# LECTURE 21 (LAST ONE!):

REVIEW

Kevin Murphy 1 December 2004

Koller & Friedman Chapters

| Chap. | Handout | Title                                      |
|-------|---------|--------------------------------------------|
| 2     | у       | Foundations (math review)                  |
| 3     | у       | The BN representation (Bayes ball, I-maps) |
| 4     | у       | Local probabilistic models (CPDs, CSI)     |
| 5     | у       | Undirected GMs (BN $\leftrightarrow$ MN)   |
| 6     | у       | Inference with GMs (overview)              |
| 7     | у       | Variable elimination                       |
| 8     | у       | Clique trees                               |
| 9     | у       | Particle based approximations              |
| 10    | n       | Inference as optimization (unfinished)     |
| 11    | n       | Inference in hybrid networks               |
| 12    | У       | Learning: introduction                     |
| 13    | у       | Parameter estimation (fully obs. BNs)      |
| 14    | у       | Structure learning in BNs                  |
| 15    | у       | Partially observed data (EM for BNs)       |

## JORDAN CHAPTERS

| Chap. | Handout | Title                               |
|-------|---------|-------------------------------------|
| 2     | n       | Cond. Indep and factorization       |
| 3     | n       | The elimination algorithm           |
| 4     | n       | Prob. propagation and factor graphs |
| 5     | у       | Statistical concepts                |
| 6     | n       | Linear regression and LMS           |
| 7     | n       | Linear classification               |
| 8     | у       | Exponential family and GLIMs        |
| 9     | у       | Completely observed GMs (IPF, etc)  |
| 10    | у       | Mixtures and conditional mixtures   |
| 11    | у       | The EM algorithm                    |
| 12    | у       | HMMs                                |
| 13    | у       | The multivariate Gaussian           |
| 14    | у       | Factor analysis                     |
| 15    | У       | Kalman filtering and smoothing      |
| 16    | n       | Markov properties of graphs         |

# JORDAN CHAPTERS CONT'D

| Chap. | Handout | Title                                |
|-------|---------|--------------------------------------|
| 17    | n       | The junction tree algorithm          |
| 18    | n       | HMM and state space models revisited |
| 19    | у       | Features, maxent and duality         |
| 20    | у       | Iterative scaling algorithms         |
| 21    | n       | Sampling methods                     |
| 22    | n       | Decision graphs                      |
| 23    | n       | Bio-informatics                      |

- 1 node models
  - Coins/dice (Dirichlet priors), Gaussians, exponential family
  - Bayesian vs frequentist (ML/MAP) estimation
  - Bayesian model selection (Occam's razor)
- 2 node BNs
  - Linear regression
  - Linear classification (logistic regression)
  - Generalized linear models (GLIMs)
  - Mixture models: MoG, K-means, EM
  - -Latent variable models: PCA, FA
- 3 node BNs
  - $-\operatorname{Mixtures}$  of FA
  - Mixtures of experts

• Chains

- -HMMs, forwards-backwards algorithm, EM
- -LDS, Kalman filter, EM
- -EKF, UKF, particle filtering, RB PF

• Trees

- Belief propagation
- Structure learning (max spanning tree)

- General graphs: representation
  - Independence properties (Bayes Ball, I-maps)
  - Directed vs undirected graphs, chordal graphs
- General graphs: exact inference
  - -Variable elimination
  - Junction tree
- General graphs: parameter learning
  - Bayesian param. est. for fully observed BNs
  - -ML for latent BNs (EM)
  - ML for fully observed UGs (IPF)
  - ML for fully observed CRFs (conjugate gradient)

- General BNs: structure learning
  - $-\operatorname{Search}$  and score
  - Partial observability (structural EM, variational Bayes EM)
- General GMs: stochastic approximations
  - Likelihood weighting, Gibbs sampling, Metropolis Hastings
- General GMs: variational approximations
  - Mean field, structured, loopy belief propagation
- Applications
  - SLAM, tracking, image labeling (CRFs), language modeling (HMMs)

- Swendsen-Wang sampling, perfect sampling, details of MCMC
- Generalized BP, theory of BP, cluster variational methods
- Details of expectation propagation (EP)
- Forwards propagation/ backwards sampling
- Non-parametric Bayes (Dirichlet process, Gaussian process)
- Quickscore/ QMR-DT and other speedup tricks (e.g., lazy Jtree)
- Decision making (influence diagrams, LIMIDS, POMDPs etc)
- First order probabilistic inference (FOPI)
- Causality
- Frequentist hypothesis testing
- Conditional Gaussian models (mixed/ hybrid GMs)
- Applications to error correcting codes, biology, vision, speech

- Jordan ch 5, 8, 13; Mackay ch 3, 23, 37
- Coins/dice, Gaussians, exponential family
- $\bullet$  Bayesian vs frequentist (ML/MAP) estimation
- Bayesian vs classical hypothesis testing

- We observe M iid coin flips:  $\mathcal{D}=H,H,T,H,\ldots$
- Model:  $p(H) = \theta$   $p(T) = (1 \theta)$
- We want to estimate  $\theta$  from D.
- Frequentist (maximum likelihood) approach (point estimate):

$$\hat{\theta}_{ML} = \operatorname{argmax}_{\theta} \ell(\theta; \mathcal{D})$$

where

$$\ell(\theta; D) = \log p(D|\theta) = \sum_{m} \log p(x^{m}|\theta)$$

• Bayesian approach

$$p(\theta|\mathcal{D}) = \frac{p(\mathcal{D}|\theta)p(\theta)}{p(\mathcal{D})}$$

or

$$\mathsf{posterior} = rac{\mathsf{likelihood} imes \mathsf{prior}}{\mathsf{marginal} \ \mathsf{likelihood}}$$

• Likelihood:

$$\ell(\theta; \mathcal{D}) = \log p(\mathcal{D}|\theta) = \log \prod_{m} \theta^{\mathbf{x}^{m}} (1-\theta)^{1-\mathbf{x}^{m}}$$
$$= \log \theta \sum_{m} \mathbf{x}^{m} + \log(1-\theta) \sum_{m} (1-\mathbf{x}^{m})$$
$$= \log \theta N_{\mathrm{H}} + \log(1-\theta) N_{\mathrm{T}}$$

• Take derivatives and set to zero:

$$\frac{\partial \ell}{\partial \theta} = \frac{N_{\rm H}}{\theta} - \frac{N_{\rm T}}{1 - \theta}$$
$$\Rightarrow \theta_{\rm ML}^* = \frac{N_{\rm H}}{N_{\rm H} + N_{\rm T}}$$

• The counts  $N_H = \sum_m x^m$  and  $N_T = \sum_m (1 - x^m)$  are sufficient statistics of the data D.

## BAYESIAN ESTIMATION FOR BERNOULLI TRIALS (L11)

• Likelihood

$$P(D|\theta) = \theta^{N_H} (1-\theta)^{N_T}$$

• Conjugate Beta Prior

$$P(\theta|\alpha) = \mathcal{B}(\theta; \alpha_h, \alpha_t) \stackrel{\text{def}}{=} \frac{1}{Z(\alpha_h, \alpha_t)} \theta^{\alpha_h - 1} (1 - \theta)^{\alpha_t - 1}$$

Posterior

$$P(\theta|D,\alpha) = \frac{P(\theta|\alpha)P(D|\theta)}{P(D|\alpha)}$$
  
= 
$$\frac{1}{Z(\alpha_h,\alpha_t)P(D|\alpha)} \theta^{\alpha_h - 1} \theta^{N_h} (1-\theta)^{\alpha_t - 1} (1-\theta)^{N_t}$$
  
= 
$$\mathcal{B}(\theta; \alpha_h + N_h, \alpha_t + N_t)$$

• Posterior mean  $E\theta = \frac{\alpha_h}{\alpha_h + \alpha_t}$ .

- When spun on edge N = 250 times, a Belgian one-euro coin came up heads Y = 140 times and tails 110.
- We would like to distinguish two models, or hypotheses:  $H_0$  means the coin is unbiased (so p = 0.5);  $H_1$  means the coin is biased (has probability of heads  $p \neq 0.5$ ).
- p-value is "less than 7%":  $p = P(Y \ge 140) + P(Y \le 110) = 0.066$ :

n=250; p = 0.5; y = 140; p = (1-binocdf(y-1,n,p)) + binocdf(n-y,n,p)

- If Y = 141, we get p = 0.0497, so we can reject the null hypothesis at significance level 0.05.
- But is the coin really biased?

• We want to compute the posterior ratio of the 2 hypotheses:

$$\frac{P(H_1|D)}{P(H_0|D)} = \frac{P(D|H_1)P(H_1)}{P(D|H_0)P(H_0)}$$

- Let us assume a uniform prior  $P(H_0) = P(H_1) = 0.5$ .
- Then we just focus on the ratio of the marginal likelihoods:

$$P(D|H_1) = \int_0^1 d\theta \ P(D|\theta, H_1) P(\theta|H_1)$$

• For  $H_0$ , there is no free parameter, so

$$P(D|H_0) = 0.5^N$$

where N is the number of coin tosses in D.

• We plot the Bayes factor vs hyperparameter  $\alpha$ :



- For a uniform prior,  $\frac{P(H_1|D)}{P(H_0|D)} = 0.48$ , (weakly) favoring the fair coin hypothesis  $H_0$ !
- $\bullet$  At best, for  $\alpha=50,$  we can make the biased hypothesis twice as likely.
- Not as dramatic as saying "we reject the null hypothesis (fair coin) with significance 6.6%".

• Likelihood: binomial  $\rightarrow$  multinomial  $P(D|\vec{\theta}) = \prod_{i} \theta_{i}^{N_{i}}$ 

• Prior: beta  $\rightarrow$  Dirichlet

$$P(\vec{\theta}|\vec{\alpha}) = \frac{1}{Z(\vec{\alpha})} \prod_{i} \theta_{i}^{\alpha_{i}-1}$$

where

$$Z(\vec{\alpha}) = \frac{\prod_i \Gamma(\alpha_i)}{\Gamma(\sum_i \alpha_i)}$$

• Posterior: beta  $\rightarrow$  Dirichlet

$$P(\vec{\theta}|D) = Dir(\vec{\alpha} + \vec{N})$$

• Evidence (marginal likelihood)

$$P(D|\vec{\alpha}) = \frac{Z(\vec{\alpha} + \vec{N})}{Z(\vec{\alpha})} = \frac{\prod_{i} \Gamma(\alpha_{i} + N_{i})}{\prod_{i} \Gamma(\alpha_{i})} \frac{\Gamma(\sum_{i} \alpha_{i})}{\Gamma(\sum_{i} \alpha_{i} + N_{i})}$$

- We observe M iid real samples:  $\mathcal{D}=1.18,-.25,.78,\ldots$
- Model:  $p(x) = (2\pi\sigma^2)^{-1/2} \exp\{-(x-\mu)^2/2\sigma^2\}$
- Log likelihood:

$$\ell(\theta; \mathcal{D}) = \log p(\mathcal{D}|\theta)$$
$$= -\frac{M}{2}\log(2\pi\sigma^2) - \frac{1}{2}\sum_m \frac{(x^m - \mu)^2}{\sigma^2}$$

• Take derivatives and set to zero:

$$\frac{\partial \ell}{\partial \mu} = (1/\sigma^2) \sum_m (x_m - \mu)$$
$$\frac{\partial \ell}{\partial \sigma^2} = -\frac{M}{2\sigma^2} + \frac{1}{2\sigma^4} \sum_m (x_m - \mu)^2$$
$$\Rightarrow \mu_{\rm ML} = (1/M) \sum_m x_m$$
$$\sigma_{\rm ML}^2 = (1/M) \sum_m (x_m - \mu_{\rm ML})^2$$

- Bayesian estimation of 1D Gaussian (homework 5)
- MLE for multivariate Gaussian (Jordan ch 13)
- Bayesian estimation for multivariate Gaussian (Minka TR)
- Inference with multivariate Gaussians (Jordan ch 13)
- Moment vs canonical parameters (Jordan ch 13)

 $\bullet$  For a numeric random variable  ${\bf x}$ 

$$p(\mathbf{x}|\eta) = h(\mathbf{x}) \exp\{\eta^{\top} T(\mathbf{x}) - A(\eta)\}$$
$$= \frac{1}{Z(\eta)} h(\mathbf{x}) \exp\{\eta^{\top} T(\mathbf{x})\}$$

is an exponential family distribution with *natural (canonical) parameter*  $\eta$ .

- Function  $T(\mathbf{x})$  is a *sufficient statistic*.
- Function  $A(\eta) = \log Z(\eta)$  is the log normalizer.
- Examples: Bernoulli, multinomial, Gaussian, Poisson, gamma,...
- A distribution p(x) has finite sufficient statistics (independent of number of data cases) iff it is in the exponential family.
- See Jordan ch 8

- Linear regression (Jordan ch 6)
- Linear classification (logistic regression; Jordan ch 7)
- Generalized linear models (GLIMs; Jordan ch 8)
- Mixture models: MoG, K-means, EM (Jordan ch 10)
- Latent variable models: PCA, FA (Jordan ch 14)



• For vector outputs,

$$A = S_{YX'}S_{XX'}^{-1}$$
 where  $S_{YX'} = \sum_m y_m x_m^T$  and  $S_{XX'} = \sum_m x_m x_m^T$ .

• In the special case of scalar outputs, let  $A = \theta^T$ , and the design matrix  $X = [x_m^T]$  stacked as rows and  $Y = [y_m]$  a column vector. Then we get the normal equations

$$\theta = (X^T X)^{-1} X^T Y$$

BAYESIAN 1D LINEAR REGRESSION



• For scalar (1D) output

$$p(y_n|x_n, \theta, \sigma^2) p(\theta|\mu, \tau^2) p(\sigma^2|\alpha, \beta)$$
  
Gaussian × Gaussian × Gamma

• For vector output

 $p(y_n|x_n, A, \Sigma)p(A|\mu, \tau^2)p(\Sigma|\alpha, \beta)$ Gaussian × matrix-Gaussian × Wishart

• See Tom Minka tutorial

$$P(Y = 1 | X_1, \dots, X_n) = \sigma(w_0 + \sum_{i=1}^n w_i X_i)$$

 ${\cal P}(Y=1)$  vs number of  $X{\rm 's}$  that are on vs w





- a: 1D sigmoid
- b:  $w_0 = 0$

• c: 
$$w_0 = -5$$

• d: w and  $w_0$  are multiplied by 10

GENERALIZED LINEAR MODELS

| Canor | nical CPE        | Os for $X \to Y$ | Y (L4)                                                |
|-------|------------------|------------------|-------------------------------------------------------|
|       | X                | Y                | p(Y X)                                                |
|       | $\mathbb{R}^n$   | $\mathbb{R}^m$   | $Gauss(Y;WX+\mu,\Sigma)$                              |
|       | $\mathbb{R}^{n}$ | $\{0, 1\}$       | $Bernoulli(Y; p = \frac{1}{1 + e^{-\theta T_x}})$     |
|       | $\{0,1\}^n$      | $\{0, 1\}$       | $Bernoulli(Y; p = \frac{1+e^{-1}}{1+e^{-\theta Tx}})$ |
|       | $\mathbb{R}^{n}$ | $\{1,\ldots,K\}$ | $Multinomial(Y; p_i = softmax(x, \theta))$            |

Learn using IRLS or conjugate gradient (L11)

• Unsupervised linear regression is called factor analysis.

$$p(x) = \mathcal{N}(x; 0, I)$$
$$p(y|x) = \mathcal{N}(y; \mu + \Lambda x, \Psi)$$

where  $\Lambda$  is the factor loading matrix and  $\Psi$  is diagonal.



- To generate data, first generate a point within the manifold then add noise. Coordinates of point are components of latent variable.
- PCA (Karhunen-Loeve Transform) is zero noise limit of FA.

• Mixture of Gaussians:

$$P(Z = i) = \theta_i$$
  
$$p(X = x | Z = i) = \mathcal{N}(x; \mu_i, \Sigma_i)$$

• This can be used for classification (supervised) and clustering/ vector quantization (unsupervised).



- We can find MLE/MAP estimates of the parameters using EM.
- K-means is a deterministic approximation (vector quantization).

• Mixtures of experts



• Mixtures of factor analysers



- HMMs (Jordan ch 12, Rabiner tutorial)
- LDS (Jordan ch 15, handouts on web)
- Nonlinear state space models (my DBN tutorial)





$$\alpha_{t}(j) = \sum_{i} \alpha_{t-1}(i)A(i,j)B_{t}(j)$$

$$\alpha_{t} = (A^{T}\alpha_{t-1}) \cdot *B_{t}$$

$$\beta_{t}(i) = \sum_{j} \beta_{t+1}(j)A(i,j)B_{t+1}(j)$$

$$\beta_{t} = A(\beta_{t+1} \cdot *B_{t+1})$$

$$\xi_{t}(i,j) = \alpha_{t}(i)\beta_{t+1}(j)A(i,j)B_{t+1}(j)$$

$$\xi_{t} = \left(\alpha_{t}(\beta_{t+1} \cdot *B_{t+1})^{T}\right) \cdot *A$$

$$\gamma_{t}(i) \propto \alpha_{t}(i)\beta_{t}(j)$$

$$\gamma_{t} \propto \alpha_{t} \cdot *\beta_{t}$$

# LEARNING AN HMM (L10, L12)



- Consider a time-invariant hidden Markov model (HMM)
  - -State transition matrix  $A(i,j) \stackrel{\text{def}}{=} P(X_t = j | X_{t-1} = i)$ ,
  - Discrete observation matrix  $B(i, j) \stackrel{\text{def}}{=} P(Y_t = j | X_t = i)$ - State prior  $\pi(i) \stackrel{\text{def}}{=} P(X_1 = i)$ .
- If all nodes are observed, we can find the globally optimal MLE.
- Otherwise using EM (aka Baum Welch).

- LDS model:  $x_t = Ax_{t-1} + v_t$ ,  $y_t = Cx_t + w_t$
- Time update (prediction step):

$$x_{t|t-1} = Ax_{t-1|t-1}, \quad P_{t|t-1} = AP_{t-1|t-1}A^T + Q, \quad y_{t|t-1} = Cx_{t|t-1}$$

• Measurement update (correction step):

$$\begin{split} \tilde{y}_t &= y_t - \hat{y}_{t|t-1} \text{ (error/ innovation)} \\ P_{\tilde{y}_t} &= CP_{t|t-1}C^T + R \text{ (covariance of error)} \\ P_{x_ty_t} &= P_{t|t-1}C^T \text{ (cross covariance)} \\ K_t &= P_{x_ty_t}P_{\tilde{y}_t}^{-1} \text{ (Kalman gain matrix)} \\ x_{t|t} &= x_{t|t-1} + K_t(y_t - y_{t|t-1}) \\ P_{t|t} &= P_{t|t-1} - K_tP_{x_ty_t}^T \end{split}$$

KF for 2D tracking (L17)



# KF for SLAM (L18)

- State is location of robot and landmarks  $X_t = (R_t, L_t^{1:N})$
- Measure location of subset of landmarks at each time step.
- Assume everything is linear Gaussian.
- Use Kalman filter to solve optimally.





APPROXIMATE DETERMINSITIC FILTERING (L18)

- Extended Kalman filter (EKF)
- Unscented Kalman filter (UKF)
- Assumed density filter (ADF)

$$\begin{array}{ccc} & \widehat{\alpha}_t & \widehat{\alpha}_{t+1} & \text{exact} \\ & & & & \\ U & P & & \\ & & & & \\ & & & & \\ & \widetilde{\alpha}_{t-1} & \widetilde{\alpha}_t & \widetilde{\alpha}_{t+1} & \text{approx} \end{array}$$

# Particle filtering (sequential Monte Carlo) (L19)

- PF is sequential importance sampling with resampling (SISR).
- Goal is to estimate  $P(x_{1:t}|y_{1:t})$  recursively (online) for a state-space model for which Kalman filter/ HMM filter is inapplicable.



- Inference (belief propagation): L9, Yedidia tutorial
- Structure learning (max weight spanning tree): L16
- Application: KF trees for multiscale image analysis (skipped)



- Representation: Markov properties, CPDs, log linear models
- Exact inference: var elim, Jtree
- Fully observed param learning
- Fully observed structure learning
- Partially observed param learning
- Approximate inference



P(C, S, R, W) = P(C)P(S|C)P(R|C)P(W|S, R)

- $G_i \in \{a, b, o\} \times \{a, b, o\} = \text{genotype (allele) of person } i$
- $B_i \in \{a, b, o, ab\}$  = phenotype (blood type) of person i



GLOBAL MARKOV PROPERTIES FOR DGS: BAYES-BALL (L2)

A is d-separated from B given C if we cannot send a ball from any node in A to any node in B according to the rules below, where shaded nodes are in C.



- Defn: the global Markov properties of a UG H are  $I(H) = \{(X \perp Y | Z) : sep_H(X; Y | Z)\}$
- Defn: The local markov independencies are
  - $I_l(H) = \{ (X \perp V \setminus \{X\} \setminus N_H(X) | N_H(X)) : X \in V \}$
  - where  $N_H(X)$  are the neighbors (Markov blanket).





Converting Bayes nets to Markov nets (L3)

- Defn: A Markov net H is an I-map for a Bayes net G if  $I(H)\subseteq I(G).$
- We can construct a minimal I-map for a BN by finding the minimal Markov blanket for each node.
- We need to block all active paths coming into node X, from parents, children, and co-parents; so connect them all to X.



- Chordal graphs encode independencies that can be exactly represented by either directed or undirected graphs.
- Chain graphs combine directed and undirected graphs and represent a larger set of distributions.



#### VARIABLE ELIMINATION ALGORITHM (L7)



- Key idea 1: push sum inside products.
- Key idea 2: use (non-serial) dynamic programming to cache shared subexpressions.

$$P(J) = \sum_{L} \sum_{S} \sum_{G} \sum_{H} \sum_{I} \sum_{D} \sum_{C} P(C, D, I, G, S, L, J, H)$$
  

$$= \sum_{L} \sum_{S} \sum_{G} \sum_{H} \sum_{I} \sum_{D} \sum_{C} P(C)P(D|C)P(I)P(G|I, D)P(S|I)P(L|G)P(J|L, S)P(H|G, J)$$
  

$$= \sum_{L} \sum_{S} \sum_{G} \sum_{H} \sum_{I} \sum_{D} \sum_{C} \phi_{C}(C)\phi_{D}(D, C)\phi_{I}(I)\phi_{G}(G, I, D)\phi_{S}(S, I)\phi_{L}(L, G)\phi_{J}(J, L, S)\phi_{H}(H, G, J)$$
  

$$= \sum_{L} \sum_{S} \phi_{J}(J, L, S) \sum_{G} \phi_{L}(L, G) \sum_{H} \phi_{H}(H, G, J) \sum_{I} \phi_{S}(S, I)\phi_{I}(I) \sum_{D} \phi_{C}(G, I, D) \sum_{C} \phi_{C}(C)\phi_{D}(D, C)$$



• Hugin vs Shafer Shenoy



• If we assume the parameters for each CPD are globally independent, then the log-likelihood function decomposes into a sum of local terms, one per node:

$$\log p(\mathcal{D}|\theta) = \log \prod_{m} \prod_{i} p(\mathbf{x}_{i}^{m} | x_{\pi_{i}}, \theta_{i}) = \sum_{i} \sum_{m} \log p(\mathbf{x}_{i}^{m} | x_{\pi_{i}}, \theta_{i})$$



- Is the graph *decomposable* (triangulated)?
- Are all the clique potentials defined on maximal cliques (not subcliques)? e.g.,  $\psi_{123}, \psi_{234}$  not  $\psi_{12}, \psi_{23}, \ldots$

• Are the clique potentials full tables (or Gaussians), or parameterized more compactly, e.g.,  $\psi_c(x_c) = exp(\sum_k w_k f_k(x_c))$ ?

Х3

X4

X4

Х3

| Decomposable? | Max. Cliques | Tabular | Method            |
|---------------|--------------|---------|-------------------|
| Yes           | Yes          | Yes     | Direct            |
| -             | -            | Yes     | IPF               |
| -             | -            | -       | Gradient ascent   |
| -             | –            | _       | Iterative scaling |

- Conditional random fields are discriminative models.
- Assuming fully observed training data, learning can be done using conjugate gradient descent, just as in a regular MRF with non-maximal cliques.
- Gradient requires computing the partition function, which is (in general) only tractable for low treewidth models (eg chains).



MLE FOR PARTIALLY OBSERVED BNs (L12)

- Use (conjugate) gradient or EM
- $\bullet$  M-step is what we did for the 1 node/2 node BNs



## LEARNING STRUCTURE OF FULLY OBSERVED BNS (L15, L16)

• Search + score (local search + Occam's razor)





#### LEARNING STRUCTURE OF PARTIALLY OBSERVED BNS (L16)

- Search = local search
- Score = expected BIC (structural EM)
- Score = variational Bayes (VB-EM)





- Importance sampling
- Particle filtering
- RBPF
- MCMC: Gibbs sampling and Metropolis Hastings



- Iterative Conditional Modes (ICM)
- Mean field
- Structured variational methods
- Loopy belief propagation



#### A Generative Model for Generative Models

