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Administrivia

•Discussion section on Thursday, 3.30-4, in 304 (this week only).



Types of probabilistic inference

• There are several kinds of queries we can make.

• Suppose the joint is P (Y,E,W ) = P (Y,W ) × P (E|Y,W ).

• Conditional probability queries (sum-product):

P (Y |E = e) ∝
∑

w

P (Y,W ) × P (e|Y,W )

•Most probable explanation (MPE) queries (max-product, MAP):

(y, w)∗ = arg max
y

max
w

P (Y,W ) × P (e|Y,W )

•Maximum A Posteriori (MAP) queries (max-sum-product, marginal
MAP)

y∗ = arg max
y

∑

w

P (Y,W ) × P (e|Y,W )



Inference in Hidden Markov Models (HMM)
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• Conditional probability queries, e.g. estimate current state given
past evidence (online filtering)

P (Xt|e1:t) =
∑

x1:t−1

P (x1:t−1, Xt|e1:t)

•Most probable explanation (MPE) queries, e.g., most probable
sequence of states (Viterbi decoding)

x∗1:t = arg max
x1:t

P (x1:t|e1:t)



Word-error rate vs bit error rate

• Note: Most probable sequence of states not necessarily equal to
sequence of most probable states.

• e.g., X1 → X2

P (X1)

(
0.4
0.6

)

P (X2|X1)

(
0.1 0.9
0.5 0.5

)

P (X1, X2)

(
0.04 0.36
0.3 0.3

)

arg max
x1

P (X1) = 1, arg max
x1

max
x2

P (X1, X2) = (0, 1)

• Viterbi decoding minimizes word error rate

x∗1:t = arg max
x1:t

P (x1:t|e1:t)

• To minimize bit error rate, use most marginally likely state

P (Xt|y1:t) =
∑

x1:t−1

P (x1:t−1, Xt|e1:t)

x∗t = max
x
P (Xt = x|e1:t)



MAP vs Marginal MAP
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• Consider a Dynamic Bayes Net (DBN) for speech recognition,
where W = word and Q = phoneme.

•Most likely sequence of states (Viterbi/ MAP, max-product):

arg max
q1:t,w1:t

P (q1:t, w1:t|e1:t)

•Most likely sequence of words (Marginal MAP, max-sum-product):

arg max
w1:t

∑

q1:t

P (w1:t, q1:t|e1:t)

•Max-product often used as computationally simpler approximation
to max-sum-product (or can use A∗ decoding).



Complexity of exact inference

•Determinining if PB(X = x) > 0 for some (discrete) variable X
and some Bayes net B is NP-complete.

•What does this mean?

• Roughly: The best algorithm for exact inference (in discrete-state
models) probably takes exponential time, in the worst case.

•More formally: we need a review of basic computational complexity
theory.



Decision problems

•Defn: a decision problem is a task of the form: does there exist
a solution which satisfies these conditions?

• Example: boolean satisfiability:

(q1 ∨ ¬q2 ∨ q3) ∧
(
¬qq ∨ q2 ∨ ¬q3

)

is satisfiable (q1 = q2 = q3=true)

• 3-SAT is boolean satisfiability where φ = C1 ∧ C2 . . . ∧ Cn, and
every clause Ci has 3 literals.



P vs NP

•Defn: A decision problem Π is in P if it can be solved in polynomial
time.

•Defn: Π is in NP if it can be solved in polynomial time using a
non-deterministic oracle (i.e., you can verify its guesses in polytime).

•Defn: Π is NP-hard if ∀Π′ ∈ NP. ∃T ∈ P. Π′ T→ Π.

•Defn: Π is NP-complete if it is NP-hard and in NP.

• Conjecture: P 6= NP

NP−hard

P NP

complete

NP



Proving NP-completeness

• Thm: 3-SAT is NP-complete.

• To show Π is NP-hard, it suffices to find a transformation T ∈ P

from another NP-hard problem Π′ (e.g., 3-SAT) since

NP
T ′
→ Π′ T→ Π

• To show Π is NP-complete, show it is NP-hard and that you can
check (oracular) guesses in poly-time.

NP−hard

P NP

complete

NP



Exact inference in discrete Bayes nets
is NP-complete

• Thm: the decision problem “Is PB(Xi = x) > 0?” is NP-complete.

• Proof. To show in NP: Given an assignment X1:n, we can check
if Xi = x and then check if P (X1:n) > 0 in poly-time. To show
NP-hard: we can encode any 3SAT problem as a polynomially sized
Bayes net, as shown below.

• P (X = 1|q1:n) > 0 iff q1:n is a satisfying assignment.
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Complexity of approximate inference

•Defn: An estimate ρ has absolute error ε for P (y|e) if
|P (y|e) − ρ| ≤ ε.

•Defn: An estimate ρ has relative error ε for P (y|e) if
ρ

1 + ε
≤ P (y|e) ≤ ρ(1 + ε)

• Thm: Computing P (Xi = x) with relative error ρ is NP-hard.

• Thm: Computing P (Xi|e) with absolute error for any ε ∈ (0, 0.5) is
NP-hard.

• But: special cases may have error bounds.

• And: heuristics often work well.



How hard is inference in practice?

•We will show later that exact inference can always be done in time
O(NvW ), where WG is the tree-width of the graph (to be defined
later) and v = maxi |Xi| is the max number of values (states) each
node can take.

• The NP-hardness proof shows that, in the worst case, we have
WG ∼ N .

• But for many models used in practice, we have WG ∼ constant.

• Also, for Gaussian graphical models, exact inference is O(N3) no
matter what the graph structure is!



Exact inference in Gaussian models takes O(N3) time

• For Gaussian graphical models, exact inference is O(N3) no matter
what the graph structure is!

• c.f., linear programming easier than integer programming.

• Lecture 3: Any undirected graphical model in which potentials have
the form

ψij = exp(Xi − µi)Σ
−1
ij (Xj − µj)

can be converted to a joint Gaussian distribution.

• Book chap 4: any directed graphical model in which CPDs have the
form

p(Xi|Xπi) = N (Xi;WXπi + µi,Σi)

can be converted to a joint Gaussian distribution.

• Exact inference in a Gaussian graphical model = matrix inversion.



Variable elimination algorithm

IntelligenceDifficulty

Grade

Letter

SAT

Job
Happy

Coherence

• Key idea 1: push sum inside products.

• Key idea 2: use (non-serial) dynamic programming to cache shared
subexpressions.

P (J) =
∑

L

∑

S

∑

G

∑

H

∑

I

∑

D

∑

C

P (C,D, I, G, S, L, J,H)

=
∑

L

∑

S

∑

G

∑

H

∑

I

∑

D

∑

C

P (C)P (D|C)P (I)P (G|I,D)P (S|I)P (L|G)P (J |L, S)P (H|G, J)

=
∑

L

∑

S

∑

G

∑

H

∑

I

∑

D

∑

C

φC(C)φD(D,C)φI(I)φG(G, I,D)φS(S, I)φL(L,G)φJ(J, L, S)φH(H,G, J)

=
∑

L

∑

S

φJ(J, L, S)
∑

G

φL(L,G)
∑

H

φH(H,G, J)
∑

I

φS(S, I)φI(I)
∑

D

φ(G, I,D)
∑

C

φC(C)φD(D,C)



Working right to left (peeling)

P (J) =
∑

L

∑

S

φJ(J, L, S)
∑

G

φL(L,G)
∑

H

φH(H,G, J)
∑

I

φS(S, I)φI(I)
∑

D

φ(G, I,D)
∑

C

φC(C)φD(D,C)

︸ ︷︷ ︸

τ1(D)

=
∑

L

∑

S

φJ(J, L, S)
∑

G

φL(L,G)
∑

H

φH(H,G, J)
∑

I

φS(S, I)φI(I)
∑

D

φ(G, I,D)τ1(D)

︸ ︷︷ ︸

τ2(G,I)

=
∑

L

∑

S

φJ(J, L, S)
∑

G

φL(L,G)
∑

H

φH(H,G, J)
∑

I

φS(S, I)φI(I)τ2(G, I)

︸ ︷︷ ︸

τ3(G,S)

=
∑

L

∑

S

φJ(J, L, S)
∑

G

φL(L,G)
∑

H

φH(H,G, J)

︸ ︷︷ ︸

τ4(G,J)

τ3(G, S)

=
∑

L

∑

S

φJ(J, L, S)
∑

G

φL(L,G)τ4(G, J)τ3(G, S)

︸ ︷︷ ︸

τ5(J,L,S)

=
∑

L

∑

S

φJ(J, L, S)τ5(J, L, S)

︸ ︷︷ ︸

τ6(J,L)

=
∑

L

τ6(J, L)

︸ ︷︷ ︸

τ7(J)



Different ordering

P (J) =
∑

D

∑

C

φD(D,C)
∑

H

∑

L

∑

S

φJ(J, L, S)
∑

I

φI(I)φS(S, I)
∑

G

φG(G, I,D)φL(L, )φH(H,G, J)

︸ ︷︷ ︸

τ1(I,D,L,J,H)

=
∑

D

∑

C

φD(D,C)
∑

H

∑

L

∑

S

φJ(J, L, S)
∑

I

φI(I)φS(S, I)τ1(I,D, L, J,H)

︸ ︷︷ ︸

τ2(D,L,S,J,H)

=
∑

D

∑

C

φD(D,C)
∑

H

∑

L

∑

S

φJ(J, L, S)τ2(D,L, S, J,H)

︸ ︷︷ ︸

τ3(D,L,J,H)

=
∑

D

∑

C

φD(D,C)
∑

H

∑

L

τ3(D,L, J,H)

︸ ︷︷ ︸

τ4(D,J,H)

=
∑

D

∑

C

φD(D,C)
∑

H

τ4(D, J,H)

︸ ︷︷ ︸

τ5(D,J)

=
∑

D

∑

C

φD(D,C)τ5(D, J)

︸ ︷︷ ︸

τ6(D,J)

=
∑

D

τ6(D, J)

︸ ︷︷ ︸

τ7(J)



Dealing with evidence: method 1

IntelligenceDifficulty

Grade
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•We can instantiate observed variables to their observed value:

P (J |I = 1, H = 0) =
P (J, I = 1, H = 0)

P (I = 1, H = 0)
∝ P (J, I = 1, H = 0)

=
∑

C,D,G,L,S

P (C,D, I = 1, G, S, L, J,H = 0)

• The denominator is P (e) = P (I = 1, H = 0).

• For Markov networks, the denominator is P (e) × Z.



Dealing with evidence: method 2

•We can associate a local evidence potential with every node, and
set φi(Xi) = δ(Xi, x

∗
i ) if Xi is observed to have value x∗i , and

φi(Xi) = 1 otherwise:

P (X1:n|ev) ∝ P (X1:n)
∏

i

P (evi|Xi)

• e.g.,

P (J |I = 1, H = 0) ∝
∑

C,D,I,G,S,L,J,H

P (C,D, I,G, S, L, J,H)δI(I, 1)δH(H, 0)


