LECTURE 21 (LAST ONE!):

REVIEW

Kevin Murphy
1 December 2004

JORDAN CHAPTERS

KOLLER & FRIEDMAN CHAPTERS
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Cond. Indep and factorization

The elimination algorithm

Prob. propagation and factor graphs
Statistical concepts

Linear regression and LMS

Linear classification

Exponential family and GLIMs
Completely observed GMs (IPF, etc)
Mixtures and conditional mixtures
The EM algorithm

HMMs

The multivariate Gaussian

Factor analysis

Kalman filtering and smoothing
Markov properties of graphs

2 y Foundations (math review)

3 y The BN representation (Bayes ball, I-maps)

4 y Local probabilistic models (CPDs, CSI)

5 y Undirected GMs (BN < MN)

6 y Inference with GMs (overview)

7 y Variable elimination

8 y Clique trees

9 y Particle based approximations

10 n Inference as optimization (unfinished)

11 n Inference in hybrid networks

12 y Learning: introduction

13y Parameter estimation (fully obs. BNs)

14 y Structure learning in BNs

15 vy Partially observed data (EM for BNs)
JORDAN CHAPTERS CONT'D

Chap. Handout Title

17 n The junction tree algorithm

18 n HMM and state space models revisited

19 y Features, maxent and duality

20 y lterative scaling algorithms

21 n Sampling methods

22 n Decision graphs

23 n Bio-informatics



WHAT WE COVERED 1 WHAT WE COVERED 2

e 1 node models e Chains
— Coins/dice (Dirichlet priors), Gaussians, exponential family —HMMs, forwards-backwards algorithm, EM
— Bayesian vs frequentist (ML/MAP) estimation —LDS, Kalman filter, EM
— Bayesian model selection (Occam'’s razor) — EKF, UKF, particle filtering, RB PF
e 2 node BNs o Trees
— Linear regression — Belief propagation
— Linear classification (logistic regression) — Structure learning (max spanning tree)

— Generalized linear models (GLIMs)
— Mixture models: MoG, K-means, EM
— Latent variable models: PCA, FA

e 3 node BNs

— Mixtures of FA
— Mixtures of experts

WHAT WE COVERED 3 WHAT WE COVERED 4

e General graphs: representation e General BNs: structure learning

—Independence properties (Bayes Ball, I-maps) — Search and score

— Directed vs undirected graphs, chordal graphs — Partial observability (structural EM, variational Bayes EM)
e General graphs: exact inference e General GMs: stochastic approximations

— Variable elimination — Likelihood weighting, Gibbs sampling, Metropolis Hastings

— Junction tree e General GMs: variational approximations
e General graphs: parameter learning — Mean field, structured, loopy belief propagation

— Bayesian param. est. for fully observed BNs e Applications

—ML for latent BNs (EM) —SLAM, tracking, image labeling (CRFs), language modeling

— ML for fully observed UGs (IPF) (HMMs)
— ML for fully observed CRFs (conjugate gradient)



SOME THINGS WE DIDN’T COVER

1 NODE MODELS

e Swendsen-Wang sampling, perfect sampling, details of MCMC
e Generalized BP, theory of BP, cluster variational methods

e Details of expectation propagation (EP)

e Forwards propagation/ backwards sampling

e Non-parametric Bayes (Dirichlet process, Gaussian process)

e Quickscore/ QMR-DT and other speedup tricks (e.g., lazy Jtree)
e Decision making (influence diagrams, LIMIDS, POMDPs etc)
e First order probabilistic inference (FOPI)

e Causality

e Frequentist hypothesis testing
e Conditional Gaussian models (mixed/ hybrid GMs)

e Applications to error correcting codes, biology, vision, speech

CoINS (BERNOULLI TRIALS)

e We observe M iid coin flips: D=H,H, T H,...

e Model: p(H) =6 p(T)=(1-20)

e We want to estimate 6 from D.

e Frequentist (maximum likelihood) approach (point estimate):
Or1 = argmaxy ¢(0; D)

where

0(6; D) = logp(D|0) = Zlogp ("™(0)

e Bayesian approach
p(D]0)p(6)
9|p) = D)
p(6D) p(D)

likelihood x prior

or

osterior =
P marginal likelihood

e Jordan ch 5, 8, 13; Mackay ch 3, 23, 37
e Coins/dice, Gaussians, exponential family
e Bayesian vs frequentist (ML/MAP) estimation

e Bayesian vs classical hypothesis testing

MLE rOr BErRNOULLI TRIALS (L10)

o Likelihood:
0(0;D) = logp(D|0) = logH@X (1—6)!
zlogQZX +10g(1—9)2(1—x )

m

m
= log O Ny + log(1 — )N

e Take derivatives and set to zero:

ot _Nuy _ Np
o0 0 1—-46
Ny
== N vy

@ The counts Ny = > 2" and Ny = > (1 — 2) are sufficient
statistics of the data D.



BAYESIAN ESTIMATION FOR BERNOULLI TRIALS (L11)

e Likelihood
P(D|9) = 6NH(1 — g)NT

e Conjugate Beta Prior

Plbla) = B8t ) & Sl (1 - gy
e Posterior
PO|D,a) = © (QI’DO(‘E;? 9)
= 1 904;7,*19]\[;,,(1 _ g)afflu . Q)Nt

Z(ap, at)P(D]a)
= 8(9; ayp + Ny, o + Nt)

p
aptog”

e Posterior mean Ff =

BAYESIAN HYPOTHESIS TESTING

EXAMPLE OF CLASSICAL HYPOTHESIS TESTING (1.15)

e We want to compute the posterior ratio of the 2 hypotheses:

P(H{|D)  P(D|Hy)P(H)

P(Hy|D)  P(D|Hy)P(Hy)
e Let us assume a uniform prior P(Hy) = P(H1) = 0.5.

e Then we just focus on the ratio of the marginal likelihoods:
1
POl = [ do P(DIg. 1) Pl6|HY
0

e For H(), there is no free parameter, so
P(D|Hp) = 0.5

where NN is the number of coin tosses in D.

e When spun on edge N = 250 times, a Belgian one-euro coin came
up heads Y = 140 times and tails 110.

e We would like to distinguish two models, or hypotheses: H; means
the coin is unbiased (so p = 0.5); H means the coin is biased (has
probability of heads p # 0.5).

e p-value is “less than 7%": p = P(Y > 140)+ P(Y < 110) = 0.066:

n=250; p = 0.5; y = 140;
p = (1-binocdf(y-1,n,p)) + binocdf(n-y,n,p)

o If Y = 141, we get p = 0.0497, so we can reject the null hypothesis
at significance level 0.05.

e But is the coin really biased?

SO, IS THE COIN BIASED OR NOT?

e We plot the Bayes factor vs hyperparameter a:

2
18
16
14
12

. _ P(HD) . .
e For a uniform prior, PUHD) = 0.48, (weakly) favoring the fair coin

hypothesis H)!
e At best, for a = 50, we can make the biased hypothesis twice as
likely.

e Not as dramatic as saying “we reject the null hypothesis (fair coin)
with significance 6.6%" .



FROM COINS TO DICE MLE rOR UNIVARIATE NORMAL (L10)

e Likelihood: binomial — multinomial e We observe M iid real samples: D=1.18,-.25,.78,. ..
P(DI|f) = H 0, o Model: p(z) = (2702) V2 exp{—(z — 1)2/202}
e Prior: beta — Dirichlet * Log likelihood:
Pla) = HQ%_I 0(0; D) = logp(D|0) o
=——1Io 27r0 — lz
where H [(ay) 2 ol 2
Z(d) = F(Z ) e Take derivatives and set to zero:
e Posterior: beta — Dirichlet au = (1/‘7 )Zm(xm 1)
e Evidence (marginal likelihood) = v = (I/M)Y -, om
P(D|a) = 2@+ N) _LiT(ei+ Ni)  To,0) ox, = (/M) X (@m — i)
Z(a) [Li M) T2 i+ N;)
FuN wiTH GAUSSIANS EXPONENTIAL FamiLy (L4, L10)
e Bayesian estimation of 1D Gaussian (homework 5) e For a numeric random variable x
e MLE for multivariate Gaussian (Jordan ch 13) p(x|n) = h(x) exp{nTT(x) — A(n)}
e Bayesian estimation for multivariate Gaussian (Minka TR) _ 1 h(x) exp{n T (x)}

~ Z(n)
is an exponential family distribution with
natural (canonical) parameter 7).

e Inference with multivariate Gaussians (Jordan ch 13)

e Moment vs canonical parameters (Jordan ch 13)

e Function T'(x) is a sufficient statistic.
e Function A(n) = log Z(n) is the log normalizer.
e Examples: Bernoulli, multinomial, Gaussian, Poisson, gamma,...

e A distribution p(z) has finite sufficient statistics (independent of
number of data cases) iff it is in the exponential family.

e See Jordan ch 8



2 NODE BAYES NETS

e Linear regression (Jordan ch 6)

e Linear classification (logistic regression; Jordan ch 7)
e Generalized linear models (GLIMs; Jordan ch 8)

e Mixture models: MoG, K-means, EM (Jordan ch 10)
e Latent variable models: PCA, FA (Jordan ch 14)

MLE rFOrR LINEAR REGRESSION

LINEAR REGRESSION (L11)

e For vector outputs,

-1
A= Sy xSy
where Sy 1 =>" yme;L and Sy xr=>_,, xmx;;.

e In the special case of scalar outputs, let A = 67, and the design
matrix X = [z]] stacked as rows and Y = [y;,,] a column vector.

Then we get the normal equations
0= (xTx)"'xTy

\

BAYESIAN 1D LINEAR REGRESSION

B

L5

Y.

e For scalar (1D) output

p(ynlwn, 0,0%)p(B]1, 7°)p(0” |, 3)
Gaussian X Gaussian x Gamma

e For vector output

P(yn|n, A, 2)p(Alp, 72)p(S| e, B)
Gaussian X matrix-Gaussian X Wishart

e See Tom Minka tutorial



LOGISTIC REGRESSION (L4)

n
P(Y =1Xy,.... Xy) = o(wy+ »_w;X;)
1=1
P(Y =1) vs number of X's that are on vs w

e a: 1D sigmoid
ob: wy=0

ec: wy = —9H

ed: w and wq are
multiplied by 10

FACTOR ANALYSIS (L17)

GENERALIZED LINEAR MODELS

e Unsupervised linear regression is called factor analysis.
px) = N(z:;0,1)
plyle) = N(y:p+ Az, V)

where A is the factor loading matrix and WV is diagonal.
VA

y?

X v / J

e To generate data, first generate a point within the manifold then

add noise. Coordinates of point are components of latent variable.

e PCA (Karhunen-Loeve Transform) is zero noise limit of FA.

Canonical CPDs for X — Y (L4)

Xy p(YIX)
R" R™ Gauss(Y; WX + p, %)
R" {0,1} Bernoulli(Y; p = 1 19T )
+e T
{0,1}*  {0,1} Bernoulli(Y; p = . 19T )
+e
R™ {1,..., K} Multinomial(Y’;p; = softmax(z, 0))

Learn using IRLS or conjugate gradient (L11)

MIXTURES OF GAUSSIANS (L12)

e Mixture of Gaussians:
P(Z =) = 6;
p(X =2|Z = i) = N(w; pi, 24)
e This can be used for classifica-
tion (supervised) and clustering/ vector quantization (unsupervised).

Z
ot
o.o. \d
oy ®
s
o
X

e We can find MLE/MAP estimates of the parameters using EM.

e K-means is a deterministic approximation (vector quantization).



3 NODE BAYES NETS (L12)

CHAINS

e Mixtures of experts

e Mixtures of factor analysers

FORWARDS-BACKWARDS ALGORITHM (L8)

e HMMs (Jordan ch 12, Rabiner tutorial)
e LDS (Jordan ch 15, handouts on web)

e Nonlinear state space models (my DBN tutorial)

LEARNING AN HMM (L10, L12)

O O
==~ -

O/ 0o
Z&t 1A, ) Be(j)
(ATOét 1)- *Bt
Zﬁﬁl (2, 7) B+1(7)

By = (5t+1- * Byy1)
(i, ) = (i) Bri1(3) A, 5) Bia(J)

& = <Oét(5t+1- * Bt+1)T> kA
V(i) oc ay(i)Be(5)

Yo X .k By

\u,

\V

E

//Gm

e Consider a time-invariant hidden Markov model (HMM)

— State transition matrix A(%, j) def P(Xt = 7| X1 =1),

— Discrete observatlon matrix B(i, ]) P(Yt = j| Xt =1)

— State prior 7 (i ) = P(X1 =1).
e If all nodes are observed, we can find the globally optimal MLE.
e Otherwise using EM (aka Baum Welch).



KALMAN FILTER (L17, LL18)

o LDS model: z = Axy_ +v¢, yr = Cay+ wy
e Time update (prediction step):

T
Tyjpo1 = Az 1 Py = AP 1A HQ, 1 = Oy

e Measurement update (correction step):
Yt = Yt — Yg|t—1 (error/ innovation)
Py, = C’Pt|t_1CT + R (covariance of error)
Py = Pt|t_1C’T (cross covariance)
- 1 . .
Kt = Pyy, Py, (Kalman gain matrix)
Ty = Ty + Kelye — 1)

T
Pt|t = Pt|t—1 - Kt‘thyt

KF FOor SLAM (L18)

e State is location of robot and landmarks
Xt = (Ry, L)

e Measure location of subset of landmarks
at each time step.

e Assume everything is linear Gaussian.

e Use Kalman filter to solve optimally.

KF rOR 2D TRACKING (L17)

2D filtering 2D smoothing

—e—  true —e—  true
* observed * observed
-~ smoothed | -—=- smoothed

APPROXIMATE DETERMINSITIC FILTERING (L18)

e Extended Kalman filter (EKF)
e Unscented Kalman filter (UKF)
e Assumed density filter (ADF)
ar Qg exact

_uhlu

a1 Qt  Qyy1 approx



PARTICLE FILTERING (SEQUENTIAL MONTE CARLO) (L.19)

e PF is sequential importance sampling with resampling (SISR).

e Goal is to estimate P(x1.¢|y1.+) recursively (online) for a state-space
model for which Kalman filter/ HMM filter is inapplicable.

weighted prior @ ® @ e P(x(t-1)ly(l:t-1))
proposal >< / >K P(x(t)Ix(t-1))
e o e o ¢ o Px(t)ly(l:t-1))

unweighted I

prediction
weighting P(y(t) | x(t))

weighted

posterior e e T ®  P(x(t) ly(l:t)
resample

P(x(t) | y(1:t))

unweighted
posterior

GENERAL GRAPHS

TREES

e Inference (belief propagation): L9, Yedidia tutorial
e Structure learning (max weight spanning tree): L16

e Application: KF trees for multiscale image analysis (skipped)

X

N

O
X
XG,n

2n

X5J‘I

ExAMPLE BN: WATER SPRINKLER (L1)

e Representation: Markov properties, CPDs, log linear models
e Exact inference: var elim, Jtree

e Fully observed param learning

o Fully observed structure learning

e Partially observed param learning

e Approximate inference

N
P(Xy.n) = [ [ P(XilPa(Xy))
i1

P(C,S,R,W) = P(C)P(S|C)P(R|C)P(W|S, R)



BAYES NET FOR GENETIC PEDIGREE ANALYSIS (L1) GLOBAL MARKOV PROPERTIES FOR DGs: BAves-BaLL (L2)

A is d-separated from B given C' if we cannot send a ball from any
node in A to any node in B according to the rules below, where shaded
e B; € {a,b,0,ab} = phenotype (blood type) of person i nodes are in C.

e G; € {a,b,0} x {a,b,0} = genotype (allele) of person i

o @/%\@
O
X @ zZ X ® zZ
IRV
@
(@ (b)
MARKOV PROPERTIES FOR UGs (L3) CONVERTING BAYES NETS TO MARKOV NETS (L3)
e Defn: the global Markov properties of a UG H are e Defn: A Markov net H is an I-map for a Bayes net G if
I(H) = {(X LY|Z): sepp(X:Y|2)} aene. o N
e Defn: The local markov independencies are * Xﬂvzrﬁz\r: ETannSi;chZfer;](l-_r}:”:j(lj:map for a BN by finding the minimal
L(H) = {(X LVA{XI\ Ng(X)|Np(X)): X € V] e We need to block all active paths coming into node
where N (X) are the neighbors ( Markov blanket X, from parents, children, and co-parents; so connect them all to X .

Ll




CHORDAL GRAPHS (L4)

e Chordal graphs encode independencies that can be exactly
represented by either directed or undirected graphs.

e Chain graphs combine directed and undirected graphs and represent
a larger set of distributions.

Chain graphs

FRrROM BAYES NET TO JTREE (LS8)

VARIABLE ELIMINATION ALGORITHM (L7)

Triangulate

es!
D Gl Gs GL
G|

Jtree

o Key idea 1: push sum inside products.
e Key idea 2: use (non-serial) dynamic programming to cache shared
subexpressions.

P =333 3SNS"N P(C.D,1,G S, L, JH)

L s s H I D C

= Y 33 33N ST PO)P(DIC) P P(GIL, DYP(S|HP(LIG)P(J|L, S)P(H|G, J)

L § G H I D C

= 33NN NN 6e(@)gn(D, C)éi(1éa(G, 1, D)s(S, Dpr(L, G)bs(J, L, S)éu(H, G, J)
L S G H 1 D C
= 3N 6L L) D oL, G) Y du(H, G, )Y 6s(S, Nor(1) Y ¢G 1, D)D" 6c(C)on(D,C)
S G H I D C

L

MESSAGE PASSING ON JTREES (L8, L9)

e Hugin vs Shafer Shenoy
A—B
NS

C—D
N, (e (coe - foE{oes)



MLE FOR FULLY OBSERVED BNs (L10) MLE rOR FULLY OBSERVED UGM (L13)

o If we assume the parameters for each CPD are globally e Is the graph decomposable (triangulated)?
independent, then the log-likelihood function decomposes into a e Are all the clique potentials defined on maximal cliques (not sub-
sum of local terms, one per node: cliques)? e.g., 1193, g4 NOt Y12, 193, . . ..

log p(D|0) = log [ [ [ p(x}"r;, 05) = > > " log p(x]" |, 0;)
" o olc B~ @lc

e Are the clique potentials full tables (or Gaussians), or parameterized
more compactly, e.g., Ye(z¢e) = exp(d ) wi fr(ze))?
Decomposable? | Max. Cliques| Tabular|Method
Yes Yes Yes Direct
- - Yes IPF
- - - Gradient ascent
- - - lterative scaling

LEARNING CRFs (L14) MLE FOR PARTIALLY OBSERVED BNs (L12)
e Conditional random fields are discriminative models. e Use (conjugate) gradient or EM
e Assuming fully observed training data, learning can be done using e M-step is what we did for the 1 node/2 node BNs

conjugate gradient descent, just as in a regular MRF with
non-maximal cliques.

e Gradient requires computing the partition function, which is (in
general) only tractable for low treewidth models (eg chains).

likelihood

/

parameter space




LEARNING STRUCTURE OF FULLY OBSERVED BNs (L15, L16) LEARNING STRUCTURE OF PARTIALLY OBSERVED BNs (L16)

e Search + score (local search + Occam’s razor) e Search = local search

I T AR
LI LI

e Score = expected BIC (structural EM)
e Score = variational Bayes (VB-EM)

-280

L0t
) L v s 8 : § L
latent wolesel, g8 d} 9%
variables AR R
8 . TRER
St
3000 § { ! y 10 ¢
observed Pl o
variables . i
MONTE CARLO METHODS (L19) VARIATIONAL METHODS (L.20)
e Importance sampling e Iterative Conditional Modes (ICM)
e Particle filtering e Mean field
e RBPF e Structured variational methods
e MCMC: Gibbs sampling and Metropolis Hastings e Loopy belief propagation
D(a. p)
D(p, q)

NN




A Generative Model for Generative Models

SBN,
Boltzmann
Machines

mix : mixture
red-dim : reduced
dimension
dyn : dynamics
distrib : distributed
representation

Factorial HMM

Cooperative
Quantization nonlin : nonlinear

switch : switching

Mixture of
HMMs

Gaussian

Linear
Dynamical
Systems (SSMs)

nonlin

Mixture of
LDSs

Nonlinear
Dynamical
Systems

Nonlinear
Gi

issian




