
Lecture 18:

Sequential state estimation in nonlinear, non
Gaussian dynamical systems

Kevin Murphy
22 November 2004

Sequential Bayesian updating

• A generic state-space model defines the dynamics P (Xt|Xt−1) and
the observation model P (yt|Xt).

X1 X4

Y3 Y4

X2 X3

Y1 Y2

•Online inference (filtering) means recursively computing the belief
state P (Xt|y1:t) using Bayes’ rule:

P (Xt|y1:t) =
1

P (yt|y1:t−1)
P (yt|Xt)

∫
P (Xt|xt−1)P (xt−1|y1:t−1)dxt−1

• If Xt = θ is a constant, this can be used for recursive parameter
estimation.

• There are many different methods, depending on how we represent
the dynamical model, the observation model and the belief state.

Overview of filtering methods

Dynamics Observation Belief Method
Trans. mat Any Histogram HMM/ forwards
DBN DBN Jtree Thin Junction tree filter (TJTF)
DBN DBN Prod. histo Boyen-Koller (BK) filter
Lin Gauss Lin Gauss Gauss Kalman filter (KF)
NonLin Gauss NonLin Gauss Gauss Extended Kalman filter (EKF)
NonLin Gauss NonLin Gauss Gauss Unscented Kalman filter (UKF)
Any Any Gauss Assumed Density Filtering (ADF)
Mix Lin Gauss Mix Lin Gauss Mix Gauss Assumed Density Filtering (ADF)
Any Any Samples Particle filtering

HMMs

X1 X4

Y3 Y4

X2 X3

Y1 Y2

• Represent belief state as a histogram: P (Xt = i|y1:t) = αt(i).

• Predict step:

P (Xt+1 = j|y1:t) =
∑

i

P (Xt+1 = j|Xt = i)P (Xt = i|y1:t)

• Update step:

P (Xt+1 = j|y1:t+1) =
p(yt+1|Xt+1 = j)P (Xt+1 = j|y1:t)

p(yt+1|y1:t)

Dynamic Bayesian Networks (DBN)

• A DBN generalizes a state space model by representing the compo-
nents of Xt and Yt and their conditional (in)dependencies using a
graph.

• By factorizing the state space in this way, we can substantially reduce
the number of free parameters.

• e.g., let Xt be a bit vector of length K. An HMM transition ma-
trix would have O(2K × 2K) parameters. A DBN may have O(K)
parameters, depending on the structure.

• For linear Gaussian models, sparse graphs ≡ sparse matrices, so
DBNs are not needed as much (but are still helpful).

Factorial HMM

Q
(1)
1 Q

(1)
2 Q

(1)
3

Q
(2)
1 Q

(2)
2 Q

(2)
3

Q
(3)
1 Q

(3)
2 Q

(3)
3

Y1 Y2 Y3

Belief state P (Xt|y1:t) has size O(2N) for N binary chains, because
the common observed child Yt couples all the parents (explaining away).

Sparse graphs 6⇒ sparse discrete transition matrices

• Any discrete DBN can be flattened into an HMM.

• But the resulting transition matrix will not necessarily have 0s in it.

P (Q
(1)
t = j1, Q

(2)
t = j2|Q

(1)
t−1 = i1, Q

(2)
t−1 = i2)

= P (Q
(1)
t = j1|Q

(1)
t−1 = i1) × P (Q

(2)
t = j2|Q

(2)
t−1 = i2)

0
1

0 1

0
1

0 1

00
01
10
11

00 01 10 11

• For discrete state spaces, the graph structure provides a compact
representation of the model in a way that cannot be easily captured
in the form of the parameter matrices.

Linear Gaussian DBNs

• For linear Gaussian models, sparse graphs ≡ sparse matrices, so
DBNs are not needed as much (but are still helpful).

• Consider a Vector Auto Regressive process of order 2:
Xt = A1Xt−1 + A2Xt−2 + εt where εt ∼ N (0, Σ).

• If Ak(i, j) = 0, then the directed arc Xt−k(i) → Xt(j) is missing
(for k = 1, 2).

• If Σ−1(i, j) = 0, then the undirected arc Xt(i) − Xt(j) is missing.

Coupled HMMs

Q1
1 Q1

2 Q1
3

Y 1
1 Y 1

2 Y 1
3

Q2
1 Q2

2 Q2
3

Y 2
1 Y 2

2 Y 2
3

Q3
1 Q3

2 Q3
3

Y 3
1 Y 3

2 Y 3
3

Belief state for coupled HMMs

Even though CHMMs are sparse, all nodes eventually become corre-
lated, so P (Xt|y1:t) has size O(2N).

Junction tree for coupled HMMs

Cliques form a frontier that snakes from Xt−1 to Xt.

Assumed density filtering (ADF)

• ADF forces the belief state to live in some restricted family F , e.g.,
product of histograms, Gaussian.

• Given a prior α̃t−1 ∈ F , do one step of exact Bayesian updating to
get α̂t 6∈ F . Then do a projection step to find the closest approxi-
mation in the family:

α̃t = arg min
q∈F

D(α̂t||q)

• If F is the exponential family, we can solve the KL minimization by
moment matching.

α̂t α̂t+1 exact

α̃t−1 α̃t α̃t+1 approx

U P U P

Boyen-Koller (BK) algorithm

• The BK algorithm is ADF applied to a DBN.

• The simplest approximation is to let F be a product of marginals:

αt ≈ α̃t =

N∏

i=1

P (Xi
t |y1:t)

•We start with a prior that is fully factored,
∏

i P (Xi
t−1|y1:t−1).

•We do one step of exact updating using a 2-slice junction tree. This
will couple some nodes, but not as many as in the T -slice (unrolled)
jtree.

• Then we compute the marginals P (Xi
t|y1:t) (projection step).

Thin junction tree filter (TJTF)

• The BK algorithm is ADF applied to a DBN.

• The approximating family F is chosen a priori.

• Above we considered products of marginals, but BK also considered
products of overlapping cliques (i.e., junction tree).

• For some problems, the structure of the approximating family should
be chosen dynamically, after seeing the evidence.

• TJTF dynamically thins the junction tree, to keep F tractable.

• This is useful e.g., for SLAM (simultaneous localization and mapping)
problem in mobile robotics.

SLAM (simultaneous localization and mapping)

• State is location of robot and landmarks
Xt = (Rt, L

1:N
t)

•Measure location of subset of landmarks
at each time step.

• Assume everything is linear Gaussian.

• Use Kalman filter to solve optimally.

Review: Kalman filter

• LDS model: xt = Axt−1 + vt, yt = Cxt + wt

• Time update (prediction step):

xt|t−1 = Axt−1|t−1, Pt|t−1 = APt−1|t−1A
T+Q, yt|t−1 = Cxt|t−1

•Measurement update (correction step):

ỹt = yt − ŷt|t−1 (error/ innovation)

Pỹt = CPt|t−1C
T + R (covariance of error)

Pxtyt = Pt|t−1C
T (cross covariance)

Kt = PxtytP
−1
ỹt

(Kalman gain matrix)

xt|t = xt|t−1 + Kt(yt − yt|t−1)

Pt|t = Pt|t−1 − KtP
T
xtyt

Complexity of one KF step

• Let Xt ∈ IRNx and Yt ∈ IRNy.

• Computing Pt|t−1 = APt−1|t−1A
T + Q takes O(N2

x) time, assum-
ing dense P and dense A.

• Computing Kt = PxtytP
−1
ỹt

takes O(N3
y) time.

• So overall time is, in general, max{N2
x, N3

y}.

Information filter

• KF uses moment form, ie. mean µ and covariance Σ.

• Initial uncertainty means covariance can be infinite Σii = ∞.

• It is therefore common to use the information form, which works in
terms of canonical (natural) parameters S = Σ−1 and ξ = Σ−1µ.

• Substituting into KF equations and using the matrix inversion lemma
yields:

Ut = (St|t + ATQA)−1

ξt+1|t+1 = Q−1AUξt|t + CTR−1yt+1

St+1|t+1 = Q−1 − Q−1AUATQ−1 + CTR−1C

• Now initial uncertainty means the precision is zero Σ−1
ii = 0.

• But now complexity is O(N3
x).

Review: KF for SLAM

• State is location of robot and landmarks
Xt = (Rt, L

1:N
t)

•Measure location of subset of landmarks
at each time step.

• Assume everything is linear Gaussian.

• Use Kalman filter to solve optimally.

SLAM: Measurement (update) step

P (Xt|y0:t) = N (µt, Σt):
P (X0) P (X0|y0)



R L1 L2 L3 L4 L5

R ·
L1 ·
L2 ·
L3 ·
L4 ·
L5 ·




,




R L1 L2 L3 L4 L5

R · · · ·
L1 · ·
L2 · ·
L3 · ·
L4 ·
L5 ·




Observe, moralize, absorb evidence. Correlates R with active L.

SLAM: Motion (predict) step

Marginalizing out old robot position correlates all active landmarks with
each other.

P (X1|y0)


R L1 L2 L3 L4 L5

R · · · ·
L1 · · · ·
L2 · · · ·
L3 · · · ·
L4 ·
L5 ·




Complexity of KF for SLAM

• In general, we have the following time complexities:

– Computing Pt|t−1 = APt−1|t−1A
T + Q takes O(N2

x) time.

– Computing Kt = PxtytP
−1
ỹt

takes O(N3
y) time.

– Computing Pt|t = Pt|t−1 − KtP
T
xy takes O(N2

x) time.

• For SLAM, the landmarks are stationary, so only the RR and RL
components of Pt|t−1 need be updated in O(Nx) time.

• Unfortunately, computing Pt|t = Pt|t−1−KtP
T
xy takes O(N2

x) time,
since Pt|t becomes dense.

•Doesn’t scale to many landmarks.

Thin junction tree filters for SLAM

• The precision matrix Σ−1 will eventually become non-zero every-
where (although edge strengths may be small).

• Hence the covariance matrix Σ becomes dense.

• Hence Kalman filter will take O(N2) time.

• Junction tree filtering is exact, and hence has the same complexity
as KF.

• However, we can adaptively reduce the size of “fat” cliques; this
is similar to pruning weak edges in the graphical model (i.e., set
elements of Σ−1 to 0).

• This yields an O(N) algorithm.

• Further approximations yield an O(1) algorithm.

Nonlinear systems

• In robotics and other problems, the motion model and the observa-
tion model are often nonlinear:

xt = f (xt−1) + vt, yt = g(xt) + wt

• An optimal closed form solution to the filtering problem is no longer
possible.

• The nonlinear functions f and g are sometimes represented by neural

networks (multi-layer perceptrons or radial basis function networks).

• The parameters of f ,g may be learned offline using EM, where we
do gradient descent (back propagation) in the M step, c.f. learning
a MRF/CRF with hidden nodes.

•Or we may learn the parameters online by adding them to the state
space: x̃t = (xt, θ). This makes the problem even more nonlinear.

Extended Kalman Filter (EKF)

• The basic idea of the EKF is to linearize f and g using a second
order Taylor expansion, and then apply the standard KF.

• i.e., we approximate a stationary nonlinear system with a non-stationary
linear system.

xt = f (x̂t−1|t−1) + Ax̂t|t−1
(xt−1 − x̂t−1|t−1) + vt

yt = g(x̂t|t−1) + Cx̂t|t−1
(xt − x̂t|t−1) + wt

where x̂t|t−1 = f (x̂t−1|t−1) and Ax̂
def
= ∂f

∂x

∣∣∣∣∣
x̂

and Cx̂
def
= ∂g

∂x

∣∣∣∣∣
x̂

.

• The noise covariance (Q and R) is not changed, i.e., the additional
error due to linearization is not modeled.

Unscented Kalman Filter (UKF)

• UKF does not require computing derivatives of f or g, and is accurate
to second order.

• The UKF applies the unscented transform twice, once to compute
P (Xt|y1:t−1) and once to compute P (Xt|y1:t).

• The unscented transform passes the mean ± σ in each dimension,
and fits an ellipse to the resulting points.

Actual (sampling) Linearized (EKF) UT

� � � � � � � � � 	

 � � 	

�
 � � � � � �
�� � � �

� � � � � �

� � ! �

sigma points

true mean

UT mean

 and covariance
weighted sample mean

mean

UT covariance

covariance

true covariance

transformed
sigma points

The need for multimodal belief states Switching LDS (jump linear system)

S1 S2 S3

X1 X2 X3

Y1 Y2 Y3

Combination of HMM and LDS.

P (Xt = xt|Xt−1 = xt−1, St = i) = N (xt; Aixt−1, Qi)

P (Yt = y|Xt = x) = N (y; Cx,R)

P (St = j|St−1 = i) = M (i, j)

Belief state has O(2t) Gaussian modes:

P (Xt, St|y1:t) =
∑

s1:t−1

∫
dx1:t−1P (X1:t, S1:t|y1:t)

GPB2 for switching LDS

Generalized pseudo Bayesian = ADF per mode of St.

b1
t−1

b2
t−1

�
�

�
���

@
@

@
@@R

�
�

�
���

@
@

@
@@R

Filter 1

Filter 2

Filter 1

Filter 2

-

-

-

-

b
1,1
t

b
1,2
t

b
2,1
t

b
2,2
t

@
@

@
@@R

B
B
B
B
B
B
B
B
B
B
B
B
BN

�
�
�
�
�
�
�
�
�
�
�
�
��

�
�

�
���

Merge

Merge

-

-

b1
t

b2
t

Data association (correspondence problem)

X1
1 X1

2 X1
3

X2
1 X2

2 X2
3

S1 S2 S3

Y1 Y2 Y3

•Optimal belief state has O(2t) modes.

• Common to use nearest neighbor approximation.

• For each time slice, can enforce that at most one source causes each
observation (maximal matching problem, solvable in O(N3) time
using Hungarian algorithm).

• Correspondence problem also arises in shape matching and stereo
vision.

Particle filtering (sequential Monte Carlo)

• Represent belief state as weighted set of samples (non-parametric).

• Can handle nonlinear f/g and multi-modality.

• Easy to implement.

•Only works well in small dimensions.
P(x(t-1) | y(1:t-1))

P(x(t) | y(1:t))

P(x(t) | y(1:t))

P(x(t) | y(1:t-1))

unweighted

posterior

unweighted

prediction

weighted prior

weighted

posterior

P(x(t)|x(t-1))

P(y(t) | x(t))

resample

weighting

proposal

Importance sampling

• Assume we want to compute Φ = Eφ(x) =
∫

dNxP (x)φ(x).

•Drawing samples from P (x) may be too hard, but we can evaluate
P ∗(x) where P (x) = P ∗(x)/ZP .

• Assume we can sample from a proposal density Q(x) and can eval-
uate Q∗(x), where Q(x) = Q∗(x)/ZQ.

•We assign each sample an importance weight wr = P ∗(xr)/Q∗(xr)

and then approximate Φ =
∑

r wrφ(xr)∑
r wr

.

•Does not work well if Q(x) is small where |φ(x)P ∗(x)| is large; Q(x)
should have heavy tails.

�

� � � � � � � � � �

� � � �

Sequential Importance sampling

• Suppose the target density is P (x1:t|y1:t) and the proposal is q(x1:t|y1:t),
so wi

t ∝ P (xi
1:t|y1:t)/Q(xi

1:t|y1:t).

• The probability of a sample path can be computed recursively using
Bayes’ rule:

wi
t ∝

P (yt|x
i
t)P (xi

t|x
i
t−1)P (xi

1:t−1|y1:t−1)

Q(xi
t|x

i
1:t−1, y1:t)Q(xi

1:t−1|y1:t−1)

=
P (yt|x

i
t)P (xi

t|x
i
t−1)

Q(xi
t|x

i
1:t−1, y1:t)

wi
t−1

= ŵi
tw

i
t−1

• For online problems, we typically use Q(xt|x
i
1:t−1, y1:t) = Q(xt|x

i
t−1, y1:t)

so we don’t have to store the entire history. Hence

ŵi
t =

P (yt|x
i
t)P (xi

t|x
i
t−1)

Q(xi
t|x

i
t−1, y1:t)

Sequential Importance sampling with resamling
(SISR)

• As time increases, one sample path will turn out to be exponentially
more likely than any other, so all the weights except one go to 0.

• This is called sample impoverishment.

•Whenever the effective number of samples Neff = 1/
∑

i(w
i
t)

2

drops below a threshold, we resample with replacement.

• The resampled weights are set to 1/N , since the past weights are
reflected in the empirical frequency.

• There are various ways to do the resampling in O(N) time.

• PF is the same as SISR.

Proposal distribution for PF

• The simplest proposal is to sample from the prior Q(xt|x
i
t−1, y1:t) =

P (Xt|x
i
t−1). In vision, this is called the condensation algorithm.

• Recall that the incremental weight is

ŵi
t =

P (yt|x
i
t)P (xi

t|x
i
t−1)

Q(xi
t|x

i
t−1, y1:t)

• So for condensation, ŵi
t = P (yt|x

i
t).

• It is better to look at the evidence before proposing:

q(xt|x
i
t−1, yt) = P (xt|x

i
t−1, yt) =

P (yt|xt)P (xt|x
i
t−1)∫

dxtP (yt|xt)P (xt|x
i
t−1)

• In this case, the incremental weight is the denominator ŵi
t = P (yt|x

i
t−1).

Unscented particle filtering

•Often it is too hard to compute the optimal proposal P (Xt|x
i
t−1, y1:t)

exactly.

• But sometimes we can approximate this.

• Consider a nonlinear system with Gaussian process noise and linear-
Gaussian observations:

P (Xt|x
i
t−1) = N (Xt; ft(x

i
t−1), Qt)

P (Yt|Xt) = N (yt; CtXt, Rt)

• Then we can compute Q(Xt|x
i
t−1, y1:t) using an EKF/UKF (with a

delta function prior on xi
t−1), and sample from this.

Rao-Blackwellised PF (RBPF)

• Sampling in high dimensional spaces causes high variance in the es-
timate.

• RBPF idea: sample some variables R, and conditional on that, com-
pute expected value of rest X analytically.

• So-called because of RB theorem, which is based on this identity:

Var[τ (X,R)] = Var[E(τ (X,R)|R)] + E[Var(τ (X,R)|R)]

• Hence Var[E(τ (X,R)|R)] ≤ Var[τ (X,R)], so τ ′(X,R) = E(τ (X,R)|R)
is a lower variance estimator.

RBPF for SLAM (“FastSLAM”)

• Key idea: if you always know the robot’s location, the posterior over
landmarks factorizes, so KF takes O(N) time.

• So sample R1:t, and for each particle/ trajectory, run a Kalman filter.

