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Administrivia

• Class web page http://www.cs.ubc.ca/∼murphyk
/Teaching/CS532c Fall04/index.html

• Send email to ’majordormo@cs.ubc.ca’ with the contents
’subscribe cpsc535c’ to join class list.
(Note: email address does not correspond to correct class number!)

• Homework due in class on Monday 20th.

•Monday’s class starts at 9.30am as usual.

Review: Probabilistic inference (state estimation)

• Inference is about estimating hidden (query) variables H from
observed (visible) measurements v, which we can do as follows:

P (h|v) =
P (v, h)∑
h′ P (v, h′)

• Examples:

– Medical diagnosis: H diseases, v = findings/ symptoms,

– Speech recognition: H = spoken words, v = acoustic waveform

– Genetic pedigree analysis: H = genotype, v = phenotype

Naive inference

• Represent joint prob. distribution P (C, S,R,W ) as a 4D table
of 24 = 32 numbers.

•We observe the grass is wet and want to know how likely it was that
the sprinkler caused this event.

P (s = 1|w = 1) =
P (s = 1, w = 1)

P (w = 1)

=

∑1
c=0

∑1
r=0P (s = 1, w = 1, R = r, C = c)∑

c,r,s P (S = s, w = 1, R = r, C = c)

Sprinkler?

Cloudy

Rain

WetGrass

•Query/hidden vars = {S}, visible vars = {W},
nuisance vars = {C,R}.



Naive inference

• It is easy to marginalize a joint probability distribution when it is
represented as a table

• e.g., P (X,Y ) =
∑
z P (X,Y, Z)

x

y

z

x

y

zΣ p(x,y)

Graphical models

• Problems with representing joint as a big table

– Representation: big table of numbers is hard to understand.

– Inference: computing a marginal P (Xi) takes O(2N ) time.

– Learning: there are O(2N ) free parameters to estimate.

• Graphical models solve all 3 problems by providing a structured
representation for joint probability distributions.

• Graphs encode conditional independence properties and represent
families of probability distributions that satisfy these properties.

• Today we will study the relationship between graphs and
independence properties.

Independence properties of distributions

• Defn: let I(P ) be the set of independence properties of the form
X ⊥ Y |Z that hold in distribution P .

X Y P(X,Y)
0 0 0.08
0 1 0.32
1 0 0.12
1 1 0.48

P (X = 1) = 0.48 + 0.12 = 0.6

P (Y = 1) = 0.32 + 0.48 = 0.8

P (X = 1, Y = 1) = 0.48 = 0.6× 0.8

P (X = x, Y = y) = P (X = x)P (Y = y)∀x, y

⇒ (X ⊥ Y ) ∈ I(P )

or P |= (X ⊥ Y )

(Local) independence properties of DAGs

• Defn: let Il(G) be the set of local independence properties encoded
by DAG G, namely:

{Xi ⊥ NonDescendants(Xi)|Parents(Xi)}

• i.e., a node is conditionally independent of its non-descendants
given its parents.

• Ancestors(Xi) ⊆ NonDescendants(Xi)
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Example of Il(G)

X

Y

X

Y

G0

X

Y

GX−>Y
GY−>X

Il(G∅) = {(X ⊥ Y )}

Il(GX→Y ) = ∅

Il(GY→X) = ∅

I-maps

• Defn: A DAG G is an I-map (independence-map) of P
if Il(G) ⊆ I(P ).

• From previous example,

Il(G∅) = {(X ⊥ Y )}

Il(GX→Y ) = ∅

Il(GY→X) = ∅

I(P ) = {(X ⊥ Y )}

• Hence all three graphs are I-maps of P .

From I-map to factorization

• Defn: P factorizes according to G if P can be written as

P (X1, . . . , XN ) =
∏

i

P (Xi|PaG(Xi))

• Thm 3.2.6: If G is an I-map of P , then P factorizes according to G.

• Proof:

P (X1:N ) = P (X1)P (X2|X1)P (X3|X1, X2) . . . chain rule

=

N∏

i=1

P (Xi|X1:i−1)

=

N∏

i=1

P (Xi|Pa(Xi),Ancestors(Xi) \ Pa(Xi))

=

N∏

i=1

P (Xi|Pa(Xi)) since G is I-map of P

Bayes nets provide compact representation of joint
probability distributions

• Thm: If G is an I-map of P , then P factorizes according to G.

• Corollary: If G is an I-map of P , then we can represent P using G
and a set of conditional probability distributions (CPDs),
P (Xi|Pa(Xi)), one per node.

• Defn: A Bayesian network (aka belief network)
representing distribution P is an I-map of P and a set of CPDs.

• For binary random variables, the Bayes net takes O(N2K)
parameters (K = max. num. parents), whereas full joint takes
O(2N) parameters.

• Factored representation is easier to understand, easier to learn and
supports more efficient inference (see later lectures).



Water sprinkler

P (X1:N ) =

N∏

i=1

P (Xi|Pa(Xi))

Cloudy

Sprinkler Rain

WetGrass

P (C, S,R,W ) = P (C)P (S|C)P (R|C)P (W |S,R)

From factorization to I-map

• Thm 3.2.8: If P factorizes according to G, then G is an I-map of P .

• Proof: we must show X ⊥W |U

X

Y

U

W

P (X,W |U ) =
P (X,W,U )

P (U )

= =

∑
Y P (X,W,U, Y )

P (U )

=
P (W )P (U |W )P (X|U )

∑
Y P (Y |X,W )

P (U )

=
P (W,U )

P (U )
P (X|U )

∑

Y

P (Y |X,W )

= P (W |U )P (X|U )

Minimal I-maps

• Let G be a fully connected DAG. Then Il(G) = ∅ ⊆ I(P ) for any
P .

• Hence the complete graph is an I-map for any distribution.

• Defn: A DAG G is a minimal I-map for P if it is an I-map for
P , and if the removal of even a single edge from G renders it not an
I-map.

• Construction: pick a node ordering, then let the parents of node Xi

be the minimal subset of U ⊆ {X1, . . . , Xi−1}
s.t. Xi ⊥ {X1, . . . , Xi − 1} \ U |U .

• Defn (revised): A Bayesian network (aka belief network)
representing distribution P is a minimal I-map of P and a set of
CPDs.

Global Markov properties of DAGs

• By chaining together local independencies, we can infer more global
independencies.

• Defn: X is d-separated (directed-separated) from Y given Z if
along every undirected path between X and Y there is a node w
s.t. either

–W has converging arrows (→ w ←) and neither W nor its
descendants are in z; or

–W does not have converging arrows and W ∈ Z.

• Defn: I(G) = all independence properties that correspond to
d-separation:

I(G) = {(X ⊥ Y |Z) : d− sepG(X ;Y |Z)}



Bayes-Ball Rules

A is d-separated from B given C if we cannot send a ball from any
node in A to any node in B according to the rules below, where shaded
nodes are in C.

X Y Z X Y Z

(a) (b)

(a)

X

Y

Z X

Y

Z

(b)

(a)

X

Y

Z

(b)

X

Y

Z

Soundness of d-separation

• Thm 3.3.3 (Soundness): If P factorizes according to G, then
I(G) ⊆ I(P ).

• i.e., any independence claim made by the graph is satisfied by all
distributions P that factorize according to G (no false claims of
independence).

• Pf: see later (when we discuss undirected graphs).

Completeness of d-separation - v1

• Defn (Completeness) v1: For any distribution P that factorizes
over G, if (X ⊥ Y |Z) ∈ I(P ), then dsepG(X ;Y |Z).

• Contrapositive rule: (A⇒ B) ⇐⇒ (¬B ⇒ ¬A).

• Defn (Completeness, contrapositive form) v1. If X and Y are not
d-separated given Z, then X and Y are dependent in all
distributions P that factorize over G.

• This definition of completeness is too strong since P may have
conditional independencies that are not evident from the graph.

• eg. Let G be the graph X → Y , where P (Y |X) is
A B = 0 B = 1
0 0.4 0.6
1 0.4 0.6

•G is I-map of P since I(G) = ∅ ⊆ I(P ) = {(X ⊥ Y )}.

• But the CPD encodes X ⊥ Y which is not evident in the graph.

Completeness of d-separation - v2

• Defn (Completeness) v2: If (X ⊥ Y |Z) in all distributions P that
factorize over G, then dsepG(X ;Y |Z).

• Defn (Completeness, contrapositive form) v2: If X and Y are not
d-separated given Z, then X and Y are dependent in some

distribution P that factorizes over G.

• Thm 3.3.5: d-separation is complete.

• Proof: See Koller & Friedman p90.

• Hence d-separation captures as many of the independencies as
possible (without reference to the particular CPDs) for all
distributions that factorize over some DAG.



P-maps

• Can we find a graph that captures all the independencies in an
arbitrary distribution (and no more)?

• Defn: A DAG G is a perfect map (P-map) for a distribution P
if I(P ) = I(G).

• Thm: not every distribution has a perfect map.

• Pf by counterexample. Suppose we have a model where
A ⊥ C|{B,D}, and B ⊥ D|{A,C}. This cannot be represented
by any Bayes net.

• e.g., BN1 wrongly says B ⊥ D|A, BN2 wrongly says B ⊥ D.

A

D B

C

A

D B

C

D B

C A

Undirected Graphical Models

• Graphs with one node per random variable and edges that connect
pairs of nodes, but now the edges are undirected.

• Defn: Let H be an undirected graph. Then sepH(A;C|B) iff all
paths between A and C go through some nodes in B (simple graph
separation).

XA

XB

XC

• Defn: the global Markov properties of a UG H are

I(H) = {(X ⊥ Y |Z) : sepH(X ;Y |Z)}

• UGs can model symmetric (non-causal) interactions that directed
models cannot.

• aka Markov Random Fields, Markov Networks.

Expressive Power

• Can we always convert directed ↔ undirected?

• No.
W

X Y

Z

X Y

Z

(a) (b)

No directed model
can represent these
and only these
independencies.
x ⊥ y | {w, z}
w ⊥ z | {x,y}

No undirected model
can represent these
and only these
independencies.
x ⊥ y

Conditional Parameterization?

• In directed models, we started with p(X) =
∏
i p(xi|xπi) and we

derived the d-separation semantics from that.

• Undirected models: have the semantics, need parametrization.

•What about this “conditional parameterization”?

p(X) =
∏

i

p(xi|xneighbours(i))

• Good: product of local functions.
Good: each one has a simple conditional interpretation.
Bad: local functions cannot be arbitrary, but must agree properly in
order to define a valid distribution.



Marginal Parameterization?

•OK, what about this “marginal parameterization”?

p(X) =
∏

i

p(xi,xneighbours(i))

• Good: product of local functions.
Good: each one has a simple marginal interpretation.
Bad: only very few pathalogical marginals on overalpping nodes can
be multiplied to give a valid joint.

Clique Potentials

•Whatever factorization we pick, we know that only connected
nodes can be arguments of a single local function.

• A clique is a fully connected subset of nodes.

• Thus, consider using a product of clique potentials:

P(X) =
1

Z

∏

cliques c

ψc(xc) Z =
∑

X

∏

cliques c

ψc(xc)

• Each clique potential ψc(xc) > 0 is an arbitrary positive function of
its arguments.

• The normalization term Z is called the partition function (a
function of the parameters ψ) and ensures

∑
x P(x) = 1.

•Without loss of generality we can restrict ourselves to maximal

cliques. (Why?)

• A distribution P that is representable by a UG H in this way is
called a Gibbs distribution over H.

Examples of Clique Potentials
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Interpretation of Clique Potentials

X Y Z

• The model implies x ⊥ z | y

p(x,y, z) = p(y)p(x|y)p(z|y)

•We can write this as:

p(x,y, z) = p(x,y)p(z|y) = ψxy(x,y)ψyz(y, z)

p(x,y, z) = p(x|y)p(z,y) = ψxy(x,y)ψyz(y, z)

cannot have all potentials be marginals
cannot have all potentials be conditionals

• The positive clique potentials can only be thought of as general
“compatibility”, “goodness” or “happiness” functions over their
variables, but not as probability distributions.


