Probabilistic graphical models
CPSC 532c (Topics in AI)
Stat 521A (Topics in multivariate analysis)

Lecture 6

Kevin Murphy

Wednesday 29 September, 2004

Types of probabilistic inference

- There are several kinds of queries we can make.
- Suppose the joint is $P(Y, E, W)=P(Y, W) \times P(E \mid Y, W)$.
- Conditional probability queries (sum-product):

$$
P(Y \mid E=e) \propto \sum_{w} P(Y, W) \times P(e \mid Y, W)
$$

- Most probable explanation (MPE) queries (max-product, MAP):

$$
(y, w)^{*}=\arg \max _{y} \max _{w} P(Y, W) \times P(e \mid Y, W)
$$

- Maximum A Posteriori (MAP) queries (max-sum-product, marginal MAP)

$$
y^{*}=\arg \max _{y} \sum_{w} P(Y, W) \times P(e \mid Y, W)
$$

- Discussion section on Thursday, 3.30-4, in 304 (this week only).

Inference in Hidden Markov Models (HMM)

- Conditional probability queries, e.g. estimate current state given past evidence (online filtering)

$$
P\left(X_{t} \mid e_{1: t}\right)=\sum_{x_{1: t-1}} P\left(x_{1: t-1}, X_{t} \mid e_{1: t}\right)
$$

- Most probable explanation (MPE) queries, e.g., most probable sequence of states (Viterbi decoding)

$$
x_{1: t}^{*}=\arg \max _{x_{1: t}} P\left(x_{1: t} \mid e_{1: t}\right)
$$

- Note: Most probable sequence of states not necessarily equal to sequence of most probable states.
- e.g., $X_{1} \rightarrow X_{2}$

$$
\begin{gathered}
P\left(X_{1}\right)\binom{0.4}{0.6}^{2} P\left(X_{2} \mid X_{1}\right)\left(\begin{array}{ll}
0.1 & 0.9 \\
0.5 & 0.5
\end{array}\right) P\left(X_{1}, X_{2}\right)\left(\begin{array}{cc}
0.04 & 0.36 \\
0.3 & 0.3
\end{array}\right) \\
\arg \max _{x_{1}} P\left(X_{1}\right)=1, \quad \arg \max _{x_{1}} \max _{x_{2}} P\left(X_{1}, X_{2}\right)=(0,1)
\end{gathered}
$$

- Viterbi decoding minimizes word error rate

$$
x_{1: t}^{*}=\arg \max _{x_{1: t}} P\left(x_{1: t} \mid e_{1: t}\right)
$$

- To minimize bit error rate, use most marginally likely state

$$
\begin{aligned}
P\left(X_{t} \mid y_{1: t}\right) & =\sum_{x_{1: t-1}} P\left(x_{1: t-1}, X_{t} \mid e_{1: t}\right) \\
x_{t}^{*} & =\max _{x} P\left(X_{t}=x \mid e_{1: t}\right)
\end{aligned}
$$

Complexity of exact inference

- Determinining if $P_{B}(X=x)>0$ for some (discrete) variable X and some Bayes net B is NP-complete.
- What does this mean?
- Roughly: The best algorithm for exact inference (in discrete-state models) probably takes exponential time, in the worst case.
- More formally: we need a review of basic computational complexity theory.

- Consider a Dynamic Bayes Net (DBN) for speech recognition, where $\mathrm{W}=$ word and $\mathrm{Q}=$ phoneme.
- Most likely sequence of states (Viterbi/ MAP, max-product):

$$
\arg \max _{q_{1: t}, w_{1: t}} P\left(q_{1: t}, w_{1: t} \mid e_{1: t}\right)
$$

- Most likely sequence of words (Marginal MAP, max-sum-product):

$$
\arg \max _{w_{1: t}} \sum_{q_{1: t}} P\left(w_{1: t}, q_{1: t} \mid e_{1: t}\right)
$$

- Max-product often used as computationally simpler approximation to max-sum-product (or can use A^{*} decoding).

Decision problems

- Defn: a decision problem is a task of the form: does there exist a solution which satisfies these conditions?
- Example: boolean satisfiability:

$$
\left(q_{1} \vee \neg q_{2} \vee q_{3}\right) \wedge\left(\neg q_{q} \vee q_{2} \vee \neg q_{3}\right)
$$

is satisfiable ($q_{1}=q_{2}=q_{3}=$ true $)$
$\bullet 3$-SAT is boolean satisfiability where $\phi=C_{1} \wedge C_{2} \ldots \wedge C_{n}$, and every clause C_{i} has 3 literals.

- Defn: A decision problem Π is in P if it can be solved in polynomial time.
- Defn: Π is in NP if it can be solved in polynomial time using a non-deterministic oracle (i.e., you can verify its guesses in polytime).
- Defn: Π is NP-hard if $\forall \Pi^{\prime} \in N P . \exists T \in P . \Pi^{\prime} \xrightarrow{T} \Pi$.
- Defn: Π is NP-complete if it is NP-hard and in NP.
- Conjecture: $P \neq N P$

Exact inference in discrete Bayes nets

 IS NP-COMPLETE- Thm: the decision problem "Is $P_{B}\left(X_{i}=x\right)>0$?" is NP-complete.
- Proof. To show in NP: Given an assignment $X_{1: n}$, we can check if $X_{i}=x$ and then check if $P\left(X_{1: n}\right)>0$ in poly-time. To show NP-hard: we can encode any 3SAT problem as a polynomially sized Bayes net, as shown below.
- $P\left(X=1 \mid q_{1: n}\right)>0$ iff $q_{1: n}$ is a satisfying assignment.

- Thm: 3-SAT is NP-complete.
- To show Π is NP-hard, it suffices to find a transformation $T \in P$ from another NP-hard problem Π^{\prime} (e.g., 3-SAT) since

$$
N P \xrightarrow{T^{\prime}} \Pi^{\prime} \xrightarrow{T} \Pi
$$

- To show Π is NP-complete, show it is NP-hard and that you can check (oracular) guesses in poly-time.

Complexity of approximate inference

- Defn: An estimate ρ has absolute error ϵ for $P(y \mid e)$ if $|P(y \mid e)-\rho| \leq \epsilon$.
- Defn: An estimate ρ has relative error ϵ for $P(y \mid e)$ if

$$
\frac{\rho}{1+\epsilon} \leq P(y \mid e) \leq \rho(1+\epsilon)
$$

- Thm: Computing $P\left(X_{i}=x\right)$ with relative error ρ is NP-hard.
- Thm: Computing $P\left(X_{i} \mid e\right)$ with absolute error for any $\epsilon \in(0,0.5)$ is NP-hard.
- But: special cases may have error bounds.
- And: heuristics often work well.

Exact inference in Gaussian models takes $O\left(N^{3}\right)$ time

- For Gaussian graphical models, exact inference is $O\left(N^{3}\right)$ no matter what the graph structure is!
- c.f., linear programming easier than integer programming.
- Lecture 3: Any undirected graphical model in which potentials have the form

$$
\psi_{i j}=\exp \left(X_{i}-\mu_{i}\right) \Sigma_{i j}^{-1}\left(X_{j}-\mu_{j}\right)
$$

can be converted to a joint Gaussian distribution.

- Book chap 4: any directed graphical model in which CPDs have the form

$$
p\left(X_{i} \mid X_{\pi_{i}}\right)=\mathcal{N}\left(X_{i} ; W X_{\pi_{i}}+\mu_{i}, \Sigma_{i}\right)
$$

can be converted to a joint Gaussian distribution.

- Exact inference in a Gaussian graphical model = matrix inversion.

Variable elimination algorithm

- Key idea 1: push sum inside products.
- Key idea 2: use (non-serial) dynamic programming to cache shared subexpressions.
$P(J)=\sum_{L} \sum_{S} \sum_{G} \sum_{H} \sum_{I} \sum_{D} \sum_{C} P(C, D, I, G, S, L, J, H)$
$=\sum_{L} \sum_{S} \sum_{G} \sum_{H} \sum_{I} \sum_{D} \sum_{C} P(C) P(D \mid C) P(I) P(G \mid I, D) P(S \mid I) P(L \mid G) P(J \mid L, S) P(H \mid G, J)$
$=\sum_{L} \sum_{S} \sum_{G} \sum_{H} \sum_{I} \sum_{D} \sum_{C} \phi_{C}(C) \phi_{D}(D, C) \phi_{I}(I) \phi_{G}(G, I, D) \phi_{S}(S, I) \phi_{L}(L, G) \phi_{J}(J, L, S) \phi_{H}(H, G, J)$
$\left.=\sum_{L} \sum_{S} \phi_{J}(J, L, S) \sum_{G} \phi_{L}(L, G) \sum_{H} \phi_{H}(H, G, J) \sum_{I} \phi_{S}(S, I) \phi_{I}(I) \sum_{D} \phi_{G} G, I, D\right) \sum_{C} \phi_{C}(C) \phi_{D}(D, C)$

Working Right to Left (PEELING)

$$
\begin{aligned}
& \left.P(J)=\sum_{L} \sum_{S} \phi_{J}(J, L, S) \sum_{G} \phi_{L}(L, G) \sum_{H} \phi_{H}(H, G, J) \sum_{I} \phi_{S}(S, I) \phi_{I}(I) \sum_{D} \phi_{(} G, I, D\right) \underbrace{\sum_{C} \phi_{C}(C) \phi_{D}(D, C)} \\
& =\sum_{L} \sum_{S} \phi_{J}(J, L, S) \sum_{G} \phi_{L}(L, G) \sum_{H} \phi_{H}(H, G, J) \sum_{I} \phi_{S}(S, I) \phi_{I}(I) \underbrace{\left.\sum_{D} \phi_{(} G, I, D\right) \tau_{1}(D)} \\
& =\sum_{L} \sum_{S} \phi_{J}(J, L, S) \sum_{G} \phi_{L}(L, G) \sum_{H} \phi_{H}(H, G, J) \underbrace{\sum_{I} \phi_{S}(S, I) \phi_{I}(I) \tau_{2}(G, I)} \\
& =\sum_{L} \sum_{S} \phi_{J}(J, L, S) \sum_{G} \phi_{L}(L, G) \underbrace{\sum_{H} \phi_{H}(H, G, J)}_{\tau_{4}(G, J)} \tau_{3}(G, S) \\
& =\sum_{L} \sum_{S} \phi_{J}(J, L, S) \underbrace{\sum_{G} \phi_{L}(L, G) \tau_{4}(G, J) \tau_{3}(G, S)} \\
& \tau_{5}(J, L, S) \\
& =\sum_{L} \underbrace{\sum_{S} \phi_{J}(J, L, S) \tau_{5}(J, L, S)} \\
& =\underbrace{\sum_{L} \tau_{6}(J, L)}
\end{aligned}
$$

DIFFERENT ORDERING

$$
\begin{aligned}
& P(J)=\sum_{D} \sum_{C} \phi_{D}(D, C) \sum_{H} \sum_{L} \sum_{S} \phi_{J}(J, L, S) \sum_{I} \phi_{I}(I) \phi_{S}(S, I) \underbrace{\sum_{G} \phi_{G}(G, I, D) \phi_{L}(L,) \phi_{H}(H, G, J)}_{\tau_{J}(I, D, L, J, H)} \\
& =\sum_{D} \sum_{C} \phi_{D}(D, C) \sum_{H} \sum_{L} \sum_{S} \phi_{J}(J, L, S) \underbrace{\sum_{I} \phi_{I}(I) \phi_{S}(S, I) \tau_{1}(I, D, L, J, H)} \\
& =\sum_{D} \sum_{C} \phi_{D}(D, C) \sum_{H} \sum_{L} \underbrace{\sum_{S} \phi_{J}(J, L, S) \tau_{2}(D, L, S, J, H)} \\
& =\sum_{D} \sum_{C} \phi_{D}(D, C) \sum_{H} \underbrace{\sum_{L} \tau_{3}(D, L, J, H)}_{\tau_{4}(D, J, H)} \\
& =\sum_{D} \sum_{C} \phi_{D}(D, C) \underbrace{\sum_{H} \tau_{4}(D, J, H)}_{\tau_{A}(D, J)} \\
& =\sum_{D} \underbrace{\sum_{C} \phi_{D}(D, C) \tau_{5}(D, J)}_{\tau_{8}(D, J)} \\
& =\underbrace{\sum_{D} \tau_{6}(D, J)}_{\tau_{7}(J)}
\end{aligned}
$$

DEALING WITH EVIDENCE: METHOD 2

- We can associate a local evidence potential with every node, and set $\phi_{i}\left(X_{i}\right)=\delta\left(X_{i}, x_{i}^{*}\right)$ if X_{i} is observed to have value x_{i}^{*}, and $\phi_{i}\left(X_{i}\right)=1$ otherwise:

$$
P\left(X_{1: n} \mid e v\right) \propto P\left(X_{1: n}\right) \prod_{i} P\left(e v_{i} \mid X_{i}\right)
$$

- e.g.,

$$
\begin{aligned}
& P(J \mid I=1, H=0) \propto \\
& \quad \sum_{C, D, I, G, S, L, J, H} P(C, D, I, G, S, L, J, H) \delta_{I}(I, 1) \delta_{H}(H, 0)
\end{aligned}
$$

Dealing with evidence: method 1

- We can instantiate observed variables to their observed value:

$$
\begin{aligned}
P(J \mid I=1, H=0) & =\frac{P(J, I=1, H=0)}{P(I=1, H=0)} \propto P(J, I=1, H=0) \\
& =\sum_{C, D, G, L, S} P(C, D, I=1, G, S, L, J, H=0)
\end{aligned}
$$

- The denominator is $P(e)=P(I=1, H=0)$.
- For Markov networks, the denominator is $P(e) \times Z$.

