Koller \& Friedman chapters

Lecture 21 (LAST ONE!):

Review

Kevin Murphy
1 December 2004

Chap.	Handout	Title
2	y	Foundations (math review)
3	y	The BN representation (Bayes ball, I-maps)
4	y	Local probabilistic models (CPDs, CSI)
5	y	Undirected GMs (BN \leftrightarrow MN)
6	y	Inference with GMs (overview)
7	y	Variable elimination
8	y	Clique trees
9	y	Particle based approximations
10	n	Inference as optimization (unfinished)
11	n	Inference in hybrid networks
12	y	Learning: introduction
13	y	Parameter estimation (fully obs. BNs)
14	y	Structure learning in BNs
15	y	Partially observed data (EM for BNs)

Jordan chapters cont'd

Chap.	Handout	Title
17	n	The junction tree algorithm
18	n	HMM and state space models revisited
19	y	Features, maxent and duality
20	y	Iterative scaling algorithms
21	n	Sampling methods
22	n	Decision graphs
23	n	Bio-informatics

- 1 node models
- Coins/dice (Dirichlet priors), Gaussians, exponential family
- Bayesian vs frequentist (ML/MAP) estimation
- Bayesian model selection (Occam's razor)
- 2 node BNs
- Linear regression
- Linear classification (logistic regression)
- Generalized linear models (GLIMs)
- Mixture models: MoG, K-means, EM
- Latent variable models: PCA, FA
- 3 node BNs
- Mixtures of FA
- Mixtures of experts

What we covered 3

- General graphs: representation
- Independence properties (Bayes Ball, I-maps)
- Directed vs undirected graphs, chordal graphs
- General graphs: exact inference
- Variable elimination
- Junction tree
- General graphs: parameter learning
- Bayesian param. est. for fully observed BNs
- ML for latent BNs (EM)
- ML for fully observed UGs (IPF)
- ML for fully observed CRFs (conjugate gradient)
- Chains
- HMMs, forwards-backwards algorithm, EM
- LDS, Kalman filter, EM
- EKF, UKF, particle filtering, RB PF
- Trees
- Belief propagation
- Structure learning (max spanning tree)

What we covered 4

- General BNs: structure learning
- Search and score
- Partial observability (structural EM, variational Bayes EM)
- General GMs: stochastic approximations
- Likelihood weighting, Gibbs sampling, Metropolis Hastings
- General GMs: variational approximations
- Mean field, structured, loopy belief propagation
- Applications
- SLAM, tracking, image labeling (CRFs), language modeling (HMMs)
- Swendsen-Wang sampling, perfect sampling, details of MCMC
- Generalized BP, theory of BP, cluster variational methods
- Details of expectation propagation (EP)
- Forwards propagation/ backwards sampling
- Non-parametric Bayes (Dirichlet process, Gaussian process)
- Quickscore/ QMR-DT and other speedup tricks (e.g., lazy Jtree)
- Decision making (influence diagrams, LIMIDS, POMDPs etc)
- First order probabilistic inference (FOPI)
- Causality
- Frequentist hypothesis testing
- Conditional Gaussian models (mixed/hybrid GMs)
- Applications to error correcting codes, biology, vision, speech

Coins (Bernoulli Trials)

- We observe M iid coin flips: $\mathcal{D}=\mathrm{H}, \mathrm{H}, \mathrm{T}, \mathrm{H}, \ldots$
- Model: $p(H)=\theta \quad p(T)=(1-\theta)$
- We want to estimate θ from D.
- Frequentist (maximum likelihood) approach (point estimate):

$$
\hat{\theta}_{M L}=\operatorname{argmax}_{\theta} \ell(\theta ; \mathcal{D})
$$

where

$$
\ell(\theta ; D)=\log p(D \mid \theta)=\sum_{m} \log p\left(x^{m} \mid \theta\right)
$$

- Bayesian approach

$$
p(\theta \mid \mathcal{D})=\frac{p(\mathcal{D} \mid \theta) p(\theta)}{p(\mathcal{D})}
$$

or

$$
\text { posterior }=\frac{\text { likelihood } \times \text { prior }}{\text { marginal likelihood }}
$$

- Jordan ch 5, 8, 13; Mackay ch 3, 23, 37
- Coins/dice, Gaussians, exponential family
- Bayesian vs frequentist (ML/MAP) estimation
- Bayesian vs classical hypothesis testing

MLE for Bernoulli Trials (L10)

- Likelihood:

$$
\begin{aligned}
\ell(\theta ; \mathcal{D}) & =\log p(\mathcal{D} \mid \theta)=\log \prod_{m} \theta^{\mathrm{x}^{m}}(1-\theta)^{1-\mathbf{x}^{m}} \\
& =\log \theta \sum_{m} \mathbf{x}^{m}+\log (1-\theta) \sum_{m}\left(1-\mathbf{x}^{m}\right) \\
& =\log \theta N_{\mathrm{H}}+\log (1-\theta) N_{\mathrm{T}}
\end{aligned}
$$

- Take derivatives and set to zero:

$$
\begin{aligned}
\frac{\partial \ell}{\partial \theta} & =\frac{N_{\mathrm{H}}}{\theta}-\frac{N_{\mathrm{T}}}{1-\theta} \\
\Rightarrow \theta_{\mathrm{ML}}^{*} & =\frac{N_{\mathrm{H}}}{N_{\mathrm{H}}+N_{\mathrm{T}}}
\end{aligned}
$$

- The counts $N_{H}=\sum_{m} x^{m}$ and $N_{T}=\sum_{m}\left(1-x^{m}\right)$ are sufficient statistics of the data D.
- Likelihood

$$
P(D \mid \theta)=\theta^{N_{H}}(1-\theta)^{N_{T}}
$$

- Conjugate Beta Prior

$$
P(\theta \mid \alpha)=\mathcal{B}\left(\theta ; \alpha_{h}, \alpha_{t}\right) \stackrel{\text { def }}{=} \frac{1}{Z\left(\alpha_{h}, \alpha_{t}\right)} \theta^{\alpha_{h}-1}(1-\theta)^{\alpha_{t}-1}
$$

- Posterior

$$
\begin{aligned}
P(\theta \mid D, \alpha) & =\frac{P(\theta \mid \alpha) P(D \mid \theta)}{P(D \mid \alpha)} \\
& =\frac{1}{Z\left(\alpha_{h}, \alpha_{t}\right) P(D \mid \alpha)} \theta^{\alpha_{h}-1} \theta^{N_{h}(1-\theta)^{\alpha_{t}-1}(1-\theta)^{N_{t}}} \\
& =\mathcal{B}\left(\theta ; \alpha_{h}+N_{h}, \alpha_{t}+N_{t}\right)
\end{aligned}
$$

- Posterior mean $E \theta=\frac{\alpha_{h}}{\alpha_{h}+\alpha_{t}}$.

BAYESIAN HYPOTHESIS TESTING

- We want to compute the posterior ratio of the 2 hypotheses:

$$
\frac{P\left(H_{1} \mid D\right)}{P\left(H_{0} \mid D\right)}=\frac{P\left(D \mid H_{1}\right) P\left(H_{1}\right)}{P\left(D \mid H_{0}\right) P\left(H_{0}\right)}
$$

- Let us assume a uniform prior $P\left(H_{0}\right)=P\left(H_{1}\right)=0.5$.
- Then we just focus on the ratio of the marginal likelihoods:

$$
P\left(D \mid H_{1}\right)=\int_{0}^{1} d \theta \quad P\left(D \mid \theta, H_{1}\right) P\left(\theta \mid H_{1}\right)
$$

- For H_{0}, there is no free parameter, so

$$
P\left(D \mid H_{0}\right)=0.5^{N}
$$

where N is the number of coin tosses in D.

- When spun on edge $N=250$ times, a Belgian one-euro coin came up heads $Y=140$ times and tails 110 .
- We would like to distinguish two models, or hypotheses: H_{0} means the coin is unbiased (so $p=0.5$); H_{1} means the coin is biased (has probability of heads $p \neq 0.5$).
- p -value is "less than 7% ": $p=P(Y \geq 140)+P(Y \leq 110)=0.066$:
$\mathrm{n}=250 ; \mathrm{p}=0.5$; $\mathrm{y}=140$;
$\mathrm{p}=(1-\mathrm{binocdf}(\mathrm{y}-1, \mathrm{n}, \mathrm{p}))+\operatorname{binocdf}(\mathrm{n}-\mathrm{y}, \mathrm{n}, \mathrm{p})$
- If $Y=141$, we get $p=0.0497$, so we can reject the null hypothesis at significance level 0.05 .
- But is the coin really biased?

So, IS THE COIN BIASED OR NOT?

- We plot the Bayes factor vs hyperparameter α :

- For a uniform prior, $\frac{P\left(H_{1} \mid D\right)}{P\left(H_{0} \mid D\right)}=0.48$, (weakly) favoring the fair coin hypothesis H_{0} !
- At best, for $\alpha=50$, we can make the biased hypothesis twice as likely.
- Not as dramatic as saying "we reject the null hypothesis (fair coin) with significance 6.6% ".
- Likelihood: binomial \rightarrow multinomial

$$
P(D \mid \vec{\theta})=\prod_{i} \theta_{i}^{N_{i}}
$$

- Prior: beta \rightarrow Dirichlet

$$
P(\vec{\theta} \mid \vec{\alpha})=\frac{1}{Z(\vec{\alpha})} \prod_{i} \theta_{i}^{\alpha_{i}-1}
$$

where

$$
Z(\vec{\alpha})=\frac{\prod_{i} \Gamma\left(\alpha_{i}\right)}{\Gamma\left(\sum_{i} \alpha_{i}\right)}
$$

- Posterior: beta \rightarrow Dirichlet

$$
P(\vec{\theta} \mid D)=\operatorname{Dir}(\vec{\alpha}+\vec{N})
$$

- Evidence (marginal likelihood)

$$
P(D \mid \vec{\alpha})=\frac{Z(\vec{\alpha}+\vec{N})}{Z(\vec{\alpha})}=\frac{\prod_{i} \Gamma\left(\alpha_{i}+N_{i}\right)}{\prod_{i} \Gamma\left(\alpha_{i}\right)} \frac{\Gamma\left(\sum_{i} \alpha_{i}\right)}{\Gamma\left(\sum_{i} \alpha_{i}+N_{i}\right)}
$$

Fun with Gaussians

- Bayesian estimation of 1D Gaussian (homework 5)
- MLE for multivariate Gaussian (Jordan ch 13)
- Bayesian estimation for multivariate Gaussian (Minka TR)
- Inference with multivariate Gaussians (Jordan ch 13)
- Moment vs canonical parameters (Jordan ch 13)
- We observe M iid real samples: $\mathcal{D}=1.18,-.25, .78, \ldots$
- Model: $p(x)=\left(2 \pi \sigma^{2}\right)^{-1 / 2} \exp \left\{-(x-\mu)^{2} / 2 \sigma^{2}\right\}$
- Log likelihood:

$$
\begin{aligned}
\ell(\theta ; \mathcal{D}) & =\log p(\mathcal{D} \mid \theta) \\
& =-\frac{M}{2} \log \left(2 \pi \sigma^{2}\right)-\frac{1}{2} \sum_{m} \frac{\left(x^{m}-\mu\right)^{2}}{\sigma^{2}}
\end{aligned}
$$

- Take derivatives and set to zero:

$$
\begin{aligned}
\frac{\partial \ell}{\partial \mu} & =\left(1 / \sigma^{2}\right) \sum_{m}\left(x_{m}-\mu\right) \\
\frac{\partial \ell}{\partial \sigma^{2}} & =-\frac{M}{2 \sigma^{2}}+\frac{1}{2 \sigma^{4}} \sum_{m}\left(x_{m}-\mu\right)^{2} \\
\Rightarrow \mu_{\mathrm{ML}} & =(1 / M) \sum_{m} x_{m} \\
\sigma_{\mathrm{ML}}^{2} & =(1 / M) \sum_{m}\left(x_{m}-\mu_{\mathrm{ML}}\right)^{2}
\end{aligned}
$$

Exponential Family (L4, L10)

- For a numeric random variable \mathbf{x}

$$
\begin{aligned}
p(\mathbf{x} \mid \eta) & =h(\mathbf{x}) \exp \left\{\eta^{\top} T(\mathbf{x})-A(\eta)\right\} \\
& =\frac{1}{Z(\eta)} h(\mathbf{x}) \exp \left\{\eta^{\top} T(\mathbf{x})\right\}
\end{aligned}
$$

is an exponential family distribution with
natural (canonical) parameter η.

- Function $T(\mathbf{x})$ is a sufficient statistic.
- Function $A(\eta)=\log Z(\eta)$ is the \log normalizer.
- Examples: Bernoulli, multinomial, Gaussian, Poisson, gamma,...
- A distribution $p(x)$ has finite sufficient statistics (independent of number of data cases) iff it is in the exponential family.
- See Jordan ch 8
- Linear regression (Jordan ch 6)
- Linear classification (logistic regression; Jordan ch 7)
- Generalized linear models (GLIMs; Jordan ch 8)
- Mixture models: MoG, K-means, EM (Jordan ch 10)
- Latent variable models: PCA, FA (Jordan ch 14)

MLE for Linear Regression

- For vector outputs,

$$
A=S_{Y X^{\prime}} S_{X X^{\prime}}^{-1}
$$

where $S_{Y X^{\prime}}=\sum_{m} y_{m} x_{m}^{T}$ and $S_{X X^{\prime}}=\sum_{m} x_{m} x_{m}^{T}$.

- In the special case of scalar outputs, let $A=\theta^{T}$, and the design matrix $X=\left[x_{m}^{T}\right]$ stacked as rows and $Y=\left[y_{m}\right]$ a column vector. Then we get the normal equations

$$
\theta=\left(X^{T} X\right)^{-1} X^{T} Y
$$

Bayesian 1D Linear Regression

- For scalar (1D) output

$$
\begin{array}{r}
p\left(y_{n} \mid x_{n}, \theta, \sigma^{2}\right) p\left(\theta \mid \mu, \tau^{2}\right) p\left(\sigma^{2} \mid \alpha, \beta\right) \\
\text { Gaussian } \times \text { Gaussian } \times \text { Gamma }
\end{array}
$$

- For vector output

$$
p\left(y_{n} \mid x_{n}, A, \Sigma\right) p\left(A \mid \mu, \tau^{2}\right) p(\Sigma \mid \alpha, \beta)
$$

Gaussian \times matrix-Gaussian \times Wishart

- See Tom Minka tutorial

$$
P\left(Y=1 \mid X_{1}, \ldots, X_{n}\right)=\sigma\left(w_{0}+\sum_{i=1}^{n} w_{i} X_{i}\right)
$$

$P(Y=1)$ vs number of X 's that are on vs w

(b)

- a: 1D sigmoid
- b: $w_{0}=0$
-c: $w_{0}=-5$

- d: w and w_{0} are multiplied by 10

FACTOR ANALYSIS (L17)

- Unsupervised linear regression is called factor analysis.

$$
\begin{aligned}
p(x) & =\mathcal{N}(x ; 0, I) \\
p(y \mid x) & =\mathcal{N}(y ; \mu+\Lambda x, \Psi)
\end{aligned}
$$

where Λ is the factor loading matrix and Ψ is diagonal.

- To generate data, first generate a point within the manifold then add noise. Coordinates of point are components of latent variable.
- PCA (Karhunen-Loeve Transform) is zero noise limit of FA.

Canonical CPDs for $X \rightarrow Y$ (L4)

X	Y	$p(Y \mid X)$
\mathbb{R}^{n}	\mathbb{R}^{m}	$\operatorname{Gauss}(Y ; W X+\mu, \Sigma)$
\mathbb{R}^{n}	$\{0,1\}$	$\operatorname{Bernoulli}\left(Y ; p=\frac{1}{1+e^{-\theta^{T} x}}\right)$
$\{0,1\}^{n}$	$\{0,1\}$	$\operatorname{Bernoulli}\left(Y ; p=\frac{1}{1+e^{-\theta^{T} x}}\right)$
\mathbb{R}^{n}	$\{1, \ldots, K\}$	Multinomial $\left(Y ; p_{i}=\operatorname{softmax}(x, \theta)\right)$

Learn using IRLS or conjugate gradient (L11)

Mixtures of Gaussians (L12)

- Mixture of Gaussians:

$$
\begin{aligned}
P(Z=i) & =\theta_{i} \\
p(X=x \mid Z=i) & =\mathcal{N}\left(x ; \mu_{i}, \Sigma_{i}\right)
\end{aligned}
$$

- This can be used for classifica-
tion (supervised) and clustering/ vector quantization (unsupervised).

- We can find MLE/MAP estimates of the parameters using EM.
- K-means is a deterministic approximation (vector quantization).
- Mixtures of experts

- Mixtures of factor analysers

Forwards-Backwards algorithm (L8)

$$
\begin{aligned}
& \\
& \alpha_{t}(j)=\sum_{i} \alpha_{t-1}(i) A(i, j) B_{t}(j) \\
& \alpha_{t}=\left(A^{T} \alpha_{t-1}\right) \cdot * B_{t} \\
& \beta_{t}(i)=\sum_{j} \beta_{t+1}(j) A(i, j) B_{t+1}(j) \\
& \beta_{t}=A\left(\beta_{t+1} \cdot * B_{t+1}\right) \\
& \xi_{t}(i, j)=\alpha_{t}(i) \beta_{t+1}(j) A(i, j) B_{t+1}(j) \\
& \xi_{t}=\left(\alpha_{t}\left(\beta_{t+1} \cdot * B_{t+1}\right)^{T}\right) \cdot * A \\
& \gamma_{t}(i) \propto \alpha_{t}(i) \beta_{t}(j) \\
& \gamma_{t} \propto \alpha_{t} \cdot * \beta_{t}
\end{aligned}
$$

- HMMs (Jordan ch 12, Rabiner tutorial)
- LDS (Jordan ch 15 , handouts on web)
- Nonlinear state space models (my DBN tutorial)

Learning an HMM (L10, L12)

- Consider a time-invariant hidden Markov model (HMM)
- State transition matrix $A(i, j) \stackrel{\text { def }}{=} P\left(X_{t}=j \mid X_{t-1}=i\right)$,
- Discrete observation matrix $B(i, j) \stackrel{\text { def }}{=} P\left(Y_{t}=j \mid X_{t}=i\right)$
- State prior $\pi(i) \stackrel{\text { def }}{=} P\left(X_{1}=i\right)$.
- If all nodes are observed, we can find the globally optimal MLE.
- Otherwise using EM (aka Baum Welch).

Kalman filter (L17, L18)

- LDS model: $x_{t}=A x_{t-1}+v_{t}, \quad y_{t}=C x_{t}+w_{t}$
- Time update (prediction step):

$$
x_{t \mid t-1}=A x_{t-1 \mid t-1}, \quad P_{t \mid t-1}=A P_{t-1 \mid t-1} A^{T}+Q, \quad y_{t \mid t-1}=C x_{t \mid t-1}
$$

- Measurement update (correction step):

$$
\begin{aligned}
\tilde{y}_{t} & =y_{t}-\hat{y}_{t \mid t-1}(\text { error } / \text { innovation }) \\
P_{\tilde{y}_{t}} & =C P_{t \mid t-1} C^{T}+R \text { (covariance of error) } \\
P_{x_{t} y_{t}} & =P_{t \mid t-1} C^{T} \text { (cross covariance) } \\
K_{t} & =P_{x_{t} y_{t}} P_{\tilde{y} t}^{-1}(\text { Kalman gain matrix }) \\
x_{t \mid t} & =x_{t \mid t-1}+K_{t}\left(y_{t}-y_{t \mid t-1}\right) \\
P_{t \mid t} & =P_{t \mid t-1}-K_{t} P_{x_{t} y_{t}}^{T}
\end{aligned}
$$

KF for SLAM (L18)

- State is location of robot and landmarks $X_{t}=\left(R_{t}, L_{t}^{1: N}\right)$
- Measure location of subset of landmarks at each time step.
- Assume everything is linear Gaussian.
- Use Kalman filter to solve optimally.

(b)

Approximate determinsitic filtering (L18)

- Extended Kalman filter (EKF)
- Unscented Kalman filter (UKF)
- Assumed density filter (ADF)

exact
approx
- PF is sequential importance sampling with resampling (SISR).
- Goal is to estimate $P\left(x_{1: t} \mid y_{1: t}\right)$ recursively (online) for a state-space model for which Kalman filter/ HMM filter is inapplicable.

- Representation: Markov properties, CPDs, log linear models
- Exact inference: var elim, Jtree
- Fully observed param learning
- Fully observed structure learning
- Partially observed param learning
- Approximate inference
- Inference (belief propagation): L9, Yedidia tutorial
- Structure learning (max weight spanning tree): L16
- Application: KF trees for multiscale image analysis (skipped)

$$
P\left(X_{1: N}\right)=\prod_{i=1}^{N} P\left(X_{i} \mid \operatorname{Pa}\left(X_{i}\right)\right)
$$

$$
P(C, S, R, W)=P(C) P(S \mid C) P(R \mid C) P(W \mid S, R)
$$

Bayes net for genetic pedigree analysis (L1)

- $G_{i} \in\{a, b, o\} \times\{a, b, o\}=$ genotype (allele) of person i
- $B_{i} \in\{a, b, o, a b\}=$ phenotype (blood type) of person i

Markov properties for UGs (L3)

- Defn: the global Markov properties of a UG H are

$$
I(H)=\left\{(X \perp Y \mid Z): \operatorname{sep}_{H}(X ; Y \mid Z)\right\}
$$

- Defn: The local markov independencies are

$$
I_{l}(H)=\left\{\left(X \perp V \backslash\{X\} \backslash N_{H}(X) \mid N_{H}(X)\right): X \in V\right\}
$$

where $N_{H}(X)$ are the neighbors (Markov blanket).

Global Markov properties for DGs: Bayes-Ball (L2) A is d-separated from B given C if we cannot send a ball from any node in A to any node in B according to the rules below, where shaded nodes are in C.

(a)

(b)

Converting Bayes nets to Markov nets (L3)

- Defn: A Markov net H is an I-map for a Bayes net G if $I(H) \subseteq I(G)$.
- We can construct a minimal I-map for a BN by finding the minimal Markov blanket for each node.
- We need to block all active paths coming into node X, from parents, children, and co-parents; so connect them all to X.

- Chordal graphs encode independencies that can be exactly represented by either directed or undirected graphs.
- Chain graphs combine directed and undirected graphs and represent a larger set of distributions.

- Key idea 1: push sum inside products.
- Key idea 2: use (non-serial) dynamic programming to cache shared subexpressions.
$P(J)=\sum_{L} \sum_{S} \sum_{G} \sum_{H} \sum_{I} \sum_{D} \sum_{C} P(C, D, I, G, S, L, J, H)$
$=\sum_{L} \sum_{S} \sum_{G} \sum_{H} \sum_{I} \sum_{D} \sum_{C} P(C) P(D \mid C) P(I) P(G \mid I, D) P(S \mid I) P(L \mid G) P(J \mid L, S) P(H \mid G, J)$
$=\sum_{L} \sum_{S} \sum_{G} \sum_{H} \sum_{I} \sum_{D} \sum_{C} \phi_{C}(C) \phi_{D}(D, C) \phi_{I}(I) \phi_{G}(G, I, D) \phi_{S}(S, I) \phi_{L}(L, G) \phi_{J}(J, L, S) \phi_{H}(H, G, J)$
$\left.=\sum_{L} \sum_{S} \phi_{J}(J, L, S) \sum_{G} \phi_{L}(L, G) \sum_{H} \phi_{H}(H, G, J) \sum_{I} \phi_{S}(S, I) \phi_{I}(I) \sum_{D} \phi_{(} G, I, D\right) \sum_{C} \phi_{C}(C) \phi_{D}(D, C)$

Message passing on Jtrees (L8, L9)

- Hugin vs Shafer Shenoy

- If we assume the parameters for each CPD are globally independent, then the log-likelihood function decomposes into a sum of local terms, one per node:

$$
\log p(\mathcal{D} \mid \theta)=\log \prod_{m} \prod_{i} p\left(\mathbf{x}_{i}^{m} \mid x_{\pi_{i}}, \theta_{i}\right)=\sum_{i} \sum_{m} \log p\left(\mathbf{x}_{i}^{m} \mid x_{\pi_{i}}, \theta_{i}\right)
$$

Learning CRFs (L14)

- Conditional random fields are discriminative models.
- Assuming fully observed training data, learning can be done using conjugate gradient descent, just as in a regular MRF with non-maximal cliques.
- Gradient requires computing the partition function, which is (in general) only tractable for low treewidth models (eg chains).

- Is the graph decomposable (triangulated)?
- Are all the clique potentials defined on maximal cliques (not subcliques)? e.g., ψ_{123}, ψ_{234} not $\psi_{12}, \psi_{23}, \ldots$.

- Are the clique potentials full tables (or Gaussians), or parameterized more compactly, e.g., $\psi_{c}\left(x_{c}\right)=\exp \left(\sum_{k} w_{k} f_{k}\left(x_{c}\right)\right)$?

Decomposable?	Max. Cliques	Tabular	Method
Yes	Yes	Yes	Direct
-	-	Yes	IPF
-	-	-	Gradient ascent
-	-	-	Iterative scaling

MLE FOR PARTIALLY OBSERVED BNs (L12)

- Use (conjugate) gradient or EM
- M-step is what we did for the 1 node/2 node BNs

- Search + score (local search + Occam's razor)

Learning structure of partially observed BNs (L16)

- Search = local search
- Score $=$ expected BIC (structural EM)
- Score $=$ variational Bayes (VB-EM)

Variational methods (L20)

- Iterative Conditional Modes (ICM)
- Mean field
- Structured variational methods
- Loopy belief propagation
$\mathrm{D}(\mathrm{q}, \mathrm{p})$
$D(p, q)$

A Generative Model for Generative Models

