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Administrivia

• Homework 2 is now due on Wednesday 29th.

• Please start reading chapters 6 and 7 before Wednesday.



Today’s class

• Review of homework 1.

•Matlab vectorization.

• Review of past 4 lectures.
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•Matlab vectorization.
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Chap 3: DAGs

• Local Markov property, chain rule for Bayes nets

• Global Markov property (d-separation/ Bayes-ball)

•Minimal I-maps

• Perfect maps



Local Markov property

• Node is conditionally independent of its non-descendants given its
parents.
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P (X1:N ) = P (X1)P (X2|X1)P (X3|X1, X2) . . .
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Bayes Ball Algorithm

• To check if xA ⊥ xB|xC we need to check if every variable in A is
d-separated from every variable in B conditioned on all vars in C.

• In other words, given that all the nodes in xC are clamped, when
we wiggle nodes xA can we change any of the node xB?

• The Bayes-Ball Algorithm is a such a d-separation test.
We shade all nodes xC , place balls at each node in xA (or xB), let
them bounce around according to some rules, and then ask if any
of the balls reach any of the nodes in xB (or xA).
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So we need to know what happens
when a ball arrives at a node Y
on its way from X to Z.



Bayes-Ball Rules

• The three cases we considered tell us rules:
X Y Z X Y Z
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Bayes-Ball Boundary Rules

•We also need the boundary conditions:

(a) (b)

X Y X Y

(a) (b)

X Y X Y

• Here’s a trick for the explaining away case:
If y or any of its descendants is shaded,
the ball passes through.

(a)

X

Y

Z

(b)

X

Y

Z

• Notice balls can travel opposite to edge directions.



Examples of Bayes-Ball Algorithm

x1 ⊥ x6|{x2,x3} ?

1X

2X

3X

X 4

X 5

X6



Examples of Bayes-Ball Algorithm

x2 ⊥ x3|{x1,x6} ?

1X

2X

3X

X 4

X 5

X6

Notice: balls can travel opposite to edge directions.



I-maps

•Defn: let Il(G) be the set of local independence properties encoded
by DAG G, namely:

{Xi ⊥ NonDescendants(Xi)|Parents(Xi)}

•Defn: A DAG G is an I-map (independence-map) of P
if Il(G) ⊆ I(P ).

• A fully connected DAG G is an I-map for any distribution, since
Il(G) = ∅ ⊆ I(P ) for any P .

•Defn: A DAG G is a minimal I-map for P if it is an I-map for
P , and if the removal of even a single edge from G renders it not
an I-map.

•To construct a minimal I-map, Pick a node ordering, then
let the parents of node Xi be the minimal subset
U ⊆ {X1, . . . , Xi−1}
s.t. Xi ⊥ {X1, . . . , Xi − 1} \ U |U .



A distribution may have several minimal I-maps

• Suppose the left DAG G perfectly captures all and only the
independence properties of some distribution P , i.e., I(G) = I(P ).
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• Now consider a different node ordering: L, S,G, I,D

• Now consider a different node ordering: L,D, S, I,G

• All encode the same distribution!



Perfect maps

• Can we find a graph that captures all the independencies in an
arbitrary distribution (and no more)?

•Defn: A DAG G is a perfect map (P-map) for a distribution P
if I(P ) = I(G).

• Thm: not every distribution has a perfect map.

• Pf by counterexample. Suppose we have a model where
A ⊥ C|{B,D}, and B ⊥ D|{A,C}. This cannot be represented
by any Bayes net.

• e.g., BN1 wrongly says B ⊥ D|A, BN2 wrongly says B ⊥ D.
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Chap 5: undirected graphs

• Global Markov properties

• Clique potentials

• Factor graphs

• Local Markov properties

• Converting BNs ↔ MNs



Undirected Graphical Models

• Graphs where nodes = random variables, and edges = correlation
(direct dependence).

•Defn: Let H be an undirected graph. Then sepH(A;C|B) iff all
paths between A and C go through some nodes in B (simple graph
separation).

XA

XB

XC

•Defn: the global Markov properties of a UG H are

I(H) = {(X ⊥ Y |Z) : sepH(X ;Y |Z)}

• UGMs also called Markov Random Fields (MRFs) or Markov
Networks.



Undirected graphical models

•Defn: an undirected graphical model representing a
distribution P (X1, . . . , Xn) is an undirected graph H , and a set of
positive potential functions ψc > 0 associated with sub-cliques
of H , s.t.

P (X1, . . . , Xn) =
1

Z

∏

c∈C

ψc(xc)

where Z is the partition function:

Z =
∑

x1,...,xn

∏

c∈C

ψc(xc)



Example of UGM - max cliques

1

4 2

3

P (x1:4) =
1

Z
ψ124(x124)× ψ234(x234)

Z =
∑

x1,x2,x3,x4

ψ124(x124)× ψ234(x234)

•We can represent P (X1:4) as two 3D tables instead of one 4D table.



Example of UGM - subcliques

1

4 2

3

P (x1:4) =
1

Z

∏

<ij>

ψij(xij)

=
1

Z
ψ12(x12)ψ14(x14)ψ23(x23)ψ24(x24)ψ34(x34)

Z =
∑

x1,x2,x3,x4

∏

<ij>

ψij(xij)

•We can represent P (X1:4) as five 2D tables instead of one 4D table.



Factor graphs

• Factorized potentials can be represented graphically using a factor
graph.

•Defn: a factor graph is undirected bipartite graph with two kinds of
nodes. Round nodes represent variables, square nodes represent
factors (potentials), and there is an edge from each variable to
every factor that mentions it.
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Local and global Markov properties

• For directed graphs, we defined I-maps in terms of local Markov
properties, and derived global independence.

• For undirected graphs, we defined I-maps in terms of global Markov
properties, and will now derive local independence.

•Defn: The pairwise markov independencies associated with
UG H = (V,E) are

Ip(H) = {(X ⊥ Y )|V \ {X,Y } : {X,Y } 6∈ E}

• e.g., X1 ⊥ X5|{X2, X3, X4}
2 3 4 51



Local Markov properties

•Defn: The local markov independencies associated with UG
H = (V,E) are

Il(H) = {(X ⊥ V \ {X} \NH(X)|NH(X)) : X ∈ V }

where NH(X) are the neighbors

• e.g., X1 ⊥ {X3, X4, X5}|X2
2 3 4 51

•NH(X) is also called the Markov blanket of X.



Relationship between local and global Markov
properties

• Thm 5.5.3. If P |= Il(H) then P |= Ip(H).

• Thm 5.5.4. If P |= I(H) then P |= Il(H).

• Thm 5.5.5. If P > 0 and P |= Ip(H), then P |= I(H).

• Corollary 5.5.6: If P > 0, then Il = Ip = I.

• If ∃x.P (x) = 0, then we can construct an example (using
deterministic potentials) where Ip 6⇒ Il or Il 6⇒ I.

I

Il Ip

5.5.4 5.5.5 (P+)

5.5.3



Perfect maps

•Defn: A Markov network H is a perfect map for P if for any
X,Y, Z we have that

sepH(X ;Y |Z) ⇐⇒ P |= (X ⊥ Y |Z)

• Thm: not every distribution has a perfect map.

• Pf by counterexample. No undirected network can capture all and
only the independencies encoded in a v-structure X → Z ← Y .



Expressive Power

• Can we always convert directed ↔ undirected?

• No.
W

X Y

Z

X Y

Z

(a) (b)

No directed model
can represent these
and only these
independencies.
x ⊥ y | {w, z}
w ⊥ z | {x,y}

No undirected model
can represent these
and only these
independencies.
x ⊥ y



Converting Bayes nets to Markov nets

•Defn: A Markov net H is an I-map for a Bayes net G if
I(H) ⊆ I(G).

•We can construct a minimal I-map for a BN by finding the minimal
Markov blanket for each node.

•We need to block all active paths coming into node
X, from parents, children, and co-parents; so connect them all to X.
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Moralization

•Defn: the moral graph H(G) of a DAG is constructed by adding
undirected edges between any pair of disconnected (“unmarried”)
nodes X,Y that are parents of a child Z, and then dropping all
remaining arrows.

• Thm 5.7.5: The moral graph H(G) is the minimal I-map for Bayes
net G.
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Z1 Z2

Y1 Y2

U1 U2

X
Z1 Z1
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Bayes net to Markov net

•We assign each CPD to one of the clique potentials that contains
it, e.g.

P (U,X, Y, Z) =
1

Z
ψ(U,X)× ψ(X,Y, Z)

=
1

1
P (U)P (X|U)× P (Y )P (Z|X,Y )

= P (X,U)× P (Z|X,Y )P (Y )
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Z

X Y
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U U



From Markov nets to Bayes nets

•Defn: A Bayes net G is an I-map for a Markov net H if
I(G) ⊆ I(H).

•We can construct a directed I-map by choosing a node ordering,
and then picking the parents of node Xi as the subset U that
renders Xi independent of its other predecessors X1, . . . , Xi−1.

• e.g., when we add C, the ancestors are A,B; since C 6⊥ B|A, we
need to add an edge from B to C.
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D E

F

•Different orderings may induce different edges.



Graph triangulation
A

B C

D E

F
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• The example above showed how we added extra edges to the DAG
so that the largest loop was a 3-cycle (triangle).

•Defn: An undirected graph is called chordal or triangulated if
every loop X1 −X2 · · ·Xk −X1 for k ≥ 4 has a chord, i.e., an
edge connecting Xi and Xj for i, j non-adjacent.

•Defn: a directed graph is chordal if its underlying undirected graph
is chordal.

• Thm 5.7.15: If G is a minimal I-map for Markov net H , then G is
chordal.



Chordal graphs

• Converting a Bayes net to a Markov net adds extra moralization
arcs.

• Converting a Markov net to a Bayes net adds extra triangulation
arcs.

•Q: When can we convert a BN to a MN or vice versa without
having to add extra arcs?

• A: when the graph is chordal.

• Thm 5.7.18 (if): Let H be a chordal Markov net. Then there is a
Bayes net G s.t. I(H) = I(G).

• Thm 5.7.16 (only-if): Let H be a non-chordal Markov net. Then
there is no Bayes net G s.t. I(H) = I(G).



Chordal graphs

• Chordal graphs encode independencies that can be exactly
represented by either directed or undirected graphs.

• Chain graphs combine directed and undirected graphs and represent
a larger set of distributions.

 graphs

Chain graphs

Bayes
nets

Markov
netschordal



Chap 4: Local structure in CPDs

• Exponential family

• Generalized linear models

• Context-specific indepencence (tree-structured CPDs)

• Causal independence (noisy-or)



Exponential Family

• For a random variable x with no parents

p(x|η) = h(x) exp{η>T (x)− A(η)}

=
1

Z(η)
h(x) exp{η>T (x)}

is an exponential family distribution with
natural parameter η.

• Function T (x) is a sufficient statistic.

• Function A(η) = logZ(η) is the log normalizer.

• Key idea: all you need to know about the data in order to estimate
parameters is captured in the summarizing function T (x).

• Examples: Bernoulli, binomial/geometric/negative-binomial,
Poisson, gamma, multinomial, Gaussian, ...



Generalized Linear Models

• Consider the CPD for Y with parent X.

• A GLM is when p(y|x) is exponential family with conditional mean
µi = fi(θ

>x).

• The choice of exponential family member is dictated by the type of
Y :

– Class labels: Bernoulli or Multinomial

– Counts: Poisson

– Real valued: Gaussian

• The link function fi is usually fixed, too.



GLM CPDs for X → Y

X Y p(Y |X)
IRn IRm Gauss(Y ;WX + µ,Σ)

IRn {0, 1} Bernoulli(Y ; p = 1

1+e−θ
T x

)

{0, 1}n {0, 1} Bernoulli(Y ; p = 1

1+e−θ
T x

)

IRn {1, . . . ,K} Multinomial(Y ; pi = softmax(x, θ))



Other CPDs for X → Y

X Y p(Y |X)
IRn IR regression-box(Y ;X)
IRn {1, . . . ,K} classification-box(Y ;x)

{1, . . . , L} IRn Gauss(Y ;µX ,ΣX)
{1, . . . , L}n IR regression-tree(Y ;X)
{1, . . . , L} {1, . . . ,K} L×K CPT
{1, . . . , L}n {1, . . . ,K} classification-tree(Y ;X)
{0, 1}n {0, 1} noisy-or



Context-specific independence

• CSI is when some links in the graph can be removed depending on
the values of certain variables.

• eg. P (Y |X1, X2) is represented as this decision tree:

0

X1

(0.3,0.7) X2

(0.1,0.9)    (0.8,0.2)

0 1

1

• If X1 = 1, then the link from X2→ Y can be removed.

• This property arises in data association problems: let Z determine
the identity of the observation; then P (Y |Z = i,X1:n) = f (Y,Xi).

• This property can be exploited in inference (condition on Z and the
graph becomes sparser).



Independence of causal influence

• A CPD P (Y |X1:n) exhibits ICI if it can be represented as a mini
Bayes net as shown below, where Z is a deterministic function of
the Zi’s.

Z

X1 Xn

Z1 ZnZ0
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Noisy-or

Z

X1 Xn

Z1 ZnZ0

Y

• Y = Z, Z is deterministic OR of Zi’s, but the link from Xi to Zi
flips 1’s to 0’s w.p. qi. Z0 = 1 is always on (leak node). Hence

P (Y = 0|X1:n) = q0
∏

i:Xi=1

qi = q0
∏

i

q
Xi
i = q0

∑

i

eXi log qi

• Similar to sigmoid, but parameters are constrained qi ∈ [0, 1].

• Can be used to speed up inference.

• Cognitively plausible.


