Probabilistic graphical models
CPSC 532C (Topics in AI)
Stat 521A (Topics in multivariate analysis)

Lecture 2

Kevin Murphy

Wednesday 15 September, 2004

Review: Probabilistic inference (State estimation)

- Inference is about estimating hidden (query) variables H from observed (visible) measurements v, which we can do as follows:

$$
P(h \mid v)=\frac{P(v, h)}{\sum_{h^{\prime}} P\left(v, h^{\prime}\right)}
$$

- Examples:
- Medical diagnosis: H diseases, $v=$ findings/ symptoms,
- Speech recognition: $H=$ spoken words, $v=$ acoustic waveform
- Genetic pedigree analysis: $H=$ genotype, $v=$ phenotype
(vile) meanus
-Geneic pedigree analysis: $H=$ genotype, $v=$ phenotype
- Class web page http://www.cs.ubc.ca/~murphyk /Teaching/CS532c_Fall04/index.html
- Send email to 'majordormo@cs.ubc.ca' with the contents 'subscribe cpsc535c' to join class list.
(Note: email address does not correspond to correct class number!)
- Homework due in class on Monday 20th.
- Monday's class starts at 9.30am as usual.

Naive inference

- Represent joint prob. distribution $P(C, S, R, W)$ as a 4D table of $2^{4}=32$ numbers.
- We observe the grass is wet and want to know how likely it was that the sprinkler caused this event.

$$
\begin{aligned}
& P(s=1 \mid w=1)=\frac{P(s=1, w=1)}{P(w=1)} \\
& =\frac{\sum_{c=0}^{1} \sum_{r=0}^{1} P(s=1, w=1, R=r, C=c)}{\sum_{c, r, s} P(S=s, w=1, R=r, C=c)}
\end{aligned}
$$

- Query/hidden vars $=\{S\}$, visible vars $=\{W\}$, nuisance vars $=\{C, R\}$.
- It is easy to marginalize a joint probability distribution when it is represented as a table
- e.g., $P(X, Y)=\sum_{z} P(X, Y, Z)$

x

Independence properties of distributions

- Defn: let $I(P)$ be the set of independence properties of the form $X \perp Y \mid Z$ that hold in distribution P.

$$
\begin{aligned}
& \begin{array}{cc|c}
X & Y & P(X, Y) \\
\hline 0 & 0 & 0.08
\end{array} \\
& \begin{array}{lll}
0 & 1 & 0.32
\end{array} \\
& 100.12 \\
& \begin{array}{ll|l}
1 & 1 & 0.48
\end{array} \\
& P(X=1)=0.48+0.12=0.6 \\
& P(Y=1)=0.32+0.48=0.8 \\
& P(X=1, Y=1)=0.48=0.6 \times 0.8 \\
& P(X=x, Y=y)=P(X=x) P(Y=y) \forall x, y \\
& \Rightarrow \quad(X \perp Y) \in I(P) \\
& \text { or } \quad P \models(X \perp Y)
\end{aligned}
$$

- Problems with representing joint as a big table
- Representation: big table of numbers is hard to understand.
- Inference: computing a marginal $P\left(X_{i}\right)$ takes $O\left(2^{N}\right)$ time.
- Learning: there are $O\left(2^{N}\right)$ free parameters to estimate.
- Graphical models solve all 3 problems by providing a structured representation for joint probability distributions.
- Graphs encode conditional independence properties and represent families of probability distributions that satisfy these properties.
- Today we will study the relationship between graphs and independence properties.
(Local) independence properties of DAGs
- Defn: let $I_{l}(G)$ be the set of local independence properties encoded by DAG G, namely:

$$
\left\{X_{i} \perp \operatorname{NonDescendants}\left(X_{i}\right) \mid \operatorname{Parents}\left(X_{i}\right)\right\}
$$

- i.e., a node is conditionally independent of its non-descendants given its parents.
- Ancestors $\left(X_{i}\right) \subseteq$ NonDescendants $\left(X_{i}\right)$

From I-map to factorization

- Defn: P factorizes according to G if P can be written as

$$
P\left(X_{1}, \ldots, X_{N}\right)=\prod_{i} P\left(X_{i} \mid \operatorname{Pa}_{G}\left(X_{i}\right)\right)
$$

- Thm 3.2.6: If G is an I-map of P, then P factorizes according to G.
- Proof:

$$
\begin{aligned}
P\left(X_{1: N}\right) & =P\left(X_{1}\right) P\left(X_{2} \mid X_{1}\right) P\left(X_{3} \mid X_{1}, X_{2}\right) \ldots \text { chain rule } \\
& =\prod_{i=1}^{N} P\left(X_{i} \mid X_{1: i-1}\right) \\
& =\prod_{i=1}^{N} P\left(X_{i} \mid \mathrm{Pa}\left(X_{i}\right), \text { Ancestors }\left(X_{i}\right) \backslash \mathrm{Pa}\left(X_{i}\right)\right) \\
& =\prod_{i=1}^{N} P\left(X_{i} \mid \mathrm{Pa}\left(X_{i}\right)\right) \text { since } G \text { is I-map of } P
\end{aligned}
$$

- Defn: A DAG G is an I-map (independence-map) of P if $I_{l}(G) \subseteq I(P)$.
- From previous example,

$$
\begin{aligned}
I_{l}\left(G_{\emptyset}\right) & =\{(X \perp Y)\} \\
I_{l}\left(G_{X \rightarrow Y}\right) & =\emptyset \\
I_{l}\left(G_{Y \rightarrow X}\right) & =\emptyset \\
I(P) & =\{(X \perp Y)\}
\end{aligned}
$$

- Hence all three graphs are I-maps of P.

Bayes nets provide compact representation of joint PROBABILITY DISTRIBUTIONS

- Thm: If G is an I-map of P, then P factorizes according to G.
- Corollary: If G is an I-map of P, then we can represent P using G and a set of conditional probability distributions (CPDs), $P\left(X_{i} \mid \mathrm{Pa}\left(X_{i}\right)\right)$, one per node.
- Defn: A Bayesian network (aka belief network) representing distribution P is an I-map of P and a set of CPDs.
- For binary random variables, the Bayes net takes $O\left(N 2^{K}\right)$ parameters ($K=$ max. num. parents), whereas full joint takes $O\left(2^{N}\right)$ parameters.
- Factored representation is easier to understand, easier to learn and supports more efficient inference (see later lectures).
- Thm 3.2.8: If P factorizes according to G, then G is an I-map of P.
- Proof: we must show $X \perp W \mid U$

$$
\begin{aligned}
P(X, W \mid U) & =\frac{P(X, W, U)}{P(U)} \\
& ==\frac{\sum_{Y} P(X, W, U, Y)}{P(U)} \\
& =\frac{P(W) P(U \mid W) P(X \mid U) \sum_{Y} P(Y \mid X, W)}{P(U)} \\
& =\frac{P(W, U)}{P(U)} P(X \mid U) \sum_{Y} P(Y \mid X, W) \\
& =P(W \mid U) P(X \mid U)
\end{aligned}
$$

Global Markov properties of DAGs

- By chaining together local independencies, we can infer more global independencies.
- Defn: X is d-separated (directed-separated) from Y given Z if along every undirected path between X and Y there is a node w s.t. either
$-W$ has converging arrows $(\rightarrow w \leftarrow)$ and neither W nor its descendants are in z; or
$-W$ does not have converging arrows and $W \in Z$.
- Defn: $I(G)=$ all independence properties that correspond to d-separation:

$$
I(G)=\left\{(X \perp Y \mid Z): d-\operatorname{sep}_{G}(X ; Y \mid Z)\right\}
$$

A is d-separated from B given C if we cannot send a ball from any node in A to any node in B according to the rules below, where shaded nodes are in C.

(a)

${ }^{(b)}{ }_{Y}$

(b)

Completeness of D-Separation - V1

- Defn (Completeness) v1: For any distribution P that factorizes over G, if $(X \perp Y \mid Z) \in I(P)$, then $\operatorname{dsep}_{G}(X ; Y \mid Z)$.
- Contrapositive rule: $(A \Rightarrow B) \Longleftrightarrow(\neg B \Rightarrow \neg A)$.
- Defn (Completeness, contrapositive form) v1. If X and Y are not d-separated given Z, then X and Y are dependent in all distributions P that factorize over G.
- This definition of completeness is too strong since P may have conditional independencies that are not evident from the graph.
- eg. Let G be the graph $X \rightarrow Y$, where $P(Y \mid X)$ is

$$
\begin{array}{c|cc}
A & B=0 & B=1 \\
\hline 0 & 0.4 & 0.6
\end{array}
$$

- G is I-map of P since $I(G)=\emptyset \subseteq I(P)=\{(X \perp Y)\}$.
- But the CPD encodes $X \perp Y$ which is not evident in the graph.
- Thm 3.3.3 (Soundness): If P factorizes according to G, then $I(G) \subseteq I(P)$.
- i.e., any independence claim made by the graph is satisfied by all distributions P that factorize according to G (no false claims of independence).
- Pf: see later (when we discuss undirected graphs).

Completeness of D-Separation - V2

- Defn (Completeness) v2: If $(X \perp Y \mid Z)$ in all distributions P that factorize over G, then $\operatorname{dsep}_{G}(X ; Y \mid Z)$.
- Defn (Completeness, contrapositive form) v2: If X and Y are not d-separated given Z, then X and Y are dependent in some distribution P that factorizes over G.
- Thm 3.3.5: d-separation is complete.
- Proof: See Koller \& Friedman p90.
- Hence d-separation captures as many of the independencies as possible (without reference to the particular CPDs) for all distributions that factorize over some DAG.
- Can we find a graph that captures all the independencies in an arbitrary distribution (and no more)?
- Defn: A DAG G is a perfect map (P-map) for a distribution P if $I(P)=I(G)$.
- Thm: not every distribution has a perfect map.
- Pf by counterexample. Suppose we have a model where $A \perp C \mid\{B, D\}$, and $B \perp D \mid\{A, C\}$. This cannot be represented by any Bayes net.
- e.g., BN 1 wrongly says $B \perp D \mid A$, BN 2 wrongly says $B \perp D$.

Expressive Power

- Can we always convert directed \leftrightarrow undirected?
- No.

(a)

No directed model can represent these and only these independencies.
$\mathbf{x} \perp \mathbf{y} \mid\{\mathbf{w}, \mathbf{z}\}$
$\mathbf{w} \perp \mathbf{z} \mid\{\mathbf{x}, \mathbf{y}\}$

(b)

No undirected model can represent these and only these independencies. $\mathrm{x} \perp \mathrm{y}$

- Graphs with one node per random variable and edges that connect pairs of nodes, but now the edges are undirected.
- Defn: Let H be an undirected graph. Then $\operatorname{sep}_{H}(A ; C \mid B)$ iff all paths between A and C go through some nodes in B (simple graph separation).

- Defn: the global Markov properties of a UG H are

$$
I(H)=\left\{(X \perp Y \mid Z): \operatorname{sep}_{H}(X ; Y \mid Z)\right\}
$$

- UGs can model symmetric (non-causal) interactions that directed models cannot.
- aka Markov Random Fields, Markov Networks.

Conditional Parameterization?

- In directed models, we started with $p(\mathbf{X})=\prod_{i} p\left(\mathbf{x}_{i} \mid \mathbf{x}_{\pi_{i}}\right)$ and we derived the d-separation semantics from that.
- Undirected models: have the semantics, need parametrization.
- What about this "conditional parameterization"?

$$
p(\mathbf{X})=\prod_{i} p\left(\mathbf{x}_{i} \mid \mathbf{x}_{\text {neighbours }(i)}\right)
$$

- Good: product of local functions.

Good: each one has a simple conditional interpretation.
Bad: local functions cannot be arbitrary, but must agree properly in order to define a valid distribution.

- OK, what about this "marginal parameterization"?

$$
p(\mathbf{X})=\prod_{i} p\left(\mathbf{x}_{i}, \mathbf{x}_{\text {neighbours }(i)}\right)
$$

- Good: product of local functions.

Good: each one has a simple marginal interpretation.
Bad: only very few pathalogical marginals on overalpping nodes can be multiplied to give a valid joint.

Examples of Clique Potentials

(a)

\[

\]

(b)

- Whatever factorization we pick, we know that only connected nodes can be arguments of a single local function.
- A clique is a fully connected subset of nodes.
- Thus, consider using a product of clique potentials:

$$
\mathrm{P}(\mathbf{X})=\frac{1}{Z} \prod_{\text {cliques } c} \psi_{c}\left(\mathbf{x}_{c}\right) \quad Z=\sum_{\mathbf{X}} \prod_{\text {cliques } c} \psi_{c}\left(\mathbf{x}_{c}\right)
$$

- Each clique potential $\psi_{c}\left(\mathbf{x}_{c}\right)>0$ is an arbitrary positive function of its arguments.
- The normalization term Z is called the partition function (a function of the parameters ψ) and ensures $\sum_{\mathbf{x}} \mathrm{P}(\mathrm{x})=1$.
- Without loss of generality we can restrict ourselves to maximal cliques. (Why?)
- A distribution P that is representable by a UG H in this way is called a Gibbs distribution over H.

Interpretation of Clique Potentials

- The model implies $\mathbf{x} \perp \mathbf{z} \mid \mathbf{y}$

$$
p(\mathbf{x}, \mathbf{y}, \mathbf{z})=p(\mathbf{y}) p(\mathbf{x} \mid \mathbf{y}) p(\mathbf{z} \mid \mathbf{y})
$$

- We can write this as:

$$
\begin{aligned}
p(\mathbf{x}, \mathbf{y}, \mathbf{z}) & =p(\mathbf{x}, \mathbf{y}) p(\mathbf{z} \mid \mathbf{y})
\end{aligned}=\psi_{\mathbf{x y}}(\mathbf{x}, \mathbf{y}) \psi_{\mathbf{y z}}(\mathbf{y}, \mathbf{z}), ~(\mathbf{x}, \mathbf{y}, \mathbf{z})=p(\mathbf{x} \mid \mathbf{y}) p(\mathbf{z}, \mathbf{y})=\psi_{\mathbf{x y}}(\mathbf{x}, \mathbf{y}) \psi_{\mathbf{y z}}(\mathbf{y}, \mathbf{z}) .
$$

cannot have all potentials be marginals cannot have all potentials be conditionals

- The positive clique potentials can only be thought of as general "compatibility", "goodness" or "happiness" functions over their variables, but not as probability distributions.

