Lecture 18:

SEQUENTIAL STATE ESTIMATION IN NONLINEAR, NON GaUSSIAN DYNAMICAL SYSTEMS

Kevin Murphy
22 November 2004

Overview of filtering methods

Dynamics	Observation	Belief	Method
Trans. mat	Any	Histogram	HMM/ forwards
DBN	DBN	Jtree	Thin Junction tree filter (TJTF)
DBN	DBN	Prod. histo	Boyen-Koller (BK) filter
Lin Gauss	Lin Gauss	Gauss	Kalman filter (KF)
NonLin Gauss	NonLin Gauss	Gauss	Extended Kalman filter (EKF)
NonLin Gauss	NonLin Gauss	Gauss	Unscented Kalman filter (UKF)
Any	Any	Gauss	Assumed Density Filtering (ADF)
Mix Lin Gauss	Mix Lin Gauss Mix Gauss	Assumed Density Filtering (ADF)	
Any	Any	Samples	Particle filtering

- A generic state-space model defines the dynamics $P\left(X_{t} \mid X_{t-1}\right)$ and the observation model $P\left(y_{t} \mid X_{t}\right)$.

- Online inference (filtering) means recursively computing the belief state $P\left(X_{t} \mid y_{1: t}\right)$ using Bayes' rule:

$$
P\left(X_{t} \mid y_{1: t}\right)=\frac{1}{P\left(y_{t} \mid y_{1: t-1}\right)} P\left(y_{t} \mid X_{t}\right) \int P\left(X_{t} \mid x_{t-1}\right) P\left(x_{t-1} \mid y_{1: t-1}\right) d x_{t-1}
$$

- If $X_{t}=\theta$ is a constant, this can be used for recursive parameter estimation.
- There are many different methods, depending on how we represent the dynamical model, the observation model and the belief state.

- Represent belief state as a histogram: $P\left(X_{t}=i \mid y_{1: t}\right)=\alpha_{t}(i)$.
- Predict step:

$$
P\left(X_{t+1}=j \mid y_{1: t}\right)=\sum_{i} P\left(X_{t+1}=j \mid X_{t}=i\right) P\left(X_{t}=i \mid y_{1: t}\right)
$$

- Update step:

$$
P\left(X_{t+1}=j \mid y_{1: t+1}\right)=\frac{p\left(y_{t+1} \mid X_{t+1}=j\right) P\left(X_{t+1}=j \mid y_{1: t}\right)}{p\left(y_{t+1} \mid y_{1: t}\right)}
$$

- A DBN generalizes a state space model by representing the components of X_{t} and Y_{t} and their conditional (in)dependencies using a graph.
- By factorizing the state space in this way, we can substantially reduce the number of free parameters.
- e.g., let X_{t} be a bit vector of length K. An HMM transition matrix would have $O\left(2^{K} \times 2^{K}\right)$ parameters. A DBN may have $O(K)$ parameters, depending on the structure.
- For linear Gaussian models, sparse graphs \equiv sparse matrices, so DBNs are not needed as much (but are still helpful).

$\underline{\text { Sparse graphs } \nRightarrow \text { SPARSE DISCRETE TRANSITION MATRICES }}$

- Any discrete DBN can be flattened into an HMM.
- But the resulting transition matrix will not necessarily have 0 s in it.

$$
\begin{aligned}
& P\left(Q_{t}^{(1)}=j_{1}, Q_{t}^{(2)}=j_{2} \mid Q_{t-1}^{(1)}=i_{1}, Q_{t-1}^{(2)}=i_{2}\right) \\
& =P\left(Q_{t}^{(1)}=j_{1} \mid Q_{t-1}^{(1)}=i_{1}\right) \times P\left(Q_{t}^{(2)}=j_{2} \mid Q_{t-1}^{(2)}=i_{2}\right)
\end{aligned}
$$

- For discrete state spaces, the graph structure provides a compact representation of the model in a way that cannot be easily captured in the form of the parameter matrices.

Belief state $P\left(X_{t} \mid y_{1: t}\right)$ has size $O\left(2^{N}\right)$ for N binary chains, because the common observed child Y_{t} couples all the parents (explaining away).

Linear Gaussian DBNs

- For linear Gaussian models, sparse graphs \equiv sparse matrices, so DBNs are not needed as much (but are still helpful).
- Consider a Vector Auto Regressive process of order 2:
$X_{t}=A_{1} X_{t-1}+A_{2} X_{t-2}+\epsilon_{t}$ where $\epsilon_{t} \sim \mathcal{N}(0, \Sigma)$.
- If $A_{k}(i, j)=0$, then the directed arc $X_{t-k}(i) \rightarrow X_{t}(j)$ is missing (for $k=1,2$).
- If $\Sigma^{-1}(i, j)=0$, then the undirected arc $X_{t}(i)-X_{t}(j)$ is missing.

Belief state for coupled HMMs
Even though CHMMs are sparse, all nodes eventually become correlated, so $P\left(X_{t} \mid y_{1: t}\right)$ has size $O\left(2^{N}\right)$.

Assumed density filtering (ADF)

- ADF forces the belief state to live in some restricted family \mathcal{F}, e.g., product of histograms, Gaussian.
- Given a prior $\tilde{\alpha}_{t-1} \in \mathcal{F}$, do one step of exact Bayesian updating to get $\hat{\alpha}_{t} \notin \mathcal{F}$. Then do a projection step to find the closest approximation in the family:

$$
\tilde{\alpha}_{t}=\arg \min _{q \in \mathcal{F}} D\left(\hat{\alpha}_{t} \| q\right)
$$

- If \mathcal{F} is the exponential family, we can solve the KL minimization by moment matching.
exact
approx
- The BK algorithm is ADF applied to a DBN.
- The simplest approximation is to let \mathcal{F} be a product of marginals:

$$
\alpha_{t} \approx \tilde{\alpha}_{t}=\prod_{i=1}^{N} P\left(X_{t}^{i} \mid y_{1: t}\right)
$$

- We start with a prior that is fully factored, $\prod_{i} P\left(X_{t-1}^{i} \mid y_{1: t-1}\right)$.
- We do one step of exact updating using a 2-slice junction tree. This will couple some nodes, but not as many as in the T-slice (unrolled) jtree.
- Then we compute the marginals $P\left(X_{t}^{i} \mid y_{1: t}\right)$ (projection step).

SLAM (SImUlTANEOUS LOCALIZATION AND MAPPING)

- State is location of robot and landmarks $X_{t}=\left(R_{t}, L_{t}^{1: N}\right)$
- Measure location of subset of landmarks at each time step.
- Assume everything is linear Gaussian.
- Use Kalman filter to solve optimally.

Thin Junction tree filter (TJTF)

- The BK algorithm is ADF applied to a DBN.
- The approximating family \mathcal{F} is chosen a priori.
- Above we considered products of marginals, but BK also considered products of overlapping cliques (i.e., junction tree).
- For some problems, the structure of the approximating family should be chosen dynamically, after seeing the evidence.
- TJTF dynamically thins the junction tree, to keep \mathcal{F} tractable.
- This is useful e.g., for SLAM (simultaneous localization and mapping) problem in mobile robotics.

Review: Kalman filter

- LDS model: $x_{t}=A x_{t-1}+v_{t}, \quad y_{t}=C x_{t}+w_{t}$
- Time update (prediction step):

$$
x_{t \mid t-1}=A x_{t-1 \mid t-1}, \quad P_{t \mid t-1}=A P_{t-1 \mid t-1} A^{T}+Q, \quad y_{t \mid t-1}=C x_{t \mid t-1}
$$

- Measurement update (correction step):

$$
\begin{aligned}
\tilde{y}_{t} & =y_{t}-\hat{y}_{t \mid t-1}(\text { error } / \text { innovation }) \\
P_{\tilde{y}_{t}} & =C P_{t \mid t-1} C^{T}+R \text { (covariance of error) } \\
P_{x_{t} y_{t}} & =P_{t \mid t-1} C^{T} \text { (cross covariance) } \\
K_{t} & =P_{x_{t} y_{t}} P_{\tilde{y}_{t}}^{-1} \text { (Kalman gain matrix) } \\
x_{t \mid t} & =x_{t \mid t-1}+K_{t}\left(y_{t}-y_{t \mid t-1}\right) \\
P_{t \mid t} & =P_{t \mid t-1}-K_{t} P_{x_{t} y_{t}}^{T}
\end{aligned}
$$

- Let $X_{t} \in \mathbb{R}^{N_{x}}$ and $Y_{t} \in \mathbb{R}^{N_{y}}$.
- Computing $P_{t \mid t-1}=A P_{t-1 \mid t-1} A^{T}+Q$ takes $O\left(N_{x}^{2}\right)$ time, assuming dense P and dense A.
- Computing $K_{t}=P_{x_{t} y_{t}} P_{\tilde{y}_{t}}^{-1}$ takes $O\left(N_{y}^{3}\right)$ time.
- So overall time is, in general, $\max \left\{N_{x}^{2}, N_{y}^{3}\right\}$.
- KF uses moment form, ie. mean μ and covariance Σ.
- Initial uncertainty means covariance can be infinite $\Sigma_{i i}=\infty$.
- It is therefore common to use the information form, which works in terms of canonical (natural) parameters $S=\Sigma^{-1}$ and $\xi=\Sigma^{-1} \mu$.
- Substituting into KF equations and using the matrix inversion lemma yields:

$$
\begin{aligned}
U_{t} & =\left(S_{t \mid t}+A^{T} Q A\right)^{-1} \\
\xi_{t+1 \mid t+1} & =Q^{-1} A U \xi_{t \mid t}+C^{T} R^{-1} y_{t+1} \\
S_{t+1 \mid t+1} & =Q^{-1}-Q^{-1} A U A^{T} Q^{-1}+C^{T} R^{-1} C
\end{aligned}
$$

- Now initial uncertainty means the precision is zero $\Sigma_{i i}^{-1}=0$.
- But now complexity is $O\left(N_{x}^{3}\right)$.

SLAM: MEasurement (update) step

$$
\begin{aligned}
& P\left(X_{t} \mid y_{0: t}\right)=\mathcal{N}\left(\mu_{t}, \Sigma_{t}\right):
\end{aligned}
$$

Observe, moralize, absorb evidence. Correlates R with active L.

(a)

(b)

(c)

(d)

Marginalizing out old robot position correlates all active landmarks with each other.

Thin junction tree filters for SLAM

- The precision matrix Σ^{-1} will eventually become non-zero everywhere (although edge strengths may be small).
- Hence the covariance matrix Σ becomes dense.
- Hence Kalman filter will take $O\left(N^{2}\right)$ time.
- Junction tree filtering is exact, and hence has the same complexity as KF .
- However, we can adaptively reduce the size of "fat" cliques; this is similar to pruning weak edges in the graphical model (i.e., set elements of Σ^{-1} to 0).
- This yields an $O(N)$ algorithm.
- Further approximations yield an $O(1)$ algorithm.
- In general, we have the following time complexities:
- Computing $P_{t \mid t-1}=A P_{t-1 \mid t-1} A^{T}+Q$ takes $O\left(N_{x}^{2}\right)$ time.
- Computing $K_{t}=P_{x_{t} y_{t}} P_{\tilde{y}_{t}}^{-1}$ takes $O\left(N_{y}^{3}\right)$ time.
- Computing $P_{t \mid t}=P_{t \mid t-1}-K_{t} P_{x y}^{T}$ takes $O\left(N_{x}^{2}\right)$ time.
- For SLAM, the landmarks are stationary, so only the $R R$ and $R L$ components of $P_{t \mid t-1}$ need be updated in $O\left(N_{x}\right)$ time.
- Unfortunately, computing $P_{t \mid t}=P_{t \mid t-1}-K_{t} P_{x y}^{T}$ takes $O\left(N_{x}^{2}\right)$ time, since $P_{t \mid t}$ becomes dense.
- Doesn't scale to many landmarks.

NONLINEAR SYSTEMS

- In robotics and other problems, the motion model and the observation model are often nonlinear:

$$
x_{t}=f\left(x_{t-1}\right)+v_{t}, \quad y_{t}=g\left(x_{t}\right)+w_{t}
$$

- An optimal closed form solution to the filtering problem is no longer possible.
- The nonlinear functions f and g are sometimes represented by neural networks (multi-layer perceptrons or radial basis function networks).
- The parameters of f, g may be learned offline using EM, where we do gradient descent (back propagation) in the M step, c.f. learning a MRF/CRF with hidden nodes.
- Or we may learn the parameters online by adding them to the state space: $\tilde{x}_{t}=\left(x_{t}, \theta\right)$. This makes the problem even more nonlinear.
- The basic idea of the EKF is to linearize f and g using a second order Taylor expansion, and then apply the standard KF.
- i.e., we approximate a stationary nonlinear system with a non-stationary linear system.

$$
\begin{aligned}
x_{t} & =f\left(\hat{x}_{t-1 \mid t-1}\right)+A_{\hat{x}_{t \mid t-1}}\left(x_{t-1}-\hat{x}_{t-1 \mid t-1}\right)+v_{t} \\
y_{t} & =g\left(\hat{x}_{t \mid t-1}\right)+C_{\hat{x}_{t \mid t-1}}\left(x_{t}-\hat{x}_{t \mid t-1}\right)+w_{t}
\end{aligned}
$$

where $\hat{x}_{t \mid t-1}=f\left(\hat{x}_{t-1 \mid t-1}\right)$ and $\left.A_{\hat{x}} \stackrel{\text { def }}{=} \frac{\partial f}{\partial x}\right|_{\hat{x}}$ and $\left.C_{\hat{x}} \stackrel{\text { def }}{=} \frac{\partial g}{\partial x}\right|_{\hat{x}}$.

- The noise covariance (Q and R) is not changed, i.e., the additional error due to linearization is not modeled.
- UKF does not require computing derivatives of f or g, and is accurate to second order.
- The UKF applies the unscented transform twice, once to compute $P\left(X_{t} \mid y_{1: t-1}\right)$ and once to compute $P\left(X_{t} \mid y_{1: t}\right)$.
- The unscented transform passes the mean $\pm \sigma$ in each dimension, and fits an ellipse to the resulting points.

THE NEED FOR MULTIMODAL BELIEF STATES

Switching LDS (Jump Linear system)

Combination of HMM and LDS.

$$
\begin{aligned}
P\left(X_{t}=x_{t} \mid X_{t-1}=x_{t-1}, S_{t}=i\right) & =\mathcal{N}\left(x_{t} ; A_{i} x_{t-1}, Q_{i}\right) \\
P\left(Y_{t}=y \mid X_{t}=x\right) & =\mathcal{N}(y ; C x, R) \\
P\left(S_{t}=j \mid S_{t-1}=i\right) & =M(i, j)
\end{aligned}
$$

Belief state has $O\left(2^{t}\right)$ Gaussian modes:

$$
P\left(X_{t}, S_{t} \mid y_{1: t}\right)=\sum_{s_{1: t-1}} \int d x_{1: t-1} P\left(X_{1: t}, S_{1: t} \mid y_{1: t}\right)
$$

Generalized pseudo Bayesian $=$ ADF per mode of S_{t}.

- Optimal belief state has $O\left(2^{t}\right)$ modes.
- Common to use nearest neighbor approximation.
- For each time slice, can enforce that at most one source causes each observation (maximal matching problem, solvable in $O\left(N^{3}\right)$ time using Hungarian algorithm).
- Correspondence problem also arises in shape matching and stereo vision.

Importance sampling

- Assume we want to compute $\Phi=E \phi(x)=\int d^{N} x P(x) \phi(x)$.
- Drawing samples from $P(x)$ may be too hard, but we can evaluate $P^{*}(x)$ where $P(x)=P^{*}(x) / Z_{P}$.
- Assume we can sample from a proposal density $Q(x)$ and can evaluate $Q^{*}(x)$, where $Q(x)=Q^{*}(x) / Z_{Q}$.
- We assign each sample an importance weight $w_{r}=P^{*}\left(x^{r}\right) / Q^{*}\left(x^{r}\right)$ and then approximate $\Phi=\frac{\sum_{r} w_{r} \phi\left(x^{r}\right)}{\sum_{r} w_{r}}$.
- Does not work well if $Q(x)$ is small where $\left|\phi(x) P^{*}(x)\right|$ is large; $Q(x)$ should have heavy tails.

- Suppose the target density is $P\left(x_{1: t} \mid y_{1: t}\right)$ and the proposal is $q\left(x_{1: t} \mid y_{1: t}\right)$, so $w_{t}^{i} \propto P\left(x_{1: t}^{i} \mid y_{1: t}\right) / Q\left(x_{1: t}^{i} \mid y_{1: t}\right)$.
- The probability of a sample path can be computed recursively using Bayes' rule:

$$
\begin{aligned}
w_{t}^{i} & \propto \frac{P\left(y_{t} \mid x_{t}^{i}\right) P\left(x_{t}^{i} \mid x_{t-1}^{i}\right) P\left(x_{1: t-1}^{i} \mid y_{1: t-1}\right)}{Q\left(x_{t}^{i} \mid x_{1: t-1}^{i}, y_{1: t}\right) Q\left(x_{1: t-1}^{i} \mid y_{1: t-1}\right)} \\
& =\frac{P\left(y_{t} \mid x_{t}^{i}\right) P\left(x_{t}^{i} \mid x_{t-1}^{i}\right)}{Q\left(x_{t}^{i} \mid x_{1: t-1}^{i}, y_{1: t}^{i}\right)} w_{t-1}^{i} \\
& =\hat{w}_{t}^{i} w_{t-1}^{i}
\end{aligned}
$$

- For online problems, we typically use $Q\left(x_{t} \mid x_{1: t-1}^{i}, y_{1: t}\right)=Q\left(x_{t} \mid x_{t-1}^{i}, y_{1: t}\right)$ so we don't have to store the entire history. Hence

$$
\hat{w}_{t}^{i}=\frac{P\left(y_{t} \mid x_{t}^{i}\right) P\left(x_{t}^{i} \mid x_{t-1}^{i}\right)}{Q\left(x_{t}^{i} \mid x_{t-1}^{i}, y_{1: t}\right)}
$$

Proposal distribution for PF

- The simplest proposal is to sample from the prior $Q\left(x_{t} \mid x_{t-1}^{i}, y_{1: t}\right)=$ $P\left(X_{t} \mid x_{t-1}^{i}\right)$. In vision, this is called the condensation algorithm.
- Recall that the incremental weight is

$$
\hat{w}_{t}^{i}=\frac{P\left(y_{t} \mid x_{t}^{i}\right) P\left(x_{t}^{i} \mid x_{t-1}^{i}\right)}{Q\left(x_{t}^{i} \mid x_{t-1}^{i}, y_{1: t}\right)}
$$

- So for condensation, $\hat{w}_{t}^{i}=P\left(y_{t} \mid x_{t}^{i}\right)$.
- It is better to look at the evidence before proposing:

$$
q\left(x_{t} \mid x_{t-1}^{i}, y_{t}\right)=P\left(x_{t} \mid x_{t-1}^{i}, y_{t}\right)=\frac{P\left(y_{t} \mid x_{t}\right) P\left(x_{t} \mid x_{t-1}^{i}\right)}{\int d x_{t} P\left(y_{t} \mid x_{t}\right) P\left(x_{t} \mid x_{t-1}^{i}\right)}
$$

- In this case, the incremental weight is the denominator $\hat{w}_{t}^{i}=P\left(y_{t} \mid x_{t-1}^{i}\right)$.
(SISR)
- As time increases, one sample path will turn out to be exponentially more likely than any other, so all the weights except one go to 0 .
- This is called sample impoverishment.
- Whenever the effective number of samples $N_{\text {eff }}=1 / \sum_{i}\left(w_{t}^{i}\right)^{2}$ drops below a threshold, we resample with replacement.
- The resampled weights are set to $1 / N$, since the past weights are reflected in the empirical frequency.
- There are various ways to do the resampling in $O(N)$ time.
- PF is the same as SISR.

Unscented particle filtering

- Often it is too hard to compute the optimal proposal $P\left(X_{t} \mid x_{t-1}^{i}, y_{1: t}\right)$ exactly.
- But sometimes we can approximate this.
- Consider a nonlinear system with Gaussian process noise and linearGaussian observations:

$$
\begin{aligned}
P\left(X_{t} \mid x_{t-1}^{i}\right) & =\mathcal{N}\left(X_{t} ; f_{t}\left(x_{t-1}^{i}\right), Q_{t}\right) \\
P\left(Y_{t} \mid X_{t}\right) & =\mathcal{N}\left(y_{t} ; C_{t} X_{t}, R_{t}\right)
\end{aligned}
$$

- Then we can compute $Q\left(X_{t} \mid x_{t-1}^{i}, y_{1: t}\right)$ using an EKF/UKF (with a delta function prior on x_{t-1}^{i}), and sample from this.
- Sampling in high dimensional spaces causes high variance in the estimate.
- RBPF idea: sample some variables R, and conditional on that, compute expected value of rest X analytically.
- So-called because of RB theorem, which is based on this identity:

$$
\operatorname{Var}[\tau(X, R)]=\operatorname{Var}[E(\tau(X, R) \mid R)]+E[\operatorname{Var}(\tau(X, R) \mid R)]
$$

- Hence $\operatorname{Var}[E(\tau(X, R) \mid R)] \leq \operatorname{Var}[\tau(X, R)]$, so $\tau^{\prime}(X, R)=E(\tau(X, R) \mid R)$ is a lower variance estimator.
- Key idea: if you always know the robot's location, the posterior over landmarks factorizes, so KF takes $O(N)$ time.
- So sample $R_{1: t}$, and for each particle/ trajectory, run a Kalman filter.

