PROBABILISTIC GRAPHICAL MODELS CPSC 532C (TOPICS IN AI) STAT 521A (TOPICS IN MULTIVARIATE ANALYSIS)

Lecture 3

Kevin Murphy

Monday 20 September, 2004

- **REVIEW:** INDEPENDENCE PROPERTIES OF DAGS
- Defn: let $I_l(G)$ be the set of local independence properties encoded by DAG G, namely:

 $\{X_i \perp \mathsf{NonDescendants}(X_i) | \mathsf{Parents}(X_i) \}$

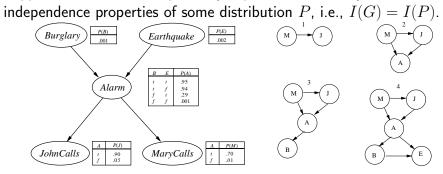
- Defn: A DAG G is an I-map (independence-map) of Pif $I_l(G) \subset I(P)$.
- A fully connected DAG G is an I-map for any distribution, since $I_l(G) = \emptyset \subseteq I(P)$ for any P.
- Defn: A DAG G is a minimal I-map for P if it is an I-map for P, and if the removal of even a single edge from G renders it not an I-map.
- To construct a minimal I-map, Pick a node ordering, then let the parents of node X_i be the minimal subset

 $U \subseteq \{X_1, \ldots, X_{i-1}\}$ s.t. $X_i \perp \{X_1, \ldots, X_i - 1\} \setminus U | U$.

- Spare stapled copies of the book chapters are outside my door (107). If you take the last unstapled copy, please photocopy and return to the door.
- Please send me comments on the book (errors, unclear parts) in one text file at the end of the semester.
- Mark Crowley is our TA. He will hold a regular discussion section on Fridays 1-2pm, CICSR 304. He will give a Matlab tutorial in the first meeting.

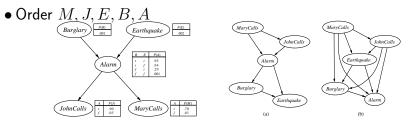
A DISTRIBUTION MAY HAVE SEVERAL MINIMAL I-MAPS

 \bullet Suppose the left DAG G perfectly captures all and only the



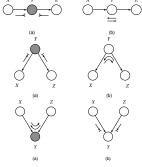
- Now consider a different node ordering: M, J, A, B, E.
- Consider adding parents to node B. Ancestors are M, J, A. We choose A as smallest parent set since $B \perp_G \{M, J\} | A$.

- $\bullet \ {\rm Order} \ B, E, A, J, M$
- $\bullet \ {\rm Order} \ M,J,A,B,E$



- All represent exactly the same joint distribution, but some orderings are better in terms of
 - $-\operatorname{Representation:}$ easier to understand
 - -Inference: faster to compute $P(X_q|x_v)$.
 - Learning: fewer parameters

• X is d-separated (directed-separated) from Y given Z if we can't send a ball from any node in X to any node in Y, where all nodes in Z are shaded.



 \bullet Defn: $I(G) = \mathsf{all}$ independence properties that correspond to d-separation:

$$I(G) = \{(X \perp Y | Z) : dsep_G(X;Y | Z)\}$$

Soundness and completeness of D-separation

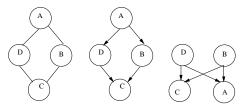
 \bullet Defn: P factorizes over DAG G if it can be represented as

$$P(X_1,\ldots,X_n) = \prod_i P(X_i|X_{\pi_i})$$

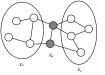
- Thm 3.3.3 (soundness): If P factorizes over G, then $I(H) \subseteq I(P)$.
- Thm 3.3.5 (completeness): If $\neg dsep_G(X;Y|Z)$, then $X \not\perp_P Y|Z$ in some P that factorizes over G.

 $\mathbf{P}\text{-maps}$

- Defn: A DAG G is a perfect map (P-map) for a distribution P if I(P) = I(G).
- Thm: not every distribution has a perfect map.
- Pf by counterexample. Suppose we have a model where $A \perp C | \{B, D\}$, and $B \perp D | \{A, C\}$. This cannot be represented by any Bayes net.
- e.g., BN1 wrongly says $B \perp D | A$, BN2 wrongly says $B \perp D$.



- Graphs where nodes = random variables, and edges = correlation (direct dependence).
- Defn: Let H be an undirected graph. Then $sep_H(A; C|B)$ iff all paths between A and C go through some nodes in B (simple graph separation).



 \bullet Defn: the global Markov properties of a UG H are

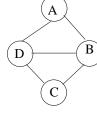
 $I(H) = \{(X \perp Y | Z) : sep_H(X;Y | Z)\}$

• UGMs also called Markov Random Fields (MRFs) or Markov Networks.

- An undirected graph H specifies a family of distributions s.t., $I(H) \subseteq I(P)$.
- To specify a *particular* distribution P, we need to add parameters to the graph.
- For Bayes nets, we used conditional probability distributions (CPDs), $P(X_i|X_{\pi_i})$, where $\sum_{X_i} P(X_i|X_{\pi_i}) = 1.$
- For Markov nets, we use potential functions or factors defined on subsets of completely connected sets of nodes, where $\psi_c(X_c) > 0$.

CLIQUES

- Defn: a complete subgraph is a fully interconnected set of nodes.
- Defn: a (maximal) clique C is a complete subgraph s.t. any superset $C' \supset C$ is not complete.
- Defn: a sub-clique is a not-necessarily-maximal clique.



• Example: max-cliques = $\{A, B, D\}$, $\{B, C, D\}$, sub-cliques = edges = $\{A, D\}$, $\{A, B\}$, ...

UNDIRECTED GRAPHICAL MODELS

• Defn: an undirected graphical model representing a distribution $P(X_1, \ldots, X_n)$ is an undirected graph H, and a set of positive potential functions ψ_c associated with sub-cliques of H, s.t.

$$P(X_1, \dots, X_n) = \frac{1}{Z} \prod_{c \in C} \psi_c(x_c)$$

where Z is the partition function:

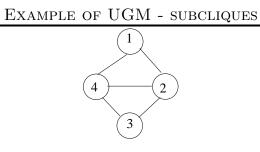
$$Z = \sum_{x_1, \dots, x_n} \prod_{c \in C} \psi_c(x_c)$$

• Defn: if H is a UGM for P, we say that P factorizes over H, or that P is a Gibbs distribution over H.

EXAMPLE OF UGM - MAX CLIQUES

$$P(x_{1:4}) = \frac{1}{Z} \psi_{124}(x_{124}) \times \psi_{234}(x_{234})$$
$$Z = \sum_{x_1, x_2, x_3, x_4} \psi_{124}(x_{124}) \times \psi_{234}(x_{234})$$

• We can represent $P(X_{1:4})$ as two 3D tables instead of one 4D table.



$$P(x_{1:4}) = \frac{1}{Z} \prod_{\langle ij \rangle} \psi_{ij}(x_{ij})$$

= $\frac{1}{Z} \psi_{12}(x_{12}) \psi_{14}(x_{14}) \psi_{23}(x_{23}) \psi_{24}(x_{24}) \psi_{34}(x_{34})$
$$Z = \sum_{x_1, x_2, x_3, x_4} \prod_{\langle ij \rangle} \psi_{ij}(x_{ij})$$

 \bullet We can represent $P(X_{1:4})$ as five 2D tables instead of one 4D table.

MAX CLIQUES VS SUB CLIQUES

 \bullet Max clique version

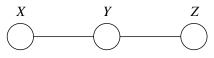
$$P(X_{1:4}) = \frac{1}{Z}\psi_{1234}(X_{1234})$$

• Sub clique version

$$P(X_{1:4}) = \frac{1}{Z} \prod_{\langle ij \rangle} \psi_{ij}(x_i, x_j)$$

= $\frac{1}{Z} \psi_{12}(x_{12}) \psi_{13}(x_{13}) \psi_{14}(x_{14}) \psi_{23}(x_{23}) \psi_{24}(x_{24}) \psi_{34}(x_{34})$

INTERPRETATION OF CLIQUE POTENTIALS



 \bullet The model implies $\mathbf{x} \perp \mathbf{z} \mid \mathbf{y}$

$$p(\mathbf{x}, \mathbf{y}, \mathbf{z}) = p(\mathbf{y})p(\mathbf{x}|\mathbf{y})p(\mathbf{z}|\mathbf{y})$$

• We can write this as:

$$\begin{split} p(\mathbf{x}, \mathbf{y}, \mathbf{z}) &= p(\mathbf{x}, \mathbf{y}) p(\mathbf{z} | \mathbf{y}) = \psi_{\mathbf{x} \mathbf{y}}(\mathbf{x}, \mathbf{y}) \psi_{\mathbf{y} \mathbf{z}}(\mathbf{y}, \mathbf{z}) \\ p(\mathbf{x}, \mathbf{y}, \mathbf{z}) &= p(\mathbf{x} | \mathbf{y}) p(\mathbf{z}, \mathbf{y}) = \psi_{\mathbf{x} \mathbf{y}}(\mathbf{x}, \mathbf{y}) \psi_{\mathbf{y} \mathbf{z}}(\mathbf{y}, \mathbf{z}) \end{split}$$

cannot have all potentials be marginals cannot have all potentials be conditionals

• The positive clique potentials can only be thought of as general "compatibility", "goodness" or "happiness" functions over their variables, but not as probability distributions.

 \bullet We often represent the clique potentials using their logs:

 $\psi_C(\mathbf{x}_C) = \exp\{-H_C(\mathbf{x}_C)\}$

for arbitrary real valued "energy" functions $H_C(\mathbf{x}_C).$ The negative sign is a standard convention.

• This gives the joint a nice additive structure:

$$\mathsf{P}(\mathbf{X}) = \frac{1}{Z} \exp\{-\sum_{\text{cliques } C} H_C(\mathbf{x}_c)\} = \frac{1}{Z} \exp\{-H(\mathbf{X})\}$$

where the sum in the exponent is called the "free energy":

$$H(\mathbf{X}) = \sum_{C} H_{C}(\mathbf{x}_{c})$$

- In physics, this is called the "Boltzmann distribution".
- In statistics, this is called a log-linear model.

EXAMPLE: BOLTZMANN MACHINES

 A fully connected graph with pairwise (edge) potentials on binary-valued nodes (for x_i ∈ {−1, +1} or x_i ∈ {0, 1}) is called a Boltzmann machine.

$$P(X_{1:4}) = \frac{1}{Z} \prod_{\langle ij \rangle} \psi_{ij}(x_i, x_j)$$

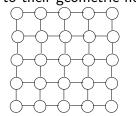
$$\bullet$$
 where $\psi_{ij}(x_i,x_j)=exp(-H_{ij}(x_i,x_j)),$ and
$$H(x_i,x_j)\,=\,(x_i-\mu_i)V_{ij}(x_j-\mu_j)$$

• Hence overall energy has form

$$H(x) = \sum_{ij} V_{ij} x_i x_j + \sum_i \alpha_i x_i + C$$

EXAMPLE: ISING (SPIN-GLASS) MODELS

• Nodes are arranged in a regular topology (often a regular packing grid) and connected only to their geometric neighbours.



- Same as sparse Boltzmann machine, where $V_{ij} \neq 0$ iff i, j are neighbors.
- e.g., nodes are pixels, potential function encourages nearby pixels to have similar intensities.
- Potts model = multi-state lsing model.

EXAMPLE: MULTIVARIATE GAUSSIAN DISTRIBUTION

• A Gaussian distribution can be represented by a fully connected graph with pairwise (edge) potentials of the form

$$H(\mathbf{x}) = \sum_{ij} (\mathbf{x}_i - \mu_i) V_{ij} (\mathbf{x}_j - \mu_j)$$

where μ is the mean and V is the inverse covariance (precision) matrix, since

$$P(x_{1:n}) = \frac{1}{Z}e^{-H(x)}$$

• Same as Boltzmann machine except $x_i \in R$.

- $V_{ij} = 0$ iff no edge between X_i and X_j .
- \bullet Chain structured graph \equiv block diagonal precision matrix

1-2-3-4-5

$$V = \Sigma^{-1} = \begin{pmatrix} \cdot & \cdot & 0 & 0 & 0 \\ \cdot & \cdot & \cdot & 0 & 0 \\ 0 & \cdot & \cdot & \cdot & 0 \\ 0 & 0 & \cdot & \cdot & \cdot \\ 0 & 0 & 0 & \cdot & \cdot \end{pmatrix}$$

Sparse precision \Rightarrow sparse covariance

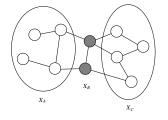
$$\Sigma^{-1} = \begin{pmatrix} 1 & 6 & 0 & 0 & 0 \\ 6 & 2 & 7 & 0 & 0 \\ 0 & 7 & 3 & 8 & 0 \\ 0 & 0 & 8 & 4 & 9 \\ 0 & 0 & 0 & 9 & 5 \end{pmatrix} \qquad \Sigma = \begin{pmatrix} 0.10 & 0.15 & -0.13 & -0.08 & 0.15 \\ 0.15 & -0.03 & 0.02 & 0.01 & -0.03 \\ -0.13 & 0.02 & 0.10 & 0.07 & -0.12 \\ -0.08 & 0.01 & 0.07 & -0.04 & 0.07 \\ 0.15 & -0.03 & -0.12 & 0.07 & 0.08 \end{pmatrix}$$
$$\Sigma_{13}^{-1} = 0 \iff X_1 \perp X_3 | X_{nbrs(1)} \\ \iff X_1 \perp X_3 | X_2 \\ \neq X_1 \perp X_3 \\ \iff \Sigma_{13} = 0$$

GRAPHS AND DISTRIBUTIONS

- Let us return to the question of what kinds of distributions can be represented by undirected graphs (ignoring the details of the paticular parameterization).
- \bullet Defn: the global Markov properties of a UG H are

$$I(H) = \{(X \perp Y | Z) : sep_H(X; Y | Z)\}$$

• Is this definition sound and complete?



Soundness and completeness of global Markov property

- Defn: An UG H is an I-map for a distribution P if $I(H) \subseteq I(P)$, i.e., $P \models I(H)$.
- Defn: P is a Gibbs distribution over H if it can be represented as

$$P(X_1,\ldots,X_n) = \frac{1}{Z} \prod_{c \in C(H)} \psi_c(x_c)$$

- Thm 5.4.2 (soundness): If P is a Gibbs distribution over H, then H is an I-map of P.
- Thm 5.4.3 (Hammersley-Clifford): Let P be a positive distribution (i.e., ∀x.P(x) > 0). If H is an I-map for P, then P can be represented as a Gibbs distribution over H.
- Thm 5.4.5 (completeness): If $\neg sep_H(X;Y|Z)$, then $X \not\perp_P Y|Z$ in some P that factorizes over H.

- For directed graphs, we defined I-maps in terms of local Markov properties, and derived global independence.
- For undirected graphs, we defined I-maps in terms of global Markov properties, and will now derive local independence.
- \bullet Defn: The pairwise markov independencies associated with UG H=(V,E) are

$$I_p(H) = \{(X \perp Y) | V \setminus \{X,Y\} : \{X,Y\} \not \in E\}$$

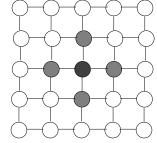
• e.g., $X_1 \perp X_5 | \{X_2, X_3, X_4\}$

• Defn: The local markov independencies associated with UG H = (V, E) are

 $I_l(H) = \{(X \perp V \setminus \{X\} \setminus N_H(X) | N_H(X)) : X \in V\}$

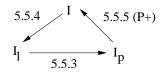
where ${\cal N}_{{\cal H}}(X)$ are the neighbors

- e.g., $X_1 \perp \{X_3, X_4, X_5\} | X_2$
- $N_H(X)$ is also called the Markov blanket of X.



Relationship	BETWEEN	LOCAL	AND	GLOBAL	Markov
PROPERTIES					

- Thm 5.5.3. If $P \models I_l(H)$ then $P \models I_p(H)$.
- Thm 5.5.4. If $P \models I(H)$ then $P \models I_l(H)$.
- Thm 5.5.5. If P > 0 and $P \models I_p(H)$, then $P \models I(H)$.
- Corollary 5.5.6: If P > 0, then $I_l = I_p = I$.
- If $\exists x. P(x) = 0$, then we can construct an example (using deterministic potentials) where $I_p \neq I_l$ or $I_l \neq I$.



I-MAPS FOR UNDIRECTED GRAPHS

- Defn: A Markov network *H* is a **minimal I-map** for *P* if it is an I-map, and if the removal of any edge from *H* renders it not an I-map.
- How can we construct a minimal I-map from a positive distribution *P*?
- \bullet Pairwise method: add edges between all pairs X,Y s.t.

 $P \not\models (X \perp Y | V \setminus \{X, Y\})$

• Local method: add edges between X and all $Y \in MB_P(X)$, where $MB_P(X)$ is the minimal set of nodes U s.t.

 $P \models (X \perp V \setminus \{X\} \setminus U | U)$

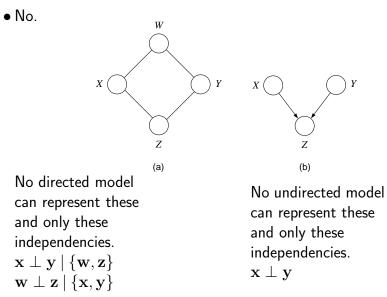
- \bullet Thm 5.5.11/12: both methods induce the unique minimal I-map.
- If $\exists x.P(x) = 0$, then we can construct an example where either method fails to induce an I-map.

 \bullet Defn: A Markov network H is a perfect map for P if for any X,Y,Z we have that

 $sep_{H}(X;Y|Z) \iff P \models (X \perp Y|Z)$

- Thm: not every distribution has a perfect map.
- Pf by counterexample. No undirected network can capture all and only the independencies encoded in a v-structure $X \rightarrow Z \leftarrow Y$.

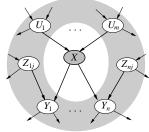
• Can we always convert directed \leftrightarrow undirected?



EXPRESSIVE POWER

Converting Bayes nets to Markov nets

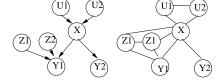
- Defn: A Markov net H is an I-map for a Bayes net G if $I(H)\subseteq I(G).$
- We can construct a minimal I-map for a BN by finding the minimal Markov blanket for each node.
- We need to block all active paths coming into node X, from parents, children, and co-parents; so connect them all to X.



MORALIZATION

• Defn: the moral graph H(G) of a DAG is constructed by adding undirected edges between any pair of disconnected ("unmarried") nodes X,Y

that are parents of a child Z_{γ} and then dropping all remaining arrows.



- \bullet Thm 5.7.5: The moral graph H(G) is the minimal I-map for Bayes net G.
- Pf: moralization loses conditional independence information, and hence is conservative; hence H(G) is an I-map of G. Moralization only introduces where needed to make the semantics of simple separation capture d-separation, hence minimal.
- We assign each CPD to one of the clique potentials that contains it, e.g.

$$P(U, X, Y, Z) = \frac{1}{Z} \psi(U, X) \times \psi(X, Y, Z)$$

= $\frac{1}{1} P(U) P(X|U) \times P(Y) P(Z|X, Y)$
= $P(X, U) \times P(Z|X, Y) P(Y)$
 (U)
 (X) (Y) (X) (Y) (X) (Y)

΄Ζ)

 $\left(\mathbf{Z} \right)$

ALTERNATIVE TO D-SEPARATION

- Thm 5.7.7. Let X, Y, Z be 3 disjoint sets of nodes in DAG G. Let $U = X \cup Y \cup Z$, let $G^+[U]$ be the induced DAG over Ancestors(U), and let $H' = \text{moralize}(G^+[U])$ be the moralized ancestral subgraph. Then $dsep_G(X;Y|Z) \iff sep_{H'}(X;Y|Z)$.
- Example: $dsep_G(Z_1; U_1|Y_1)$?

