less space but more time.

Exploiting local structure

- VarElim exploits the factorization properties implied by the graph to push sums inside products.
- Hence VarElim works for any kind of factor.
- However, some factors have local structure which can be exploited to further speed up inference.
- Two main methods:

1. Make local structure graphically explicit (by adding extra nodes), then run stand VarElim on expanded graph; or
2. Implement the \sum and \times operators for structured factors in a special way.

- We will focus on the first method, since it can be used to speed up any graph-based inference engine.
- David Poole has focused on the second method (structured VarElim).

Independence of causal influence (ICI)

- In general, a node with k parents creates a factor of size V^{k+1} to represent its CPD $P\left(Y \mid X_{1: k}\right)$.
- Hence it takes $O\left(V^{k+1}\right)$ time to eliminate this clique, and there are $O\left(V^{k+1}\right)$ parameters to learn.
- If the parents X_{i} do not interact with each other (only with the child), the family can be eliminated in $O(k)$ time, and there are only $O(k)$ parameters to learn.
- e.g., noisy-or, generalized linear model

$$
P\left(Y=0 \mid X_{1: 4}\right)=q_{0} \prod_{i=1}^{4} q_{i}^{X_{i}}
$$

Exploiting Independence of Causal Influence (ICI)

- Assumes deterministic function can be represented by $f\left(x_{1: k}\right)=$ $x_{1} \oplus x_{2} \oplus \cdots \oplus x_{k}$ where \oplus is commutative and asssociative.
- State-space of tree is $O\left(|Z|^{3}\right)$, chain $O\left(|Z|^{2}|X|\right)$.

Exploiting Context specific independence (CSI)

- Suppose $P\left(Y \mid A, X_{1: 4}\right)$ is represented as a decision tree. Then we can make the structure explicit using multiplexer nodes.

- If $Y \perp X_{3}, X_{4} \mid A=1$ and $Y \perp X_{1}, X_{2} \mid A=0$, then

More complex example

- (Recursive) conditioning provides a simpler method of exploiting CSI.
- Project idea: implement both methods and compare.

Stochastic context free grammars (SCFGs)

- If you construct a graphical model given a grammar and a sentence of length N, the treewidth is $O(N)$, suggesting inference takes $O\left(2^{N}\right)$.
- However, we can do exact inference using the inside-outside algorithm in $O\left(N^{3}\right)$ time.
- The reason is that there is a lot of CSI.

Stochastic context free grammars (SCFGs)

- Represent production rule $X \rightarrow Y Z$ by a binary variable R_{1}, and $X \rightarrow Y^{\prime} Z^{\prime}$ by R_{2}. If $R_{1}=1$, the structure of the graph is different than if $R_{2}=1$.

- See "Case-factor diagrams for structured probabilistic modeling", McAllester, Collins, Pereira, UAI 2004.
- Project idea: implement this algorithm and compare to inside-outside algorithm.

