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ADMINISTRIVIA

e Discussion section on Thursday, 3.30-4, in 304 (this week only).



TYPES OF PROBABILISTIC INFERENCE

e There are several kinds of queries we can make.
e Suppose the joint is P(Y, E, W) = P(Y,W) x P(E|Y,W).
e Conditional probability queries (sum-product):

P(Y|E=¢)ox Y P(Y,W)x Ple|Y,W)

e Most probable explanation (MPE) queries (max-product, MAP):
(y, w)" = arg maxmax P(Y, W) x P(e|Y, W)
Yy w

e Maximum A Posteriori (MAP) queries (max-sum-product, marginal

MAP)
* = arg max E P(Y, W) x PlelY, W
Yy arg ya . ( ) (€] )



INFERENCE IN HIDDEN MARKOV MODELS (HMM)

OONE

e Conditional probability queries, e.g. estimate current state given
past evidence (online filtering)

P(Xiler:) = Z P(xy4—1, Xtlery)
L1:t—1

e Most probable explanation (MPE) queries, e.g., most probable
sequence of states (Viterbi decoding)

xik:t — arg maxp(xlzt‘elzt)
L1t



WORD-ERROR RATE VS BIT ERROR RATE

e Note: Most probable sequence of states not necessarily equal to
sequence of most probable states.

ecg., X1 — Xo

0.4 0.1 0.9 0.04 0.36
PXy (O.6> PxIx) (0.5 0.5> P(X1, Xo) (0.3 0.3>

argmax P(X7) =1, argmaxmax P(X7, X9) = (0,1)

71 T] X2
e Viterbi decoding minimizes word error rate

xT:t — arg maxp(xlzt‘elzt)
L1t

e To minimize bit error rate, use most marginally likely state

P(Xtly14) = Y Plai—1, Xelers)
L1:t—1
:U;fk — m:UaX P(Xt — 513‘61:75)



MAP vs MARGINAL MAP

e Consider a Dynamic Bayes Net (DBN) for speech recognition,
where W = word and Q = phoneme.

e Most likely sequence of states (Viterbi/ MAP, max-product):

arg max P(q1.4, witle1)
q1:¢,W1:t

e Most likely sequence of words (Marginal MAP, max-sum-product):

Arg Mmax > P(wiy, qilers)
q1:t
e Max-product often used as computationally simpler approximation
to max-sum-product (or can use A* decoding).



COMPLEXITY OF EXACT INFERENCE

e Determinining if Pg(X = x) > 0 for some (discrete) variable X
and some Bayes net B is NP-complete.

e \What does this mean?

e Roughly: The best algorithm for exact inference (in discrete-state
models) probably takes exponential time, in the worst case.

e More formally: we need a review of basic computational complexity
theory.



DECISION PROBLEMS

e Defn: a decision problem is a task of the form: does there exist
a solution which satisfies these conditions?

e Example: boolean satisfiability:
(q1V =gz V g3) A (g V @2 V —3)
is satisfiable (¢ = g9 = q3=true)

e 3-SAT is boolean satisfiability where ¢ = C7 A Cy... AN C), and
every clause C; has 3 literals.



P vs NP

e Defn: A decision problem 11 is in P if it can be solved in polynomial
time.

e Defn: II is in NP if it can be solved in polynomial time using a
non-deterministic oracle (i.e., you can verify its guesses in polytime).

o Defn: T1is NP-hard if VII' € NP. 3T € P. I L 1I.
e Defn: II is NP-complete if it is NP-hard and in NP.
e Conjecture: P # NP

NP
complete



ProvING NP-COMPLETENESS

e Thm: 3-SAT is NP-complete.

e To show II is NP-hard, it suffices to find a transformation T € P
from another NP-hard problem I’ (e.g., 3-SAT) since

NPHWHH

e To show II is NP-complete, show it is NP-hard and that you can
check (oracular) guesses in poly-time.

NP
complete



EXACT INFERENCE IN DISCRETE BAYES NETS
IS NP-COMPLETE

e Thm: the decision problem “Is Pp(X; = x) > 07" is NP-complete.

e Proof. To show in NP: Given an assignment X7.,,, we can check
if X; = x and then check if P(Xy.,) > 0 in poly-time. To show
NP-hard: we can encode any 3SAT problem as a polynomially sized
Bayes net, as shown below.

o P(X =1|q1.p,) > 0 iff g1, is a satisfying assignment.




COMPLEXITY OF APPROXIMATE INFERENCE

e Defn: An estimate p has absolute error ¢ for P(yle) if
[P(yle) —pl <e.

e Defn: An estimate p has relative error € for P(yle) if

0
<P < (1
T = (yle) < p(1+¢€)

e Thm: Computing P(X; = x) with relative error p is NP-hard.

(X
e Thm: Computing P(X;|e) with absolute error for any € € (0,0.5) is
NP-hard.

e But: special cases may have error bounds.

e And: heuristics often work well.



HOW HARD IS INFERENCE IN PRACTICE?

e \We will show later that exact inference can always be done in time
O(Nv"), where W is the tree-width of the graph (to be defined

later) and v = max; | X;| is the max number of values (states) each
node can take.

e The NP-hardness proof shows that, in the worst case, we have

Wea ~ N.
e But for many models used in practice, we have W ~ constant.

e Also, for Gaussian graphical models, exact inference is O(NS) no
matter what the graph structure is!



EXACT INFERENCE IN GAUSSIAN MODELS TAKES O(N?) TIME

e For Gaussian graphical models, exact inference is O(N?) no matter
what the graph structure is!

e c.f., linear programming easier than integer programming.

e Lecture 3: Any undirected graphical model in which potentials have
the form

—1
hij = exp(Xy — )85 (X5 — )
can be converted to a joint Gaussian distribution.

e Book chap 4: any directed graphical model in which CPDs have the
form

p(Xi| X)) = N(Xy; WX, + i, )
can be converted to a joint Gaussian distribution.

e Exact inference in a Gaussian graphical model = matrix inversion.



VARIABLE ELIMINATION ALGORITHM

Coherence

Intelligence

e Key idea 1: push sum inside products.
e Key idea 2: use (non-serial) dynamic programming to cache shared
subexpressions.
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WORKING RIGHT TO LEFT (PEELING)
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DIFFERENT ORDERING
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DEALING WITH EVIDENCE: METHOD 1

e \We can instantiate observed variables to their observed value:
P(J,I =1,H =0)

P(JI=1H=0) = BII= 10 =0) x P(J,I =1,H =)
= Y P(CDI=1,G,SL,JH=0)
C.D,G,L.S

e The denominator is P(e) = P(I =1,H = 0).

e For Markov networks, the denominator is P(e) x Z.



DEALING WITH EVIDENCE: METHOD 2

e \We can associate a local evidence potential with every node, and
set ¢;(X;) = 0(X;, z7) if X is observed to have value x7, and
¢;(X;) = 1 otherwise:

P(X1plev) o< P(X1) | [ PlevilX;)
1
ec.g.,

P(JII=1H=0) x
> P(C,D,I,G,S,L,J H)é;(I1,1)8(H,0)
C.D,I.G,S.L,JH



