LECTURE 16:

STRUCTURE LEARNING

Wed 10 Nov 2004



MAXIMIZING THE SCORE (K&F 14.4.3)

e Consider the family of DAGs GG; with maximum fan-in (number of
parents) equal to d.

e [heorem 14.4.3: It is NP-hard to find

G™ = arg max score(G, D)
GelGy

for any d > 2.

e For d <1 (i.e., trees), we can solve the problem in O(nz) time using
max spanning tree.

e In general, we need to use heuristic local search.



DIRECTED TREE GRAPHICAL MODELS (K&F 14.4.1)

e Directed trees are DAGMs in which each variable x; has exactly one
other variable as its parent x;, except the “root” xyoot which has
no parents. Thus, the probability of a variable taking on a certain
value depends only on the value of its parent:

p(X) :p(xroot) H p(%’xm)
1100t

e Trees are the next step up from assuming independence.
Instead of considering variables in isolation, consider them in pairs.

NB: each node (except root) has Q\\ )
exactly one parent, but nodes '/Q @)

may have more than one child.




UNDIRECTED TREE GRAPHICAL MODELS

e Undirected trees are connected, acyclic graphs with exactly (D-1)
edges if there are D nodes (variables).

e For undirected trees, the cliques are all pairs of connected nodes.
1
p(X) = i H wz(xu xm)
1

where we can make Z = 1 with the choice 9); = p(x;|zr;) except
for one clique involving the root: ¢; = p(xy)p(xj|zr;)

e Trees have no “explaining-away” (converging arrows).
Therefore, d-separation and regular separation are equivalent.

e Directed and undirected trees are equivalent and the choice of root
is arbitrary (for fully observed models).

e Another characterization of trees: there is exactly one path between
any pair of nodes (without doubling back).



LIKELIHOOD FUNCTION

e Notation:

yi = a node x; and its single parent x .
V,; = set of joint configurations of node 7 and its parent

(Yroot = Troot and Viget = Vroot)

e Directed model likelihood:
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where N;(v) = >, |y:" = v| and p;(v;) = p(x;|7r,).




MORE ON THE LIKELIHOOD FUNCTION

e Undirected model likelihood:

=ZlogH¢@- (vi')
—YY Y v]log ¥;(v)
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where N;(y) = >, [y;" = y] and ¢;(y;) = p(z;|zr,).
(Except for one clique involving the root: ¢; = p(zr)p(z|2x;))

e Directed and undirected likelihoods are the samel

e Trees are in the exponential family with y; as sufficient statistics.



MAXIMUM LIKELIHOOD PARAMETERS (GIVEN STRUCTURE

e Trees are just a special case of fully observed graphical models.

e For discrete data x; with values v;, each node stores a conditional
probability table (CPT) over its values given its parent’s value.
The ML parameter estimates are just the empirical histograms of
each node’s values given its parent:

Nl =vj,zr, =v5)  Nyly;)

ZVZ, N(z; = vj, oy, = vj) Nm(vj)

except for the root which uses marginal counts N (v,)/N.

p*(xi = Ui‘ﬂfm = Uj)

e For continuous data, the most common model is a two-dimensional
Gaussian at each node. The ML parameters are just to set the
mean of p;(y;) to be the sample mean of |z;; x| and the
covariance matrix to the sample covariance.

e In practice we should use some kind of smoothing/regularization.



STRUCTURE LEARNING

e What about the tree structure (links)?
How do we know which nodes to make parents of which?
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e Bold idea: how can we also learn the optimal structure?
In principle, we could search all combinatorial structures, for each
compute the ML parameters, and take the best one.

e But is there a better way? Yes. It turns out that structure learning
in tree models can be converted to a good old computer science
problem: maximum weight spanning tree.



OPTIMAL STRUCTURE

e Let us rewrite the likelihood function'

Z N(x)log p(x
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e ML parameters, are equal to the observed frequency counts ¢(-):
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e NB: second term does not depend on structure.



EDGE WEIGHTS

e Each term in sum ¢ =4 r corresponds to an edge from ¢ to its parent.
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where the edge weights W are defined by mutual information:

q(xi, ;)
Z q x’uxj log (

T, T w)a)

e So overall likelihood is sum of weights on edges that we use.
We need the maximum weight spanning tree.



KRUSKAL’S ALGORITHM (GREEDY SEARCH)

e To find the maximum weight spanning tree A on a graph with
nodes U and weighted edges E:
1. A «— empty
2. Sort edges E by nonincreasing weight: ey, e9,...,ex.
3.for k=1to K {A +=e;. unless doing so creates a cycle}




MAXIMUM LIKELIHOOD TREES

We can now completely solve the tree learning problem:

1. Compute the marginal counts ¢(x;) for each node
and pairwise counts g(z;, z;) for all pairs of nodes.

2. Set the weights to the mutual informations:
W(ij) =Y qla;,zj)log

xi,x]—
3. Find the maximum weight spanning tree A=MWST(WW/).

4. Using the undirected tree A chosen by MWST, pick a root
arbitrarily and orient the edges away from the root.
Set the conditional functions to the observed frequencies:
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NOTES

e Any directed tree consistent with the undirected tree found by the
algorithm above will assign the same likelihood to any dataset.

e Amazingly, as far as likelihood goes, the root is arbitrary.
We can just pick one node and orient the edges away from it.
Or we can work with undirected models.

e For continuous nodes (e.g. Gaussian), the situation is similar,
except that computing the mutual information requires an integral.

e Mutual information is the Kullback-Leibler divergence
(cross-entropy) between a distribution and the product of its
marginals. Measures how far from independent the joint
distribution is.

W (i; j) = Ilzg; x| = KL[g(%;, x7)||q(x;)q(x)]



BEYOND TREES

e Mixtures of trees - add hidden variables

e General graphs - local search



BAYESIAN MODEL AVERAGING (K&F 14.5)

e So far, we have just tried to find the mode of P(G|D), i.e., the best
scoring network.

e But the mode may be untypical of the distribution: most of the mass
may be elsewhere.

e Suppose we are trying to determine if there is an edge X — Y in
the “true” model.

e \We can compute features like this using

P(f|D) = Zf P(G|D)

where P(G|D) «x P(D|G)P(G ) x | [; exp FamScore(D(X;, I1;)).

e The main problem is that there are 2@<”2) DAGs on n nodes.
e Even if we restrict indegree to < d, there are still 20(dnlogn) pAGs.



MCMC FOR FEATURE PROBABILITY

e Suppose we can find a set G’ of high-scoring networks. Then

_ Sgea PEDIG
PUID) = =5 e PLGID)

e |f we can uniformly sample graphs from P(G|D), we can approximate
this using

1
P(fID) = =

where (G, is the k'th sample.

f(Gy)

e Markov chain Monte Carlo (MCMC) provides a way of sampling from
complex distributions such as this.



MCMC

e We define a Markov chain on graph structures (in this case) with
transition probability given by the Metropolis-Hastings rule

P(G’\D)Q(G’!G>>
- P(G|D)Q(G|Q)

where Q(G'|G) is the proposal probability and the ratio is the ac-
ceptance probability.

P(G'|G) = min (1

e The proposal () has to be such that the Markov chain is ergodic,
l.e., we can get to any state from any other state.

e \We start the chain off in some inital state and then perform a random
walk according to the above dynamics.

e Theory shows the stationary distribution of such a Markov chain is

P(G|D).



MCMC CONVERGENCE

e The mixing time is how long it takes the chain to converge from a
random starting point.

e Once the chain has converged (after the burnin), we can draw (cor-

related) samples from P(G|D).

e \We can diagnose convergence by running the chain from multiple
starting points and comparing the results. (Diagnosing convergence
is an open problem.)



MCMC FOR DAG STRUCTURE

e Suppose the proposal () picks randomly from the following operators
(where legal): add an edge, delete an edge, reverse an edge.

e The MH acceptance probability requires computing the Bayes factor
P(G'|D)/P(G|D), which is efficient for decomposable scores.

e However, small changes to the graph can result in large changes to
the score, resulting in a jagged landscape.

e So the chain does not mix rapidly (it gets stuck in local optima).



RAO-BLACKWELLISED MCMC

e An alternative idea is to do MCMC sampling in the space of node
orderings <, which “only” has size n!.

e Given an ordering, we can sum over all graphs efficiently (see below).
Hence

P(fID) = =P(f|D, <)

1

T

e This combination of sampling and exact integration/ marginalization
is called Rao-Blackwellised sampling.

e This is named after the Rao-Blackwell theorem, which says (roughly)
that variance is reduced if you sample in a smaller space:

VarE [E[f(G)| <] < VarE[f(G)



MCMC OVER ORDERINGS

e \We use Metropolis-Hastings as before.

e One proposal is to flip 2 variables in the order, leaving the rest un-
changed:

(X, Xe X

TREE ; TR

X ) — (X,..., X , Xi.

].k,... J0007

X))
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e Using score decomposability, only family scores for nodes inside the
bold range need to be recomputed.

e This is much more expensive than MCMC in DAG space, but each
move is much more powerful, and the space is much smaller.



MARGINAL LIKELIHOOD GIVEN KNOWN NODE ORDERING

e If we know the ordering (eg. temporal), we have

P(D|<)= ) P(G| <)P(D|G)
GGGd7<
e Given <, we can pick the parents for each node independently. Let
U; < =1{U : U < X, |U| < d}. Assuming P(G| <) is uniform for
legal graphs,

P(D] <)

Z H exp FamScore(D(X;, m;))

GGGd}{ Z
:H Z exp FamScore(D(X;, m;))

1 UZ'EUZ'7<

e \We marginalize out parameters ¢/ and graph structures G.

e This is what we need to evaluate the MH acceptance probability.



PROB. FEATURE GIVEN KNOWN NODE ORDERING

e Given a sampled ordering, we can compute the probability of a parent
set

exp FamScore(D(X;,U))
P& =U|D, <) =
(7, D, <) ZU’€U¢,< exp FamScore(D(X;, U'))

e From this, we can sample parents and hence graphs compatible with
<.

e From this, we can compute probability of features such as “There is
a directed path from X; to X"

e Useful for determining features of biological networks from small sets
of data.



LEARNING GENE REGULATORY PATHWAYS
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(Slide from Nir Friedman)



HIDDEN VARIABLES (K&F 15.7)

e So far, we have assumed all variables have been observed.
e In this case, we can compute the Bayesian score (evidence) exactly.

e But hidden variables can simplify a model a lot
eg. mixture models, HMMs.

QO
o/%\o oie

17 parameters 50 parameters

e Can still run local search to pick best model.
e But hidden variables raise various problems:

— Efficiently computing the score from partially observed data.
— Detecting the presence of latent (confounding) factors.
— Inferring the dimensionality/ cardinality of latent factors.



DETECTING PRESENCE OF HIDDEN VARIABLES

e One idea is to look for dense semi-cliques.

QO
o/%\o oie
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e Then insert a hidden variable “in the middle”, and let the search
algorithm figure out the detailed “wiring” .

e Unfortunately, many scoring criteria (e.g., BIC) produce very sparse
graphs, which makes such semi-cliques rare.

e Constraint-based methods sometimes can be used to detect con-
founding.

e In general, this is an open problem.



STRUCTURAL EM ALGORITHM (K&F 15.6)

e Assume the number of hidden variables is given. Let y be the ob-
served nodes, s be hidden, and z = (z,y) be all nodes.

e We can compute the BIC score for each candidate structure G’ by
applying EM to each one:

d(G)
2

scorep1(G'|y) = log P(y|G',0) — ——1log N

e But this is very expensive.

e Idea of structural EM: use current model (G,60) to compute the
expected sufficient statistics (ESS) needed to evaluate each neighbor
G/, i.e., compute the expected BIC score.

e This requires computing ESS for nodes and potentially new parents;
such sets may not reside inside a clique of the jtree for G.

e Application: phylogenetic trees.



APPROXIMATING THE EVIDENCE IN LATENT VARIABLE
MODELS

e When there are hidden variables, the parameter posterior has an
exponential number of modes.

e Hence computing the marginal likelihood is intractable.
e [ here are various possible approximations:

— Laplace

—BIC

— Cheeseman-Stutz (CS) lower bound
— Variational Bayes EM lower bound
— Sampling



EXPECTATION-MAXIMIZATION (EM) ALGORITHM

e EM is an optimization strategy for objective functions that can be
interpreted as likelihoods in the presence of missing data.

e |t is much simpler than gradient methods:

— No need to choose step size.
— Enforces constraints automatically.
— Calls inference and fully observed learning as subroutines.

e EM is an Iterative algorithm with two linked steps:

— E-step: fill-in hidden values using inference, p(z|x, 6°).
— M-step: update parameters §'*! using standard MLE/MAP
method applied to completed data

e \We will prove that this procedure monotonically improves /¢
(or leaves it unchanged). Thus it always converges to a local
optimum of the likelihood.



COMPLETE & INCOMPLETE LOG LIKELIHOODS

e Observed variables x, latent variables z, parameters 6:
£0(0: x,7) = log p(x, 7]0)
Is the complete log likelihood.

e Usually optimizing £.(6) given both z and x is straightforward.
(e.g. class conditional Gaussian fitting, linear regression)

e With z unobserved, we need the log of a marginal probability:

0(0;x) = log p(x|0) = logZp X, z|6)

which is the incomplete log likelihood.



EXPECTED COMPLETE LOG LIKELIHOOD

e For any distribution ¢(z) define expected complete log likelihood:

lg(0;%) = (Le(0;%,2))q = > q(z|x) log p(x, z[0)
Z
e Amazing fact: ¢(0) > £,(6) + H(q) because of concavity of log:
£(6:) = log p(x/6)

— ( ; )
long ’X XZ]@) /

z|x)
>Zq Z|X) 10g XZ‘H) /

e Where the inequality is called Jensen's inequality.
(It is only true for distributions: > " q(z) = 1; ¢(z) > 0.)



LOWER BOUNDS AND FREE ENERGY

e For fixed data x, define a functional called the free energy:

p(x,z|0)
F(q,0) = q(z|x) log < /(6
00 = Zalab) " LI <40
e The EM algorithm is coordinate-ascent on F":
E-step: gt = argmax, I’ (q,0")
M-step: 'l =  argmaxy F(q't,6Y)

Q (]



M-STEP: MAXIMIZATION OF EXPECTED /.

e Note that the free energy breaks into two terms:
p(x, z|0)
q(z|x) log
Z q(z|x)
—Zq z|x) log p(x, z|6) — Zq z|x) log q(z|x)

= %(9; x) + H(q)

(this is where its name comes from)

e The first term is the expected complete log likelihood (energy) and
the second term, which does not depend on 6, is the entropy.

e Thus, in the M-step, maximizing with respect to 6 for fixed g we
only need to consider the first term:

A = argmax lq(0;x) = argmaxy Z q(z|x) log p(x, z|0)
Z



E-STEP: INFERRING LATENT POSTERIOR

e Claim: the optimim setting of ¢ in the E-step is:
1
¢ = plzlx, 0")

e This is the posterior distribution over the latent variables given the
data and the parameters. Often we need this at test time anyway
(e.g. to perform classification).

e Proof (easy): this setting saturates the bound ¢(0;x) > F(q,0)

0" )p(x]6")
Qt Qt (9?5 1 (Z‘Xa

= ZP z|x, 0") log p(x|0")
= log p(x|0") 3, p(z|x, 0")
=/0(0;x) -1

e Can also show this result using variational calculus or the fact that

((0) — F(q,0) = KL|q||p(z|x, 0)]




EM CONSTRUCTS SEQUENTIAL CONVEX LOWER BOUNDS

t—H7 )

e Consider the likelihood function and the function F'(q
4 l1kelihood




REcaP: EM ALGORITHM

e A way of maximizing likelihood function for latent variable models.
Finds ML parameters when the original (hard) problem can be
broken up into two (easy) pieces:

1. Estimate some “missing” or “unobserved” data from observed
data and current parameters.

2. Using this “complete” data, find the maximum likelihood
parameter estimates.

e Alternate between filling in the latent variables using our best guess
(posterior) and updating the paramters based on this guess:
E-step: ¢!t = p(z|x, )

M-step: 011 = argmaxg >, q(z|x) log p(x, z|6)

e In the M-step we optimize a lower bound on the likelihood.
In the E-step we close the gap, making bound=likelihood.



VARIATIONAL BAYES EM (VBEM) ALGORITHM

e Latent variables are now = and parameters 6, observations are 1.
e Goal: Maximize lower bound on marginal likelihood P(y).

e Key assumption: assume a factorized posterior ¢(x, 6) ~ q.(x)qg(0):

log p(y) > / 1a()9(0) Loz 5(%2&(99))

e Replaces stochastic dependence between x and 6 with deterministic
constraints on moments.

e VB E step:

dxdb dgf F(Qm(x)v QQ(Q)v y)

1w ocexp | [logpte. O)ah0)ds

e VB M step:

0£F1(6) o< p(6) exp [ [ 1ot y\e>q;+1<x>dx]



CONJUGATE EXPONENTIAL MODELS

e Assumption 1: the complete-data log-likelihood is that of an expo-
nential family:

p(,y10) = f(z,y)g(0) exp((0)" u(w, u))
e Assumption 2: the parameter prior is conjugate to the likelihood:
p(6ln,v) = h(n,v)g(6)" exp(¢(6)" v)
e Thm: at every step of VBEM, the parameter posterior is

n
q(0ln+n,v+> uly;)), where u(y;) = Ey, u(x, ;)
1=1
and the latent variable posterior is ¢;(z) = | [; ¢z,(;) where

gz (i) = p(xily, &) o flzg,y;) exp {ETU(% y@')} where ¢ = Ey,¢(0)



VBEM IN PRACTICE

o E-step: Do inference as usual, but use parameters 0 s.t. ¢(f) = ¢
(expected natural parameters)

e M-step: update hyper-parameters using expected sufficient statistics.
e The normalizing constant of inference is a lower bound on p(y).
e Examples: HMMs, factor analysis (PCA), linear dynamical systems

e Variational message passing (VMP) is a way of implementing VBEM
for any conjugate-exponential model, but makes the additional mean-
field approximation that ¢(x) = | [ q(zp).



VBEM FOR MODEL SELECTION
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