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Koller & Friedman chapters

Chap. Handout Title
2 y Foundations (math review)
3 y The BN representation (Bayes ball, I-maps)
4 y Local probabilistic models (CPDs, CSI)
5 y Undirected GMs (BN ↔ MN)
6 y Inference with GMs (overview)
7 y Variable elimination
8 y Clique trees
9 y Particle based approximations
10 n Inference as optimization (unfinished)
11 n Inference in hybrid networks
12 y Learning: introduction
13 y Parameter estimation (fully obs. BNs)
14 y Structure learning in BNs
15 y Partially observed data (EM for BNs)



Jordan chapters

Chap. Handout Title
2 n Cond. Indep and factorization
3 n The elimination algorithm
4 n Prob. propagation and factor graphs
5 y Statistical concepts
6 n Linear regression and LMS
7 n Linear classification
8 y Exponential family and GLIMs
9 y Completely observed GMs (IPF, etc)
10 y Mixtures and conditional mixtures
11 y The EM algorithm
12 y HMMs
13 y The multivariate Gaussian
14 y Factor analysis
15 y Kalman filtering and smoothing
16 n Markov properties of graphs



Jordan chapters cont’d

Chap. Handout Title
17 n The junction tree algorithm
18 n HMM and state space models revisited
19 y Features, maxent and duality
20 y Iterative scaling algorithms
21 n Sampling methods
22 n Decision graphs
23 n Bio-informatics



What we covered 1

• 1 node models

– Coins/dice (Dirichlet priors), Gaussians, exponential family

– Bayesian vs frequentist (ML/MAP) estimation

– Bayesian model selection (Occam’s razor)

• 2 node BNs

– Linear regression

– Linear classification (logistic regression)

– Generalized linear models (GLIMs)

– Mixture models: MoG, K-means, EM

– Latent variable models: PCA, FA

• 3 node BNs

– Mixtures of FA

– Mixtures of experts



What we covered 2

• Chains

– HMMs, forwards-backwards algorithm, EM

– LDS, Kalman filter, EM

– EKF, UKF, particle filtering, RB PF

• Trees

– Belief propagation

– Structure learning (max spanning tree)



What we covered 3

• General graphs: representation

– Independence properties (Bayes Ball, I-maps)

– Directed vs undirected graphs, chordal graphs

• General graphs: exact inference

– Variable elimination

– Junction tree

• General graphs: parameter learning

– Bayesian param. est. for fully observed BNs

– ML for latent BNs (EM)

– ML for fully observed UGs (IPF)

– ML for fully observed CRFs (conjugate gradient)



What we covered 4

• General BNs: structure learning

– Search and score

– Partial observability (structural EM, variational Bayes EM)

• General GMs: stochastic approximations

– Likelihood weighting, Gibbs sampling, Metropolis Hastings

• General GMs: variational approximations

– Mean field, structured, loopy belief propagation

• Applications

– SLAM, tracking, image labeling (CRFs), language modeling
(HMMs)



Some things we didn’t cover

• Swendsen-Wang sampling, perfect sampling, details of MCMC

• Generalized BP, theory of BP, cluster variational methods

•Details of expectation propagation (EP)

• Forwards propagation/ backwards sampling

• Non-parametric Bayes (Dirichlet process, Gaussian process)

•Quickscore/ QMR-DT and other speedup tricks (e.g., lazy Jtree)

•Decision making (influence diagrams, LIMIDS, POMDPs etc)

• First order probabilistic inference (FOPI)

• Causality

• Frequentist hypothesis testing

• Conditional Gaussian models (mixed/ hybrid GMs)

• Applications to error correcting codes, biology, vision, speech



1 node models

• Jordan ch 5, 8, 13; Mackay ch 3, 23, 37

• Coins/dice, Gaussians, exponential family

• Bayesian vs frequentist (ML/MAP) estimation

• Bayesian vs classical hypothesis testing



Coins (Bernoulli Trials)

•We observe M iid coin flips: D=H,H,T,H,. . .

•Model: p(H) = θ p(T ) = (1 − θ)

•We want to estimate θ from D.

• Frequentist (maximum likelihood) approach (point estimate):

θ̂ML = argmaxθ `(θ;D)

where
`(θ;D) = log p(D|θ) =

∑

m

log p(xm|θ)

• Bayesian approach

p(θ|D) =
p(D|θ)p(θ)

p(D)
or

posterior =
likelihood × prior

marginal likelihood



MLE for Bernoulli Trials (L10)

• Likelihood:

`(θ;D) = log p(D|θ) = log
∏

m

θx
m

(1 − θ)1−xm

= log θ
∑

m

xm + log(1 − θ)
∑

m

(1 − xm)

= log θNH + log(1 − θ)NT

• Take derivatives and set to zero:
∂`

∂θ
=
NH

θ
−

NT

1 − θ

⇒ θ∗ML =
NH

NH +NT

• The counts NH =
∑
m x

m and NT =
∑
m(1 − xm) are sufficient

statistics of the data D.



Bayesian estimation for Bernoulli Trials (L11)

• Likelihood
P (D|θ) = θNH(1 − θ)NT

• Conjugate Beta Prior

P (θ|α) = B(θ;αh, αt)
def
=

1

Z(αh, αt)
θαh−1(1 − θ)αt−1

• Posterior

P (θ|D,α) =
P (θ|α)P (D|θ)

P (D|α)

=
1

Z(αh, αt)P (D|α)
θαh−1θNh(1 − θ)αt−1(1 − θ)Nt

= B(θ;αh +Nh, αt +Nt)

• Posterior mean Eθ =
αh

αh+αt
.



Example of classical hypothesis testing (L15)

•When spun on edge N = 250 times, a Belgian one-euro coin came
up heads Y = 140 times and tails 110.

•We would like to distinguish two models, or hypotheses: H0 means
the coin is unbiased (so p = 0.5); H1 means the coin is biased (has
probability of heads p 6= 0.5).

• p-value is “less than 7%”: p = P (Y ≥ 140)+P (Y ≤ 110) = 0.066:

n=250; p = 0.5; y = 140;

p = (1-binocdf(y-1,n,p)) + binocdf(n-y,n,p)

• If Y = 141, we get p = 0.0497, so we can reject the null hypothesis
at significance level 0.05.

• But is the coin really biased?



Bayesian hypothesis testing

•We want to compute the posterior ratio of the 2 hypotheses:

P (H1|D)

P (H0|D)
=
P (D|H1)P (H1)

P (D|H0)P (H0)

• Let us assume a uniform prior P (H0) = P (H1) = 0.5.

• Then we just focus on the ratio of the marginal likelihoods:

P (D|H1) =

∫ 1

0
dθ P (D|θ,H1)P (θ|H1)

• For H0, there is no free parameter, so

P (D|H0) = 0.5N

where N is the number of coin tosses in D.



So, is the coin biased or not?

•We plot the Bayes factor vs hyperparameter α:
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• For a uniform prior,
P (H1|D)
P (H0|D)

= 0.48, (weakly) favoring the fair coin

hypothesis H0!

• At best, for α = 50, we can make the biased hypothesis twice as
likely.

• Not as dramatic as saying “we reject the null hypothesis (fair coin)
with significance 6.6%”.



From coins to dice

• Likelihood: binomial → multinomial

P (D|~θ) =
∏

i

θ
Ni
i

• Prior: beta → Dirichlet

P (~θ|~α) =
1

Z(~α)

∏

i

θ
αi−1
i

where

Z(~α) =

∏
i Γ(αi)

Γ(
∑
iαi)

• Posterior: beta → Dirichlet

P (~θ|D) = Dir(~α + ~N )

• Evidence (marginal likelihood)

P (D|~α) =
Z(~α + ~N )

Z(~α)
=

∏
i Γ(αi +Ni)∏

i Γ(αi)

Γ(
∑
i αi)

Γ(
∑
i αi +Ni)



MLE for Univariate Normal (L10)

•We observe M iid real samples: D=1.18,-.25,.78,. . .

•Model: p(x) = (2πσ2)−1/2 exp{−(x− µ)2/2σ2}

• Log likelihood:

`(θ;D) = log p(D|θ)

= −
M

2
log(2πσ2) −

1

2

∑

m

(xm − µ)2

σ2

• Take derivatives and set to zero:
∂`
∂µ = (1/σ2)

∑
m(xm − µ)

∂`
∂σ2 = −M

2σ2 + 1
2σ4

∑
m(xm − µ)2

⇒ µML = (1/M )
∑
m xm

σ2
ML = (1/M )

∑
m(xm − µML)2



Fun with Gaussians

• Bayesian estimation of 1D Gaussian (homework 5)

•MLE for multivariate Gaussian (Jordan ch 13)

• Bayesian estimation for multivariate Gaussian (Minka TR)

• Inference with multivariate Gaussians (Jordan ch 13)

•Moment vs canonical parameters (Jordan ch 13)



Exponential Family (L4, L10)

• For a numeric random variable x

p(x|η) = h(x) exp{η>T (x) − A(η)}

=
1

Z(η)
h(x) exp{η>T (x)}

is an exponential family distribution with
natural (canonical) parameter η.

• Function T (x) is a sufficient statistic.

• Function A(η) = logZ(η) is the log normalizer.

• Examples: Bernoulli, multinomial, Gaussian, Poisson, gamma,...

• A distribution p(x) has finite sufficient statistics (independent of
number of data cases) iff it is in the exponential family.

• See Jordan ch 8



2 node Bayes nets

• Linear regression (Jordan ch 6)

• Linear classification (logistic regression; Jordan ch 7)

• Generalized linear models (GLIMs; Jordan ch 8)

•Mixture models: MoG, K-means, EM (Jordan ch 10)

• Latent variable models: PCA, FA (Jordan ch 14)



Linear Regression (L11)
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MLE for Linear Regression

• For vector outputs,
A = SY X ′S−1

XX ′

where SY X ′ =
∑
m ymx

T
m and SXX ′ =

∑
m xmx

T
m.

• In the special case of scalar outputs, let A = θT , and the design
matrix X = [xTm] stacked as rows and Y = [ym] a column vector.
Then we get the normal equations

θ = (XTX)−1XTY



Bayesian 1D Linear Regression

nY

nX

N

θ

µ

τ

σ 2

2 α

β

• For scalar (1D) output

p(yn|xn, θ, σ
2)p(θ|µ, τ2)p(σ2|α, β)

Gaussian × Gaussian × Gamma

• For vector output

p(yn|xn, A,Σ)p(A|µ, τ2)p(Σ|α, β)

Gaussian × matrix-Gaussian × Wishart

• See Tom Minka tutorial



Logistic regression (L4)

P (Y = 1|X1, . . . , Xn) = σ(w0 +

n∑

i=1

wiXi)

P (Y = 1) vs number of X’s that are on vs w

• a: 1D sigmoid

• b: w0 = 0

• c: w0 = −5

• d: w and w0 are
multiplied by 10



Generalized Linear Models

Canonical CPDs for X → Y (L4)
X Y p(Y |X)
IRn IRm Gauss(Y ;WX + µ,Σ)

IRn {0, 1} Bernoulli(Y ; p = 1

1+e−θ
T x

)

{0, 1}n {0, 1} Bernoulli(Y ; p = 1

1+e−θ
T x

)

IRn {1, . . . ,K} Multinomial(Y ; pi = softmax(x, θ))

Learn using IRLS or conjugate gradient (L11)



Factor analysis (L17)

• Unsupervised linear regression is called factor analysis.

p(x) = N (x; 0, I)

p(y|x) = N (y;µ + Λx,Ψ)

where Λ is the factor loading matrix and Ψ is diagonal.

X

Z

X

Z

λ
1

λ2µ

y1

y2

y3

• To generate data, first generate a point within the manifold then
add noise. Coordinates of point are components of latent variable.

• PCA (Karhunen-Loeve Transform) is zero noise limit of FA.



Mixtures of Gaussians (L12)

•Mixture of Gaussians:

P (Z = i) = θi
p(X = x|Z = i) = N (x;µi,Σi)

• This can be used for classifica-
tion (supervised) and clustering/ vector quantization (unsupervised).

X

Z

X

Z

•We can find MLE/MAP estimates of the parameters using EM.

• K-means is a deterministic approximation (vector quantization).



3 node Bayes nets (L12)

•Mixtures of experts

•Mixtures of factor analysers



Chains

• HMMs (Jordan ch 12, Rabiner tutorial)

• LDS (Jordan ch 15, handouts on web)

• Nonlinear state space models (my DBN tutorial)



Forwards-backwards algorithm (L8)

. . .X X X

Y Y Y

1 2 3 4

1 3 4

X

2Y

αt(j) =
∑

i

αt−1(i)A(i, j)Bt(j)

αt = (ATαt−1). ∗Bt

βt(i) =
∑

j

βt+1(j)A(i, j)Bt+1(j)

βt = A(βt+1. ∗Bt+1)

ξt(i, j) = αt(i)βt+1(j)A(i, j)Bt+1(j)

ξt =
(
αt(βt+1. ∗Bt+1)

T
)
. ∗ A

γt(i) ∝ αt(i)βt(j)

γt ∝ αt. ∗ βt



Learning an HMM (L10, L12)
pi

Y4Y1

Q1

Y2

Q2 . . .

B

Y3

Q4Q3

A

• Consider a time-invariant hidden Markov model (HMM)

– State transition matrix A(i, j)
def
= P (Xt = j|Xt−1 = i),

– Discrete observation matrix B(i, j)
def
= P (Yt = j|Xt = i)

– State prior π(i)
def
= P (X1 = i).

• If all nodes are observed, we can find the globally optimal MLE.

•Otherwise using EM (aka Baum Welch).



Kalman filter (L17, L18)

• LDS model: xt = Axt−1 + vt, yt = Cxt + wt

• Time update (prediction step):

xt|t−1 = Axt−1|t−1, Pt|t−1 = APt−1|t−1A
T+Q, yt|t−1 = Cxt|t−1

•Measurement update (correction step):

ỹt = yt − ŷt|t−1 (error/ innovation)

Pỹt = CPt|t−1C
T + R (covariance of error)

Pxtyt = Pt|t−1C
T (cross covariance)

Kt = PxtytP
−1
ỹt

(Kalman gain matrix)

xt|t = xt|t−1 +Kt(yt − yt|t−1)

Pt|t = Pt|t−1 −KtP
T
xtyt



KF for 2D tracking (L17)
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KF for SLAM (L18)

• State is location of robot and landmarks
Xt = (Rt, L

1:N
t )

•Measure location of subset of landmarks
at each time step.

• Assume everything is linear Gaussian.

• Use Kalman filter to solve optimally.



Approximate determinsitic filtering (L18)

• Extended Kalman filter (EKF)

• Unscented Kalman filter (UKF)

• Assumed density filter (ADF)

α̂t α̂t+1 exact

α̃t−1 α̃t α̃t+1 approx

U P U P



Particle filtering (sequential Monte Carlo) (L19)

• PF is sequential importance sampling with resampling (SISR).

• Goal is to estimate P (x1:t|y1:t) recursively (online) for a state-space
model for which Kalman filter/ HMM filter is inapplicable.

P(x(t-1) | y(1:t-1))

P(x(t) | y(1:t))

P(x(t) | y(1:t))

P(x(t) | y(1:t-1))

unweighted

posterior

unweighted

prediction

weighted prior

weighted

posterior

P(x(t)|x(t-1))

P(y(t) | x(t))

resample

weighting

proposal



Trees

• Inference (belief propagation): L9, Yedidia tutorial

• Structure learning (max weight spanning tree): L16

• Application: KF trees for multiscale image analysis (skipped)
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General graphs

• Representation: Markov properties, CPDs, log linear models

• Exact inference: var elim, Jtree

• Fully observed param learning

• Fully observed structure learning

• Partially observed param learning

• Approximate inference



Example BN: Water sprinkler (L1)

P (X1:N ) =

N∏

i=1

P (Xi|Pa(Xi))

Cloudy

Sprinkler Rain

WetGrass

P (C, S,R,W ) = P (C)P (S|C)P (R|C)P (W |S,R)



Bayes net for genetic pedigree analysis (L1)

•Gi ∈ {a, b, o} × {a, b, o} = genotype (allele) of person i

•Bi ∈ {a, b, o, ab} = phenotype (blood type) of person i

Homer

Bart

Marge

Lisa Maggie

Harry Jackie

Selma



Global Markov properties for DGs: Bayes-Ball (L2)

A is d-separated from B given C if we cannot send a ball from any
node in A to any node in B according to the rules below, where shaded
nodes are in C.

X Y Z X Y Z

(a) (b)

(a)

X

Y

Z X

Y

Z

(b)

(a)

X

Y

Z

(b)

X

Y

Z



Markov properties for UGs (L3)

•Defn: the global Markov properties of a UG H are

I(H) = {(X ⊥ Y |Z) : sepH(X ;Y |Z)}

•Defn: The local markov independencies are

Il(H) = {(X ⊥ V \ {X} \NH(X)|NH(X)) : X ∈ V }

where NH(X) are the neighbors (Markov blanket).

XA

XB

XC



Converting Bayes nets to Markov nets (L3)

•Defn: A Markov net H is an I-map for a Bayes net G if
I(H) ⊆ I(G).

•We can construct a minimal I-map for a BN by finding the minimal
Markov blanket for each node.

•We need to block all active paths coming into node
X, from parents, children, and co-parents; so connect them all to X.

. . .

. . .U1 Um

Yn

Znj

Y1

Z1j

X



Chordal graphs (L4)

• Chordal graphs encode independencies that can be exactly
represented by either directed or undirected graphs.

• Chain graphs combine directed and undirected graphs and represent
a larger set of distributions.

 graphs

Chain graphs

Bayes
nets

Markov
netschordal



Variable elimination algorithm (L7)

IntelligenceDifficulty

Grade

Letter

SAT

Job
Happy

Coherence

• Key idea 1: push sum inside products.

• Key idea 2: use (non-serial) dynamic programming to cache shared
subexpressions.

P (J) =
∑

L

∑

S

∑

G

∑

H

∑

I

∑

D

∑

C

P (C,D, I, G, S, L, J,H)

=
∑

L

∑

S

∑

G

∑

H

∑

I

∑

D

∑

C

P (C)P (D|C)P (I)P (G|I,D)P (S|I)P (L|G)P (J |L, S)P (H|G, J)

=
∑

L

∑

S

∑

G

∑

H

∑

I

∑

D

∑

C

φC(C)φD(D,C)φI(I)φG(G, I,D)φS(S, I)φL(L,G)φJ(J, L, S)φH(H,G, J)

=
∑

L

∑

S

φJ(J, L, S)
∑

G

φL(L,G)
∑

H

φH(H,G, J)
∑

I

φS(S, I)φI(I)
∑

D

φ(G, I,D)
∑

C

φC(C)φD(D,C)



From Bayes net to jtree (L8)

IntelligenceDifficulty

Grade

Letter

SAT

Job
Happy

Coherence

IntelligenceDifficulty

Grade

Letter

SAT

Job
Happy

Coherence

IntelligenceDifficulty

Grade

Letter

SAT

Job
Happy

Coherence

BN Moralize Triangulate

C,D G,I,D G,S,I L,S,JG,S,L
1 2 2 2

G,H

1

1

1

1

1

C,D G,I,D G,S,I L,S,JG,S,L
D G,I G,S G,L

G,H

G

Jgraph Jtree



Message passing on jtrees (L8, L9)

• Hugin vs Shafer Shenoy

F

A B

C

E

D
DEFABC C CDE DE



MLE for fully observed BNs (L10)

• If we assume the parameters for each CPD are globally
independent, then the log-likelihood function decomposes into a
sum of local terms, one per node:

log p(D|θ) = log
∏

m

∏

i

p(xmi |xπi, θi) =
∑

i

∑

m

log p(xmi |xπi, θi)

0

1

0 1

2x

4x

0

1
x 1

0

1

0 1

x 1
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0

1

0 1
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x 1

5x
0

1
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0

1

0 1

0
1
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5x

1X
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3X

X 4

X 5

X6



MLE for fully observed UGM (L13)

• Is the graph decomposable (triangulated)?

• Are all the clique potentials defined on maximal cliques (not sub-
cliques)? e.g., ψ123, ψ234 not ψ12, ψ23, . . ..

X1 X2

X3 X4

X1 X2

X3 X4

• Are the clique potentials full tables (or Gaussians), or parameterized
more compactly, e.g., ψc(xc) = exp(

∑
k wkfk(xc))?

Decomposable? Max. Cliques Tabular Method
Yes Yes Yes Direct
- - Yes IPF
- - - Gradient ascent
- - - Iterative scaling



Learning CRFs (L14)

• Conditional random fields are discriminative models.

• Assuming fully observed training data, learning can be done using
conjugate gradient descent, just as in a regular MRF with
non-maximal cliques.

• Gradient requires computing the partition function, which is (in
general) only tractable for low treewidth models (eg chains).

H1 H4

O3 O4

H2 H3

O1 O2 H1 H2 H3 H4



MLE for partially observed BNs (L12)

• Use (conjugate) gradient or EM

•M-step is what we did for the 1 node/2 node BNs

lik
el

ih
oo

d

parameter space



Learning structure of fully observed BNs (L15, L16)

• Search + score (local search + Occam’s razor)



Learning structure of partially observed BNs (L16)

• Search = local search

• Score = expected BIC (structural EM)

• Score = variational Bayes (VB-EM)



Monte Carlo methods (L19)

• Importance sampling

• Particle filtering

• RBPF

•MCMC: Gibbs sampling and Metropolis Hastings
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� � � � � � � � � �
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x3

x4 x6
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Variational methods (L20)

• Iterative Conditional Modes (ICM)

•Mean field

• Structured variational methods

• Loopy belief propagation

D(q, p)
D(p, q)



A Generative Model for Generative Models

Gaussian

Factor Analysis

(PCA)

Mixture of 
Factor Analyzers

Mixture of 
Gaussians

(VQ)

Cooperative
Vector

Quantization

SBN,
Boltzmann
Machines

Factorial HMM

HMM


Mixture of

HMMs

Switching

State-space

Models

ICA
Linear

Dynamical
Systems (SSMs)

Mixture of

LDSs

Nonlinear

Dynamical

Systems

Nonlinear

Gaussian

Belief Nets

mix

mix

mix

switch

red-dim

red-dim

dyn

dyn

dyn

dyn

dyn

mix

distrib

hier

nonlinhier

nonlin

distrib

mix : mixture

red-dim : reduced 

            dimension

dyn : dynamics

distrib : distributed 

     representation

hier : hierarchical

nonlin : nonlinear

switch : switching


