LECTURE 16:

STRUCTURE LEARNING

Wed 10 Nov 2004

DIRECTED TREE GRAPHICAL MODELS (K&F 14.4.1)

e Directed trees are DAGMs in which each variable x; has exactly one
other variable as its parent 7, except the “root” ;o0 which has
no parents. Thus, the probability of a variable taking on a certain
value depends only on the value of its parent:

p(X) :p(xroot) H p(xi‘xm>

1100t

e Trees are the next step up from assuming independence.
Instead of considering variables in isolation, consider them in pairs.

Ql\”\ O

NB: each node (except root) has / X,

exactly one parent, but nodes /(Xz0 Ok
Ok

may have more than one child.

MAXIMIZING THE SCORE (K&F 14.4.3)

e Consider the family of DAGs G with maximum fan-in (number of
parents) equal to d.

e Theorem 14.4.3: It is NP-hard to find

G* = arg max score(G, D)
GeGy

for any d > 2.

e For d < 1 (i.e., trees), we can solve the problem in O(n?) time using
max spanning tree.

e In general, we need to use heuristic local search.

UNDIRECTED TREE GRAPHICAL MODELS

e Undirected trees are connected, acyclic graphs with exactly (D-1)
edges if there are D nodes (variables).

e For undirected trees, the cliques are all pairs of connected nodes.
1
p(X) = ? H ¢Z(x27 xm)
7

where we can make Z = 1 with the choice v; = p(z;|zs,) except
for one clique involving the root: ¥ = p(zr)p(z;|z;)

e Trees have no “explaining-away” (converging arrows).
Therefore, d-separation and regular separation are equivalent.

e Directed and undirected trees are equivalent and the choice of root
is arbitrary (for fully observed models).

e Another characterization of trees: there is exactly one path between
any pair of nodes (without doubling back).

LIKELIHOOD FUNCTION

MORE ON THE LIKELIHOOD FUNCTION

e Notation:
yi = a node x; and its single parent x,.
V; = set of joint configurations of node ¢ and its parent xr,
(Yroot = Troot and Vit = Vroot)

e Directed model likelihood:

Z log p(x Z log pr(x}) + > _ log plai"|wx;")

1#r
- ZZ Z v]log p;(v) indicator trick
1 VeV,
= Z > Ni(v)log pi(v)
i VEV;

where N;(v) = > [y = v] and p;(v;) = p(z;|zx,).

MAaXiMUM LIKELIHOOD PARAMETERS GIVEN STRUCTURE

e Undirected model likelihood:

ZIOgH% (v}
—ZZ Z v] log ¢;(v)

1 VEV;
= Z D Ni(v)log1i(v)
1 veV;

where N;(y) = 3, [y} = y] and ¢;(y;) = p(xi|zx,).
(Except for one clique involving the root: ¢; = p(z,)p(z;|zr;))

e Directed and undirected likelihoods are the samel

e Trees are in the exponential family with y; as sufficient statistics.

STRUCTURE LEARNING

e Trees are just a special case of fully observed graphical models.

e For discrete data x; with values v;, each node stores a conditional
probability table (CPT) over its values given its parent's value.
The ML parameter estimates are just the empirical histograms of
each node’s values given its parent:

N(z;j=vjzmy=v;) Nily;)

*
(7 Z| e]) ZVi N(xl == Ui,xﬂ'i = U]) Nﬂ'i(vj)

except for the root which uses marginal counts N, (v,-)/N.

e For continuous data, the most common model is a two-dimensional
Gaussian at each node. The ML parameters are just to set the
mean of p;(y;) to be the sample mean of [z;; 27,] and the
covariance matrix to the sample covariance.

e In practice we should use some kind of smoothing/regularization.

e What about the tree structure (links)?
How do we know which nodes to make parents of which?

O\&

5,n

\»O 4n

e Bold idea: how can we also /earn the optimal structure?
In principle, we could search all combinatorial structures, for each
compute the ML parameters, and take the best one.

e But is there a better way? Yes. It turns out that structure learning
in tree models can be converted to a good old computer science
problem: maximum weight spanning tree.

OPTIMAL STRUCTURE

e Let us rewrite the likelihood function'

Z N(x)logp(x

XEVy
=Y N(x) [logp(x) + Y log plilzs)
X i#r
e ML parameters, are equal to the observed frequency counts ¢(-):
g*
5= 2 1) | logq(x) + Y logq(wilr,)
XEVy) i#r
— Zq(x) log ¢(x,) + Zlo 4l x;‘
X t#r
N S R W) Dt/
X i#r

e NB: second term does not depend on structure.

KRUSKAL’S ALGORITHM (GREEDY SEARCH)

e To find the maximum weight spanning tree A on a graph with
nodes U and weighted edges F:

1. A «— empty
2. Sort edges E by nonincreasing weight: e, e, ..., ef.
3.for k=1to K {A +=e}. unless doing so creates a cycle}

EDGE WEIGHTS

e Each term in sum i = r corresponds to an edge from ¢ to its parent.

qu Z (i) “%>+C

q<x7>Q(l'7r:)
q(zi, xx) 1o 9(zi, ;)
=2 2 dmem)lon e 5O
i})
;; Vi 1g q(zm) e
=ZW i;m) +C
i#r

where the edge weights W are defined by mutual information:

q(xi,)
qul,x] log(e

Jaz;)

e So overall likelihood is sum of weights on edges that we use.
We need the maximum weight spanning tree.

MAXIMUM LIKELIHOOD TREES

We can now completely solve the tree learning problem:

1. Compute the marginal counts ¢(x;) for each node
and pairwise counts q(xi,a?j) for all pairs of nodes.

2. Set the weights to the mutual informations:
(xl,x])
Z q :1:2,:0] log ———— @)
5,1 A\
3. Find the maximum weight spanning tree A=MWST (/).

4. Using the undirected tree A chosen by MWST, pick a root
arbitrarily and orient the edges away from the root.
Set the conditional functions to the observed frequencies:
q(zj om) qlxi)
plarfery) = LZ00m) __ 002

Z:pi q(x;, xm) Q(fﬁm)

NOTES

e Any directed tree consistent with the undirected tree found by the
algorithm above will assign the same likelihood to any dataset.

e Amazingly, as far as likelihood goes, the root is arbitrary.
We can just pick one node and orient the edges away from it.
Or we can work with undirected models.

e For continuous nodes (e.g. Gaussian), the situation is similar,
except that computing the mutual information requires an integral.

e Mutual information is the Kullback-Leibler divergence
(cross-entropy) between a distribution and the product of its
marginals. Measures how far from independent the joint
distribution is.

Wi) = lag; xj] = KL{g(xi, 25)la(zi)q(x)]

BAYESIAN MODEL AVERAGING (K&F 14.5)

e So far, we have just tried to find the mode of P(G|D), i.e., the best
scoring network.

e But the mode may be untypical of the distribution: most of the mass
may be elsewhere.

e Suppose we are trying to determine if there is an edge X — Y in
the “true” model.

e We can compute features like this using

P(f|D) = Zf P(G|D)

where P(G|D) x P(D|G)P(G) o [[; exp FamScore(D(X}, 11;)).
e The main problem is that there are 20(n?) DAGs on n nodes.
e Even if we restrict indegree to < d, there are still 90(dnlogn) pAGs,

BEYOND TREES

e Mixtures of trees - add hidden variables

e General graphs - local search

MCMC FOR FEATURE PROBABILITY

e Suppose we can find a set G’ of high-scoring networks. Then
P(fID) ~ 2 cec PGID)f(G)
>.cec P(GID)
e If we can uniformly sample graphs from P(G|D), we can approximate
this using

1

P(fID) ~ —f(Go)

where (G is the k'th sample.

e Markov chain Monte Carlo (MCMC) provides a way of sampling from
complex distributions such as this.

MCMC

e We define a Markov chain on graph structures (in this case) with
transition probability given by the Metropolis-Hastings rule

P(G'!D)Q(G’!G)>
" P(GID)Q(G|Q")

where Q(G'|G) is the proposal probability and the ratio is the ac-
ceptance probability.

P(G'|G) = min (1

e The proposal () has to be such that the Markov chain is ergodic,
i.e., we can get to any state from any other state.

e We start the chain off in some inital state and then perform a random
walk according to the above dynamics.

e Theory shows the stationary distribution of such a Markov chain is

P(G|D).

MCMC ror DAG STRUCTURE

e Suppose the proposal () picks randomly from the following operators
(where legal): add an edge, delete an edge, reverse an edge.

e The MH acceptance probability requires computing the Bayes factor
P(G'|D)/P(G|D), which is efficient for decomposable scores.

e However, small changes to the graph can result in large changes to
the score, resulting in a jagged landscape.

e So the chain does not mix rapidly (it gets stuck in local optima).

MCMC CONVERGENCE

e The mixing time is how long it takes the chain to converge from a
random starting point.

e Once the chain has converged (after the burnin), we can draw (cor-
related) samples from P(G|D).

e We can diagnose convergence by running the chain from multiple
starting points and comparing the results. (Diagnosing convergence
is an open problem.)

RAO-BLACKWELLISED MCMC

e An alternative idea is to do MCMC sampling in the space of node
orderings <, which “only” has size n!.

e Given an ordering, we can sum over all graphs efficiently (see below).
Hence

1
P(fID) % ZP(f1D, <1
e This combination of sampling and exact integration/ marginalization
is called Rao-Blackwellised sampling.

e This is named after the Rao-Blackwell theorem, which says (roughly)
that variance is reduced if you sample in a smaller space:

VarE [E[f(G)| <]] < VarE[f(G)]

MCMC OVER ORDERINGS

e We use Metropolis-Hastings as before.

e One proposal is to flip 2 variables in the order, leaving the rest un-
changed:

(X X)) = (X, X

TEREE E

iy, X

ipr g

e Using score decomposability, only family scores for nodes inside the
bold range need to be recomputed.

e This is much more expensive than MCMC in DAG space, but each
move is much more powerful, and the space is much smaller.

PROB. FEATURE GIVEN KNOWN NODE ORDERING

e Given a sampled ordering, we can compute the probability of a parent
set

FamScore(D(X;,U))
P G _ U D _ exp (2
(m; 1D, =) ZU’GUH exp FamScore(D(X;, U’))

e From this, we can sample parents and hence graphs compatible with
<.

e From this, we can compute probability of features such as “There is
a directed path from X; to X;".

e Useful for determining features of biological networks from small sets
of data.

MARGINAL LIKELIHOOD GIVEN KNOWN NODE ORDERING

iy, Xi,)

e If we know the ordering (eg. temporal), we have
P(D| =)= Y P(G| <)P(D|G)
GEGd,<
e Given <, we can pick the parents for each node independently. Let
Ui<=1{U : U < X;,|U| < d}. Assuming P(G| <) is uniform for
legal graphs,

P(D| <) = Z HepramScore(D(Xi,m))
GEGd,< 1

:H Z exp FamScore(D(X;, ;)

Z' U«iEUj,?<

e We marginalize out parameters ¢ and graph structures G.

e This is what we need to evaluate the MH acceptance probability.

LEARNING GENE REGULATORY PATHWAYS

|| Normalization, |
la E:Eég{s:lop- : Dis &ﬂ-ﬂﬁ_ﬁnﬁg Preprocess
Learn
model

Feature

v = ¥ Vv
[Markov] [Edge] [Sepamtor] [Ancestor] 'eeture

[Reconstruct Sub-Networks | GZZI:EE

| Global network—s Local features — Sub-network

(Slide from Nir Friedman)

HIDDEN VARIABLES (K&F 15.7)

DETECTING PRESENCE OF HIDDEN VARIABLES

e So far, we have assumed all variables have been observed.
e In this case, we can compute the Bayesian score (evidence) exactly.

e But hidden variables can simplify a model a lot
eg. mixture models, HMMs.

C 0
o O O O—=0

17 parameters 59 parameters

e Can still run local search to pick best model.
e But hidden variables raise various problems:

— Efficiently computing the score from partially observed data.
— Detecting the presence of latent (confounding) factors.
— Inferring the dimensionality/ cardinality of latent factors.

STRUCTURAL EM ALGORITHM (K&F 15.6)

e Assume the number of hidden variables is given. Let y be the ob-
served nodes, s be hidden, and z = (x, y) be all nodes.

e We can compute the BIC score for each candidate structure G’ by
applying EM to each one:

scorepsrc(Gy) = log P(y]CY,0) — X 10

e But this is very expensive.

e Idea of structural EM: use current model (G,6) to compute the
expected sufficient statistics (ESS) needed to evaluate each neighbor
G, i.e., compute the expected BIC score.

e This requires computing ESS for nodes and potentially new parents;
such sets may not reside inside a clique of the jtree for G.

e Application: phylogenetic trees.

e One idea is to look for dense semi-cliques.

O O
e

o O O O—=0

17 parameters 59 parameters

e Then insert a hidden variable “in the middle”, and let the search
algorithm figure out the detailed “wiring”.

e Unfortunately, many scoring criteria (e.g., BIC) produce very sparse
graphs, which makes such semi-cliques rare.

e Constraint-based methods sometimes can be used to detect con-
founding.

e In general, this is an open problem.

APPROXIMATING THE EVIDENCE IN LATENT VARIABLE
MODELS

e When there are hidden variables, the parameter posterior has an
exponential number of modes.

e Hence computing the marginal likelihood is intractable.
e There are various possible approximations:

— Laplace

—BIC

— Cheeseman-Stutz (CS) lower bound
— Variational Bayes EM lower bound
—Sampling

EXPECTATION-MAXIMIZATION (EM) ALGORITHM

COMPLETE & INCOMPLETE LOG LIKELIHOODS

e EM is an optimization strategy for objective functions that can be
interpreted as likelihoods in the presence of missing data.

e It is much simpler than gradient methods:

—No need to choose step size.
— Enforces constraints automatically.
— Calls inference and fully observed learning as subroutines.

e EM is an lIterative algorithm with two linked steps:
— E-step: fill-in hidden values using inference, p(z|x, #").

— M-step: update parameters /1! using standard MLE/MAP
method applied to completed data

e We will prove that this procedure monotonically improves /¢
(or leaves it unchanged). Thus it always converges to a local
optimum of the likelihood.

ExPECTED COMPLETE LOG LIKELIHOOD

e For any distribution ¢(z) define expected complete log likelihood:

(g(6;%) = (Le(0;%,2))g = Y q(z]x) log p(x, 7|6)

e Amazing fact: £(0) > £4(0) + H(q) because of concavity of log:

£(0;x) = log p(x0)

= logZp(x, z|0)

b 1P 210)

=1 gZZ:Q([x) q(zm /
>Zq z|x) log plx, |Z)l()9>

e Where the inequality is called Jensen's inequality.
(It is only true for distributions: »_ ¢(z) = 1; q(z) > 0.)

e Observed variables x, latent variables z, parameters 6:
0e(0;x,2) = log p(x,z|0)
is the complete log likelihood.

e Usually optimizing ¢.(6) given both z and x is straightforward.
(e.g. class conditional Gaussian fitting, linear regression)

e With z unobserved, we need the log of a marginal probability:

0(0;x) = log p(x|0) = logZp x,z|6)

which is the incomplete log likelihood.

LOWER BOUNDS AND FREE ENERGY

e For fixed data x, define a functional caIIed the free energy:

Zq z|x) log x, 2lf) < ((0)

q(zlx)

e The EM algorithm is coordinate-ascent on F"
E-step: gt = argmax, F(q,0")

M-step: o'l = argmaxy F(q¢', 6%

=4

F@e)

Q«f

M-STEP: MAXIMIZATION OF EXPECTED /.

e Note that the free energy breaks into two terms:

p(x,z|0)
Zq z|x) log 1)

—Zq z|x) log p(x, z|0) — Zq z|x) log q(z|x)
—gq(9,X)+H()

(this is where its name comes from)

e The first term is the expected complete log likelihood (energy) and
the second term, which does not depend on 6, is the entropy.

e Thus, in the M-step, maximizing with respect to 6 for fixed ¢ we
only need to consider the first term:

9+ = argmaxy l4(0; x) = argmaxy Z q(z|x) log p(x, z|0)

V4

EM CONSTRUCTS SEQUENTIAL CONVEX LOWER BOUNDS

E-STEP: INFERRING LATENT POSTERIOR

e Consider the likelihood function and the function F(g'*!,).
likelihood

\J

e Claim: the optimim setting of ¢ in the E-step is:
qt+1 - p(Z‘X, et)
e This is the posterior distribution over the latent variables given the

data and the parameters. Often we need this at test time anyway
(e.g. to perform classification).

e Proof (easy): this setting saturates the bound ¢(6;x) > F(q,0)

), %) f) (Z|X> 0")p(x|0")

= Zp z|x, 0") log p(x|6")
Z

= log p(x0") 3=, p(z|x, ")

=/((0;x) -1

e Can also show this result using variational calculus or the fact that

(0) = F(g,0) = KL{g||p(z|x, 0)]

REcaP: EM ALGORITHM

e A way of maximizing likelihood function for latent variable models.
Finds ML parameters when the original (hard) problem can be
broken up into two (easy) pieces:

1. Estimate some “missing” or “unobserved” data from observed
data and current parameters.

2. Using this “complete” data, find the maximum likelihood
parameter estimates.

e Alternate between filling in the latent variables using our best guess
(posterior) and updating the paramters based on this guess:
E-step: ¢'*! = p(z|x, 6")

M-step: 017! = argmaxy >, q(z|x) log p(x, z|6)

e In the M-step we optimize a lower bound on the likelihood.

In the E-step we close the gap, making bound=likelihood.

VARIATIONAL BAYEs EM (VBEM) ALGORITHM

e Latent variables are now = and parameters 0, observations are .
e Goal: Maximize lower bound on marginal likelihood P(y).

e Key assumption: assume a factorized posterior q(x, 0) ~ gz (x)qp(0):

o) > [asalas) 1g% dzdd = F(qu(2), q0(0),v)

e Replaces stochastic dependence between x and 6 with deterministic
constraints on moments.

e VB E step:
4 10) < exp | [spto. o010
e VB M step:

QEH(H) x p(#) exp l/ logp(x,y|9)qé+1(x)dx]

VBEM IN PRACTICE

e E-step: Do inference as usual, but use parameters 6 s.t. ¢(f) = ¢
(expected natural parameters)

e M-step: update hyper-parameters using expected sufficient statistics.
e The normalizing constant of inference is a lower bound on p(y).
e Examples: HMMs, factor analysis (PCA), linear dynamical systems

e Variational message passing (VMP) is a way of implementing VBEM
for any conjugate-exponential model, but makes the additional mean-
field approximation that ¢(z) = [[, ¢(zy).

CONJUGATE EXPONENTIAL MODELS

e Assumption 1: the complete-data log-likelihood is that of an expo-
nential family:

p(x,y10) = f(z,9)g(0) exp(é(0)" u(x, u))
e Assumption 2: the parameter prior is conjugate to the likelihood:
p(BIn,v) = hin,v)g(0)" exp(¢(6)" v)
e Thm: at every step of VBEM, the parameter posterior is

n

q(0ln +n,v+ > aly;), where u(y;) = Ey, u(x;, y;)
1=1
and the latent variable posterior is q;(x) = [[; ¢;(x;) where

Gy (i) = pily, @) o [, y;) exp [ETU(% yi)] where ¢ = Eq,¢(6)

VBEM FOR MODEL SELECTION

2801
& MAP 3 A
o AlS 4

+ VB

IS Y
BB b

s & ®
latent ~28501| & B\C‘ " § 3 g ;
variables SERER
ge o & 3
8 i] i i 3
572950 % 5: lg § E % % E{ E & i
° :
] Pof v
observed . ! 11 F s

variables

