Lecture 20:

Variational Methods

Kevin Murphy

29 November 2004

- Inference means computing $P\left(h_{i} \mid v\right)$, where h are the hidden variables v are the visible variables.
- For discrete (eg binary) hidden nodes, exact inference takes $O\left(2^{w}\right)$ time, where w is the induced width of the graph.
- For continuous hidden nodes, exact (closed-form) inference is only possible in rare circumstances eg. jointly Gaussian models (Kalman filters, etc.).
- We will first consider various approximations for approximate inference for discrete variables.
- For continuous or mixed discrete/cts variables
- Extend ADF/PF from online inference in chains to offline inference in general graphs: (ADF $\rightarrow \mathrm{EP}, \mathrm{PF} \rightarrow \mathrm{NBP}$)
- Or use MCMC (eg Gibbs)

Variational Free Energy

- Minimizing $D(Q, P) \stackrel{\text { def }}{=} \int_{h} Q(h) \log \frac{Q(h)}{P(h \mid v)}$ is hard, since $P(h \mid v)$ is intractable. But for a Bayes net, $P(h, v)$ is easy (product of CPDs).
- So we minimize the free energy:

$$
\begin{aligned}
& F(Q, P) \stackrel{\text { def }}{=} D(Q, P)-\log P(v) \\
& \quad=\int_{h} Q(h) \log \frac{Q(h)}{P(h \mid v)}-\int_{h} Q(h) \log P(v)=\int_{h} Q(h) \log \frac{Q(h)}{P(h, v)}
\end{aligned}
$$

- Since $D(Q, P) \geq 0$, we have $F(Q, P) \geq-\log P(v)$, so minimizing F is maximizing an upper bound on the log likelihood.
- Alternative derivation: use Jensen's inequality:

$$
\begin{aligned}
\log P(v)=\log \int_{h} P(h, v) & =\log \int_{h} Q(h) \frac{P(h, v)}{Q(h)} \\
\geq \int_{h} Q(h) \log \frac{P(h, v)}{Q(h)} & =-F(Q, P)
\end{aligned}
$$

- Let us minimize $F(Q, P)$ subject only to the constraint that $\sum_{h} Q(H)=1:$

$$
J=\sum_{h} Q(h) \log Q(h)-\sum_{h} Q(h) \log P(h \mid v)+\lambda\left(\sum_{h} Q(h)-1\right)
$$

- Derivative:

$$
\frac{\partial J}{\partial Q\left(h^{\prime}\right)}=\log Q\left(h^{\prime}\right)+\frac{Q\left(h^{\prime}\right)}{Q\left(h^{\prime}\right)}-\log P\left(h^{\prime} \mid v\right)+\lambda
$$

- Solving $\frac{\partial J}{\partial Q\left(h^{\prime}\right)}=0$ yields $Q(h)=P(h \mid v)$.

Viterbi approximation

- The Viterbi approximation is to assume that all the posterior probability mass is assigned to a single (MAP) assignment \hat{h} : $Q(h)=\delta(h, \hat{h})$.
- i.e., we associate every hidden variable with a single value.
- For GMs with low treewidth, we can find \hat{h} efficiently.
- In general, we can use iterative techniques.
- For ease of explanation, I will often assume the model can be written as an MRF with pairwise potentials (one per edge):

$$
P(x \mid y)=\frac{1}{Z} \prod_{<i j>} \psi_{i j}\left(x_{i}, x_{j}\right) \prod_{i} \psi_{i i}\left(x_{i}\right)
$$

- Any Bayes net/ Markov net/ factor graph can be converted into this form, by creating extra "meganodes".

Iterative Conditional Modes (ICM)

- ICM assigns each variable to its MAP estimate, holding all the others constant:

$$
h_{i}:=\arg \max _{h_{i}} P\left(h_{i} \mid h \backslash h_{i}, v\right)=\arg \max _{h_{i}} \psi_{i i}\left(h_{i}\right) \prod_{j \in N_{i}} \psi_{i j}\left(h_{i}, h_{j}\right)
$$

where the h_{j} 's are in i 's Markov blanket.

- K-means clustering is an example of ICM, where h are the assignment variables for each data point to a cluster, and the value of the cluster centers (means).
- ICM is very greedy and often gets stuck in local optima.
- Gibbs sampling is a stochastic version of ICM, where instead of picking the best state, we sample a state:

$$
h_{i} \sim P\left(h_{i} \mid h \backslash h_{i}, v\right)=\frac{F\left(h_{i}\right)}{\sum_{h_{i}} F\left(h_{i}\right)}
$$

where

$$
F\left(h_{i}\right)=\psi_{i i}\left(h_{i}\right) \prod_{j \in N_{i}} \psi_{i j}\left(h_{i}, h_{j}\right)
$$

- This is less greedy than ICM, but can be much slower.

Mean field Boltzmann machines

- The Boltzmann machine (stochastic Hopfield network) is a pairwise MRF where nodes are binary (either $S_{i} \in\{0,1\}$ or $\left.h_{i} \in\{-1,+1\}\right)$, and potentials have the restricted form $\psi_{i j}\left(S_{i}, S_{j}\right)=\exp \theta_{i j} S_{i} S_{j}$ and $\phi_{i i}\left(S_{i}\right)=\exp \theta_{i 0} S_{i}$:

$$
P(s)=\frac{1}{Z} \exp \left(\sum_{i<j} \theta_{i j} S_{i} S_{j}+\sum_{i} \theta_{i 0} S_{i}\right)
$$

- The mean field approximation is $Q(h \mid v)=\prod_{i} \mu_{i}^{S_{i}}\left(1-\mu_{i}\right)^{1-S_{i}}$, where $\mu_{i}=E\left(S_{i}\right)=P\left(S_{i}=1 \mid v\right)$.
- Minimizing $D(P, Q)$ yields the mean field update equations:

$$
\mu_{i}=\sigma\left(\sum_{j} \theta_{i j} \mu_{j}+\theta_{i 0}\right)
$$

- The mean field method is like a deterministic version of Gibbs sampling, where we replace samples with expected values.
- We make a fully factorized approximation: $Q(x)=\prod_{i} b_{i}\left(x_{i}\right)$. So the mean field free energy is

$$
\begin{aligned}
& F_{M F}\left(\left\{b_{i}\right\}\right)=-\sum_{<i j>} \sum_{x_{i}, x_{j}} b_{i}\left(x_{i}\right) b_{j}\left(x_{j}\right) \log \psi_{i j}\left(x_{i}, x_{j}\right) \\
& \quad+\sum_{i} \sum_{x_{i}} b_{i}\left(x_{i}\right)\left[\log b_{i}\left(x_{i}\right)-\log \psi_{i i}\left(x_{i}\right)\right]
\end{aligned}
$$

- We want to minimize $F_{M F}\left(b_{i}\right)$ subject to $\sum_{x_{i}} b_{i}\left(x_{i}\right)=1$.
- Hence we iteratively update

$$
b_{i}\left(x_{i}\right) \propto \psi_{i i}\left(x_{i}\right) \exp \left(\sum_{j \in N_{i}} \sum_{x_{j}} b_{j}\left(x_{j}\right) \log \psi_{i j}\left(x_{i}, x_{j}\right)\right)
$$

Structured variational approximations

- Meanfield assumes Q is fully factorized.
- We can model correlations by exploiting tractable substructure.
- e.g., decompose factorial HMM into product of chains

$$
Q\left(X_{1: T}^{1: N}\right)=\prod_{i=1}^{N} Q\left(X_{1: N}^{i}\right)
$$

- Structured variational approximations remove some edges from the graph and replace their effect with variational parameters.
- An alternative is to leave all the original edges intact, but only capture their effect locally.
- Recall that the free energy is

$$
F=\sum_{h} Q(h) \log Q(h)-\sum_{k} \sum_{h_{C_{k}}} Q\left(h_{C_{k}}\right) \log \psi_{k}\left(h_{C_{k}}, v_{C_{k}}\right)
$$

- The second term is the expected value of a local factor, and is easy to compute for any $Q(h)$.
- But the entropy term is intractable for general $Q(h)$.
- We will show how loopy belief propagation can minimize an approximation to this.

Loopy belief propagation minimizes Bethe free ENERGY

- In LBP, we iteratively update our beliefs by message passing

$$
\begin{aligned}
m_{i j}\left(x_{j}\right) & \propto \sum_{x_{i}} \psi_{i j}\left(x_{i}, x_{j}\right) \psi_{i i}\left(x_{i}\right) \prod_{k \in N_{i} \backslash j} m_{k i}\left(x_{i}\right) \\
b_{i}\left(x_{i}\right) & \propto \psi_{i i}\left(x_{i}\right) \prod_{k \in N_{i}} m_{k i}\left(x_{i}\right)
\end{aligned}
$$

- The messages $m_{i j}$ are $\exp \left(\lambda_{i j}\right)$, where $\lambda_{i j}$ is the Lagrange multiplier enforcing the marginalization constraint while minimizing $F_{\text {bethe }}$.
- LBP sometimes called "sum-product algorithm".
- The Bethe approximation is

$$
Q(h) \approx \frac{\prod_{<i j>} b_{i j}\left(h_{i}, h_{j}\right)}{\prod_{i} b_{i}\left(h_{i}\right)^{d_{i}-1}}
$$

where d_{i} is the degree of h_{i} (ie., number of factors it appears in).

- So the Bethe free energy is

$$
\begin{aligned}
& \qquad F_{M F}\left(\left\{b_{i}, b_{i j}\right\}\right)=-\sum_{<i j>} \sum_{x_{i}, x_{j}} b_{i j}\left(x_{i}, x_{j}\right)\left[\log b_{i j}\left(x_{i}, x_{j}\right)-\log \phi_{i j}\right. \\
& -\sum_{i}\left(d_{i}-1\right) \sum_{x_{i}} b_{i}\left(x_{i}\right)\left[\log b_{i}\left(x_{i}\right)-\log \psi_{i}\left(x_{i}\right)\right] \\
& \text { where } \phi_{i j}\left(x_{i}, x_{j}\right)=\psi_{i j}\left(x_{i}, x_{j}\right) \psi_{i i}\left(x_{i}\right) \psi_{j j}\left(x_{j}\right) \\
& \text { - Loopy belief propagation is a way to minimize this subject to the } \\
& \text { constraints } \sum_{x_{i}} b_{i j}\left(x_{i}, x_{j}\right)=b_{j}\left(x_{j}\right) \text { and } \sum_{x_{i}} b_{i}\left(x_{i}\right)=1 .
\end{aligned}
$$

Discrete Message passing/ Belief propagation

- Consider an MRF with one potential per edge

$$
P(X)=\frac{1}{Z} \prod_{<i j>} \psi_{i j}\left(X_{i}, X_{j}\right) \prod_{i} \phi_{i}\left(X_{i}\right)
$$

- We can generalize the forwards-backwards algorithm as follows:

$$
\begin{aligned}
m_{i j}\left(x_{j}\right) & =\sum_{x_{i}} \phi_{i}\left(x_{i}\right) \psi_{i j}\left(x_{i}, x_{j}\right) \prod_{k \in N_{i} \backslash\{j\}} m_{j i}\left(x_{i}\right) \\
b_{i}\left(x_{i}\right) & \propto \phi_{i}\left(x_{i}\right) \prod_{j \in N_{i}} m_{j i}\left(x_{i}\right)
\end{aligned}
$$

- If all potentials, messages and beliefs are discrete:

$$
m_{i j}=\psi_{i j}^{T} \phi_{i} \cdot * \prod_{k} m_{k i}, \quad b_{i} \propto \phi_{i} \cdot * \prod_{j \in N_{i}} m_{j i}
$$

- If all potentials, messages and beliefs are discrete:

$$
m_{i j}=\psi_{i j}^{T} \phi_{i} \cdot * \prod_{k} m_{k i}, \quad b_{i} \propto \phi_{i} \cdot * \prod_{j \in N_{i}} m_{j i}
$$

- If there are K states, each message takes $O\left(K^{2}\right)$ time to compute.
- For certain kinds of potentials (e.g., $\psi_{i j}(i, j)=\exp \left(\left\|u_{i}-u_{j}\right\|^{2}\right)$ where $\left.u_{i}, u_{j} \in \mathbb{R}\right)$, the messages can be computed in $O(K \log K)$ or even $O(K)$ time.
- For general potentials, once can use multipole methods and fancy data structures (like kd-trees) to do this in $O(K)$ or $O(K \log K)$ time. See Nando's NIPS workshop on "fast methods".

Summary so far

- For discrete state spaces, we have the following ranking of algorithms from best to worst (in terms of accuracy/ speed):
- Loopy belief propagation
- Mean field
- Iterative conditional modes
- Gibbs sampling
- What about continuous state spaces?
- The BP equations are exact if the graph is a chain or a tree (assuming we can implement sum and product operators analytically).
- What happens if BP is applied to graphs with loops?
- If may not convergence, and even if it does, it may be wrong.
- However, in practice, it often works well (e.g., error correcting codes).

Msg Type	Algo	Correct if conv?	Suff cond for conv?
Discrete	$\sum \prod$	No	No
Discrete	$\max \prod$	Strong local opt.	No
Gaussian	$\sum \prod$	Means - yes, covs - no Yes	
General	$\sum \prod ?$	$?$	

Message passing for general state spaces

- Filtering on chains is equivalent to message passing in a left-to-right fashion.

- Smoothing on chains involves a forward and a backwards pass.
- Inference on trees involves an upwards and a downwards pass.
- Inference on loopy graphs involves parallel message passing.

- Consider an MRF with one potential per edge

$$
P(X)=\frac{1}{Z} \prod_{<i j>} \psi_{i j}\left(X_{i}, X_{j}\right) \prod_{i} \phi_{i}\left(X_{i}\right)
$$

where $\psi_{i j}=\exp \left(X_{i}^{T} V_{i j} X_{j}\right)$ and $\phi_{i}=\exp \left(\frac{1}{\sigma_{i}}\left(X_{i}-\mu_{i}\right)^{2}\right)$.

- The BP equations are as before:

$$
\begin{aligned}
m_{i j}\left(x_{j}\right) & =\sum_{x_{i}} \phi_{i}\left(x_{i}\right) \psi_{i j}\left(x_{i}, x_{j}\right) \prod_{k \in N_{i} \backslash\{j\}} m_{j i}\left(x_{i}\right) \\
b_{i}\left(x_{i}\right) & \propto \phi_{i}\left(x_{i}\right) \prod_{j \in N_{i}} m_{j i}\left(x_{i}\right)
\end{aligned}
$$

- Since a Gaussian times a Gaussian is a Gaussian, and the marginal of a Gaussian is another Gaussian, we can implement these equations in closed form (generalization of the Kalman filter).

Expectation Propagation (EP)

- Cross between ADF (assumed density filtering) and BP.
- Suppose potentials/ beliefs are mixtures of K Gaussians. Number of mixture components of posterior belief is K^{d} for a node with d neighbors; need to project back to K Gaussians (moment matching).
- The tractable messages are inferred by dividing the new belief by the old belief.
- EP is iterated ADF.
- Advantages of iterating:
- Errors made earlier in the sequence can be recovered from.
- Less dependence on the order in which data arrives.
- Multiple forward-backwards passes are necessary, even for chains/ trees, because the message computations are not exact.
- In general, how can we implement these equations?

$$
\begin{aligned}
m_{i j}\left(x_{j}\right) & =\sum_{x_{i}} \phi_{i}\left(x_{i}\right) \psi_{i j}\left(x_{i}, x_{j}\right) \prod_{k \in N_{i} \backslash\{j\}} m_{j i}\left(x_{i}\right) \\
b_{i}\left(x_{i}\right) & \propto \phi_{i}\left(x_{i}\right) \prod_{j \in N_{i}} m_{j i}\left(x_{i}\right)
\end{aligned}
$$

- This depends on the form of the potentials ψ and ϕ, and the form of the beliefs b (from which the form of the messages m can be inferred), just as in filtering for state-space models.

Non-PARAMETRIC BELIEF PROPAGATION (NPBP)

- Cross between particle filtering and BP.
- If all the hidden variables are discrete, and all the parameters are continuous, we can use the approximation $Q(h, \theta)=Q(h) \delta(\theta, \hat{\theta})$, where $Q(h)$ is a general posterior on h and a delta function on the parameters.
- The EM algorithm consists of minimizing $F\left(Q, P_{\theta}\right)$ using coordinate ascent.
- E-step: minimize wrt $Q(h)=$ computing $P(h \mid v, \hat{\theta})$.
- M-step: minimize wrt $\delta(\theta, \hat{\theta})$.

COMPARISON OF METHODS

- "A comparison of algorithms for inference and learning in PGMs", Frey and Jojic, PAMI 2004 to appear

- Standard EM: $Q(h, \theta)=P(h \mid v, \hat{\theta}) \delta(\theta, \hat{\theta})$.
- Variational EM: use a variational approximation (eg mean field) in the E-step.
- Stochastic EM: use Monte Carlo in the E-step.
- Incremental EM: update parameters after each training case (online) instead of after all data (batch).
- "Generalized EM" : do a partial M-step (eg. gradient step).
- Variational Bayes EM (ensemble learning): replace point estimates of parameters with distributions in the M-step.
- CG-EM: alternate between conjugate gradient and EM.

LAYERED MODEL OF FOREGROUND + BACKGROUND
(a)

(b)

(c)

Learned means of appearance and mask images

Comparison of EM: exact, mean field, ICM, BP

Comparison of EM: exact, mean field, ICM, BP

