Lecture 16:

Structure LeArning

Wed 10 Nov 2004

Maximizing the score (K\&F 14.4.3)

- Consider the family of DAGs G_{d} with maximum fan-in (number of parents) equal to d.
- Theorem 14.4.3: It is NP-hard to find

$$
G^{*}=\arg \max _{G \in G_{d}} \operatorname{score}(G, D)
$$

for any $d \geq 2$.

- For $d \leq 1$ (i.e., trees), we can solve the problem in $O\left(n^{2}\right)$ time using max spanning tree.
- In general, we need to use heuristic local search.

Directed Tree Graphical Models (K\&F 14.4.1)

- Directed trees are DAGMs in which each variable x_{i} has exactly one other variable as its parent $x_{\pi_{i}}$ except the "root" $x_{\text {root }}$ which has no parents. Thus, the probability of a variable taking on a certain value depends only on the value of its parent:

$$
p(\mathbf{x})=p\left(x_{\mathrm{root}}\right) \prod_{i \neq \mathrm{root}} p\left(x_{i} \mid x_{\pi_{i}}\right)
$$

- Trees are the next step up from assuming independence. Instead of considering variables in isolation, consider them in pairs.

NB: each node (except root) has exactly one parent, but nodes may have more than one child.

Undirected Tree Graphical Models

- Undirected trees are connected, acyclic graphs with exactly (D-1) edges if there are D nodes (variables).
- For undirected trees, the cliques are all pairs of connected nodes.

$$
p(\mathbf{x})=\frac{1}{Z} \prod_{i} \psi_{i}\left(x_{i}, x_{\pi_{i}}\right)
$$

where we can make $Z=1$ with the choice $\psi_{i}=p\left(x_{i} \mid x_{\pi_{i}}\right)$ except for one clique involving the root: $\psi_{j}=p\left(x_{r}\right) p\left(x_{j} \mid x_{\pi_{j}}\right)$

- Trees have no "explaining-away" (converging arrows). Therefore, d-separation and regular separation are equivalent.
- Directed and undirected trees are equivalent and the choice of root is arbitrary (for fully observed models).
- Another characterization of trees: there is exactly one path between any pair of nodes (without doubling back).

Likelihood function

- Notation:
$\mathbf{y}_{i} \equiv$ a node x_{i} and its single parent $x_{\pi_{i}}$.
$\mathbf{V}_{i} \equiv$ set of joint configurations of node i and its parent $x_{\pi_{i}}$

$$
\left(\mathbf{y}_{\text {root }} \equiv x_{\text {root }} \text { and } \mathbf{V}_{\text {root }} \equiv \mathbf{v}_{\text {root }}\right)
$$

- Directed model likelihood:

$$
\begin{aligned}
\ell(\theta ; \mathcal{D}) & =\sum_{n} \log p\left(\mathbf{x}^{n}\right)=\sum_{n}\left[\log p_{r}\left(x_{r}^{n}\right)+\sum_{i \neq r} \log p\left(x_{i}{ }^{n} \mid x_{\pi_{i}}{ }^{n}\right)\right] \\
& =\sum \sum \sum\left[\mathbf{y}_{i}^{n}=\mathbf{v}\right] \log p_{i}(\mathbf{v}) \quad \text { indicator trick }
\end{aligned}
$$

$$
\text { where } N_{i}(\mathbf{v})=\sum_{n}\left[\mathbf{y}_{i}^{n}=\mathbf{v}\right] \text { and } p_{i}\left(\mathbf{v}_{i}\right)=p\left(x_{i} \mid x_{\pi_{i}}\right) .
$$

More on the Likelihood function

- Undirected model likelihood:

$$
\begin{aligned}
\ell(\theta ; \mathcal{D}) & =\sum_{n} \log \prod_{i} \psi_{i}\left(\mathbf{y}_{i}^{n}\right) \\
& =\sum_{n} \sum_{i} \sum_{\mathbf{v} \in \mathbf{V}_{i}}\left[\mathbf{y}_{i}^{n}=\mathbf{v}\right] \log \psi_{i}(\mathbf{v}) \\
& =\sum_{i} \sum_{\mathbf{v} \in \mathbf{V}_{i}} N_{i}(\mathbf{v}) \log \psi_{i}(\mathbf{v})
\end{aligned}
$$

where $N_{i}(\mathbf{y})=\sum_{n}\left[\mathbf{y}_{i}^{n}=\mathbf{y}\right]$ and $\psi_{i}\left(\mathbf{y}_{i}\right)=p\left(x_{i} \mid x_{\pi_{i}}\right)$.
(Except for one clique involving the root: $\psi_{j}=p\left(x_{r}\right) p\left(x_{j} \mid x_{\pi_{j}}\right)$)

- Directed and undirected likelihoods are the same!
- Trees are in the exponential family with \mathbf{y}_{i} as sufficient statistics.

Maximum Likelihood Parameters Given Structure

- Trees are just a special case of fully observed graphical models.
- For discrete data x_{i} with values v_{i}, each node stores a conditional probability table (CPT) over its values given its parent's value. The ML parameter estimates are just the empirical histograms of each node's values given its parent:

$$
p^{*}\left(x_{i}=v_{i} \mid x_{\pi_{i}}=v_{j}\right)=\frac{N\left(x_{i}=v_{i}, x_{\pi_{i}}=v_{j}\right)}{\sum_{\mathbf{v}_{i}} N\left(x_{i}=v_{i}, x_{\pi_{i}}=v_{j}\right)}=\frac{N_{i}\left(\mathbf{y}_{i}\right)}{N_{\pi_{i}}\left(v_{j}\right)}
$$

except for the root which uses marginal counts $N_{r}\left(v_{r}\right) / N$.

- For continuous data, the most common model is a two-dimensional Gaussian at each node. The ML parameters are just to set the mean of $p_{i}\left(\mathbf{y}_{i}\right)$ to be the sample mean of $\left[x_{i} ; x_{\pi_{i}}\right]$ and the covariance matrix to the sample covariance.
- In practice we should use some kind of smoothing/regularization.

Structure Learning

- What about the tree structure (links)?

How do we know which nodes to make parents of which?

- Bold idea: how can we also learn the optimal structure? In principle, we could search all combinatorial structures, for each compute the ML parameters, and take the best one.
- But is there a better way? Yes. It turns out that structure learning in tree models can be converted to a good old computer science problem: maximum weight spanning tree.

Optimal Structure

- Let us rewrite the likelihood function:

$$
\begin{aligned}
\ell(\theta ; \mathcal{D}) & =\sum_{\mathbf{x} \in \mathbf{V}_{\text {all }}} N(\mathbf{x}) \log p(\mathbf{x}) \\
& =\sum_{\mathbf{x}} N(\mathbf{x})\left(\log p\left(\mathbf{x}_{r}\right)+\sum_{i \neq r} \log p\left(x_{i} \mid x_{\pi_{i}}\right)\right)
\end{aligned}
$$

- ML parameters, are equal to the observed frequency counts $q(\cdot)$:

$$
\begin{aligned}
\frac{\ell^{*}}{N} & =\sum_{\mathbf{x} \in \mathbf{V}_{\text {all }}} q(\mathbf{x})\left(\log q\left(\mathbf{x}_{r}\right)+\sum_{i \neq r} \log q\left(x_{i} \mid x_{\pi_{i}}\right)\right) \\
& =\sum_{\mathbf{x}} q(\mathbf{x})\left(\log q\left(\mathbf{x}_{r}\right)+\sum_{i \neq r} \log \frac{q\left(x_{i}, x_{\pi_{i}}\right)}{q\left(x_{\pi_{i}}\right)}\right) \\
& =\sum_{\mathbf{x}} q(\mathbf{x}) \sum_{i \neq r} \log \frac{q\left(x_{i}, x_{\pi_{i}}\right)}{q\left(x_{i}\right) q\left(x_{\pi_{i}}\right)}+\sum_{\mathbf{x}} q(\mathbf{x}) \sum_{i} \log q\left(\mathbf{x}_{i}\right)
\end{aligned}
$$

- NB: second term does not depend on structure.

Edge Weights

- Each term in sum $i \neq r$ corresponds to an edge from i to its parent.

$$
\begin{aligned}
\frac{\ell^{*}}{N} & =\sum_{\mathbf{x}} q(\mathbf{x}) \sum_{i \neq r} \log \frac{q\left(x_{i}, x_{\pi_{i}}\right)}{q\left(x_{i}\right) q\left(x_{\pi_{i}}\right)}+C \\
& =\sum_{i \neq r} \sum_{x_{i}, x_{\pi_{i}}} q\left(x_{i}, x_{\pi_{i}}\right) \log \frac{q\left(x_{i}, x_{\pi_{i}}\right)}{q\left(x_{i}\right) q\left(x_{\pi_{i}}\right)}+C \\
& =\sum_{i \neq r} \sum_{\mathbf{y}_{i}} q\left(\mathbf{y}_{i}\right) \log \frac{q\left(\mathbf{y}_{i}\right)}{q\left(x_{i}\right) q\left(x_{\pi_{i}}\right)}+C \\
& =\sum_{i \neq r} W\left(i ; \pi_{i}\right)+C
\end{aligned}
$$

where the edge weights W are defined by mutual information:

$$
W(i ; j)=\sum_{x_{i}, x_{j}} q\left(x_{i}, x_{j}\right) \log \frac{q\left(x_{i}, x_{j}\right)}{q\left(x_{i}\right) q\left(x_{j}\right)}
$$

- So overall likelihood is sum of weights on edges that we use. We need the maximum weight spanning tree.

Kruskal's algorithm (Greedy Search)

- To find the maximum weight spanning tree A on a graph with nodes U and weighted edges E :

1. $A \leftarrow$ empty
2. Sort edges E by nonincreasing weight: $e_{1}, e_{2}, \ldots, e_{K}$.
3. for $k=1$ to $K \quad\left\{A+=e_{k}\right.$ unless doing so creates a cycle $\}$

Maximum Likelihood Trees

We can now completely solve the tree learning problem:

1. Compute the marginal counts $q\left(x_{i}\right)$ for each node and pairwise counts $q\left(x_{i}, x_{j}\right)$ for all pairs of nodes.
2. Set the weights to the mutual informations:

$$
W(i ; j)=\sum_{x_{i}, x_{j}} q\left(x_{i}, x_{j}\right) \log \frac{q\left(x_{i}, x_{j}\right)}{q\left(x_{i}\right) q\left(x_{j}\right)}
$$

3. Find the maximum weight spanning tree $A=\mathrm{MWST}(W)$.
4. Using the undirected tree A chosen by MWST, pick a root arbitrarily and orient the edges away from the root. Set the conditional functions to the observed frequencies:

$$
p\left(x_{i} \mid x_{\pi_{i}}\right)=\frac{q\left(x_{i}, x_{\pi_{i}}\right)}{\sum_{x_{i}} q\left(x_{i}, x_{\pi_{i}}\right)}=\frac{q\left(x_{i}, x_{\pi_{i}}\right)}{q\left(x_{\pi_{i}}\right)}
$$

Notes

- Any directed tree consistent with the undirected tree found by the algorithm above will assign the same likelihood to any dataset.
- Amazingly, as far as likelihood goes, the root is arbitrary. We can just pick one node and orient the edges away from it. Or we can work with undirected models.
- For continuous nodes (e.g. Gaussian), the situation is similar, except that computing the mutual information requires an integral.
- Mutual information is the Kullback-Leibler divergence (cross-entropy) between a distribution and the product of its marginals. Measures how far from independent the joint distribution is.

$$
W(i ; j)=\mathrm{I}\left[x_{i} ; x_{j}\right]=\operatorname{KL}\left[q\left(x_{i}, x j\right) \| q\left(x_{i}\right) q\left(x_{j}\right)\right]
$$

Beyond trees

- Mixtures of trees - add hidden variables
- General graphs - local search

Bayesian model averaging (K\&F 14.5)

- So far, we have just tried to find the mode of $P(G \mid D)$, i.e., the best scoring network.
- But the mode may be untypical of the distribution: most of the mass may be elsewhere.
- Suppose we are trying to determine if there is an edge $X \rightarrow Y$ in the "true" model.
- We can compute features like this using

$$
P(f \mid D)=\sum_{G} f(G) P(G \mid D)
$$

where $P(G \mid D) \propto P(D \mid G) P(G) \propto \prod_{i} \exp \operatorname{FamScore}\left(D\left(X_{i}, \Pi_{i}\right)\right)$.

- The main problem is that there are $2^{\Theta\left(n^{2}\right)}$ DAGs on n nodes.
- Even if we restrict indegree to $\leq d$, there are still $2^{\Theta(d n \log n)}$ DAGs.

MCMC FOR FEATURE PROBABILITY

- Suppose we can find a set G^{\prime} of high-scoring networks. Then

$$
P(f \mid D) \approx \frac{\sum_{G \in G^{\prime}} P(G \mid D) f(G)}{\sum_{G \in G^{\prime}} P(G \mid D)}
$$

- If we can uniformly sample graphs from $P(G \mid D)$, we can approximate this using

$$
P(f \mid D) \approx \frac{1}{T} f\left(G_{t}\right)
$$

where G_{k} is the k 'th sample.

- Markov chain Monte Carlo (MCMC) provides a way of sampling from complex distributions such as this.

MCMC

- We define a Markov chain on graph structures (in this case) with transition probability given by the Metropolis-Hastings rule

$$
P\left(G^{\prime} \mid G\right)=\min \left(1, \frac{P\left(G^{\prime} \mid D\right) Q\left(G^{\prime} \mid G\right)}{P(G \mid D) Q\left(G \mid Q^{\prime}\right)}\right)
$$

where $Q\left(G^{\prime} \mid G\right)$ is the proposal probability and the ratio is the acceptance probability.

- The proposal Q has to be such that the Markov chain is ergodic, i.e., we can get to any state from any other state.
- We start the chain off in some inital state and then perform a random walk according to the above dynamics.
- Theory shows the stationary distribution of such a Markov chain is $P(G \mid D)$.

MCMC CONVERGENCE

- The mixing time is how long it takes the chain to converge from a random starting point.
- Once the chain has converged (after the burnin), we can draw (correlated) samples from $P(G \mid D)$.
- We can diagnose convergence by running the chain from multiple starting points and comparing the results. (Diagnosing convergence is an open problem.)

MCMC for DAG structure

- Suppose the proposal Q picks randomly from the following operators (where legal): add an edge, delete an edge, reverse an edge.
- The MH acceptance probability requires computing the Bayes factor $P\left(G^{\prime} \mid D\right) / P(G \mid D)$, which is efficient for decomposable scores.
- However, small changes to the graph can result in large changes to the score, resulting in a jagged landscape.
- So the chain does not mix rapidly (it gets stuck in local optima).

Rao-Blackwellised MCMC

- An alternative idea is to do MCMC sampling in the space of node orderings \prec, which "only" has size n !.
- Given an ordering, we can sum over all graphs efficiently (see below). Hence

$$
P(f \mid D) \approx \frac{1}{T} P\left(f \mid D, \prec_{t}\right)
$$

- This combination of sampling and exact integration/ marginalization is called Rao-Blackwellised sampling.
- This is named after the Rao-Blackwell theorem, which says (roughly) that variance is reduced if you sample in a smaller space:

$$
\operatorname{Var} E[E[f(G) \mid \prec]] \leq \operatorname{Var} E[f(G)]
$$

MCMC OVER ORDERINGS

- We use Metropolis-Hastings as before.
- One proposal is to flip 2 variables in the order, leaving the rest unchanged:

$$
\left(X_{i_{1}}, \ldots, \mathbf{X}_{\mathbf{i}_{\mathbf{j}}}, \ldots, \mathbf{X}_{\mathbf{i}_{\mathbf{k}}}, \ldots, X_{i_{n}}\right) \rightarrow\left(X_{i_{1}}, \ldots, \mathbf{X}_{\mathbf{i}_{\mathbf{k}}}, \ldots, \mathbf{X}_{\mathbf{i}_{\mathbf{j}}}, \ldots, X_{i_{n}}\right)
$$

- Using score decomposability, only family scores for nodes inside the bold range need to be recomputed.
- This is much more expensive than MCMC in DAG space, but each move is much more powerful, and the space is much smaller.
- If we know the ordering (eg. temporal), we have

$$
P(D \mid \prec)=\sum_{G \in G_{d, \prec}} P(G \mid \prec) P(D \mid G)
$$

- Given \prec, we can pick the parents for each node independently. Let $U_{i, \prec}=\left\{U: U \prec X_{i},|U| \leq d\right\}$. Assuming $P(G \mid \prec)$ is uniform for legal graphs,

$$
\begin{aligned}
P(D \mid \prec) & =\sum_{G \in G_{d, \prec}} \prod_{i} \exp \operatorname{FamScore}\left(D\left(X_{i}, \pi_{i}\right)\right) \\
& =\prod_{i} \sum_{U_{i} \in U_{i, \prec}} \exp \operatorname{FamScore}\left(D\left(X_{i}, \pi_{i}\right)\right)
\end{aligned}
$$

- We marginalize out parameters θ and graph structures G.
- This is what we need to evaluate the MH acceptance probability.

Prob. FEATURE GIVEN KNOWN NODE ORDERING

- Given a sampled ordering, we can compute the probability of a parent set

$$
P\left(\pi_{i}^{G}=U \mid D, \prec\right)=\frac{\exp \operatorname{FamScore}\left(D\left(X_{i}, U\right)\right)}{\sum_{U^{\prime} \in U_{i, \prec}} \exp \operatorname{FamScore}\left(D\left(X_{i}, U^{\prime}\right)\right)}
$$

- From this, we can sample parents and hence graphs compatible with \prec.
- From this, we can compute probability of features such as "There is a directed path from X_{i} to X_{j} ".
- Useful for determining features of biological networks from small sets of data.

LEARNING GENE REGULATORY PATHWAYS

(Slide from Nir Friedman)

Hidden variables (K\&F 15.7)

- So far, we have assumed all variables have been observed.
- In this case, we can compute the Bayesian score (evidence) exactly.
- But hidden variables can simplify a model a lot eg. mixture models, HMMs.

- Can still run local search to pick best model.
- But hidden variables raise various problems:
- Efficiently computing the score from partially observed data.
- Detecting the presence of latent (confounding) factors.
- Inferring the dimensionality/ cardinality of latent factors.

Detecting Presence of hidden variables

- One idea is to look for dense semi-cliques.

- Then insert a hidden variable "in the middle", and let the search algorithm figure out the detailed "wiring".
- Unfortunately, many scoring criteria (e.g., BIC) produce very sparse graphs, which makes such semi-cliques rare.
- Constraint-based methods sometimes can be used to detect confounding.
- In general, this is an open problem.

Structural EM algorithm (K\&F 15.6)

- Assume the number of hidden variables is given. Let y be the observed nodes, s be hidden, and $z=(x, y)$ be all nodes.
- We can compute the BIC score for each candidate structure G^{\prime} by applying EM to each one:

$$
\operatorname{score}_{B I C}\left(G^{\prime} \mid y\right)=\log P\left(y \mid G^{\prime}, \hat{\theta}\right)-\frac{d(G)}{2} \log N
$$

- But this is very expensive.
- Idea of structural EM: use current model (G, θ) to compute the expected sufficient statistics (ESS) needed to evaluate each neighbor G^{\prime}, i.e., compute the expected BIC score.
- This requires computing ESS for nodes and potentially new parents; such sets may not reside inside a clique of the jtree for G.
- Application: phylogenetic trees.

Approximating THE EVIDENCE IN LATENT VARIABLE

MODELS

- When there are hidden variables, the parameter posterior has an exponential number of modes.
- Hence computing the marginal likelihood is intractable.
- There are various possible approximations:
- Laplace
- BIC
- Cheeseman-Stutz (CS) lower bound
- Variational Bayes EM lower bound
- Sampling

Expectation-Maximization (EM) Algorithm

- EM is an optimization strategy for objective functions that can be interpreted as likelihoods in the presence of missing data.
- It is much simpler than gradient methods:
- No need to choose step size.
- Enforces constraints automatically.
- Calls inference and fully observed learning as subroutines.
- EM is an Iterative algorithm with two linked steps:
- E-step: fill-in hidden values using inference, $p\left(\mathbf{z} \mid \mathbf{x}, \theta^{t}\right)$.
- M-step: update parameters θ^{t+1} using standard MLE/MAP method applied to completed data
- We will prove that this procedure monotonically improves ℓ (or leaves it unchanged). Thus it always converges to a local optimum of the likelihood.

Complete \& Incomplete Log Likelihoods

- Observed variables \mathbf{x}, latent variables \mathbf{z}, parameters θ :

$$
\ell_{c}(\theta ; \mathbf{x}, \mathbf{z})=\log p(\mathbf{x}, \mathbf{z} \mid \theta)
$$

is the complete log likelihood.

- Usually optimizing $\ell_{c}(\theta)$ given both \mathbf{z} and \mathbf{x} is straightforward. (e.g. class conditional Gaussian fitting, linear regression)
- With z unobserved, we need the log of a marginal probability:

$$
\ell(\theta ; \mathbf{x})=\log p(\mathbf{x} \mid \theta)=\log \sum_{\mathbf{z}} p(\mathbf{x}, \mathbf{z} \mid \theta)
$$

which is the incomplete log likelihood.

Expected Complete Log Likelihood

- For any distribution $q(\mathbf{z})$ define expected complete log likelihood:

$$
\ell_{q}(\theta ; \mathbf{x})=\left\langle\ell_{c}(\theta ; \mathbf{x}, \mathbf{z})\right\rangle_{q} \equiv \sum_{\mathbf{z}} q(\mathbf{z} \mid \mathbf{x}) \log p(\mathbf{x}, \mathbf{z} \mid \theta)
$$

- Amazing fact: $\ell(\theta) \geq \ell_{q}(\theta)+\mathcal{H}(q)$ because of concavity of log:

$$
\begin{aligned}
\ell(\theta ; \mathbf{x}) & =\log p(\mathbf{x} \mid \theta) \\
& =\log \sum_{\mathbf{z}} p(\mathbf{x}, \mathbf{z} \mid \theta) \\
& =\log \sum_{\mathbf{z}} q(\mathbf{z} \mid \mathbf{x}) \frac{p(\mathbf{x}, \mathbf{z} \mid \theta)}{q(\mathbf{z} \mid \mathbf{x})} \\
& \geq \sum_{\mathbf{z}} q(\mathbf{z} \mid \mathbf{x}) \log \frac{p(\mathbf{x}, \mathbf{z} \mid \theta)}{q(\mathbf{z} \mid \mathbf{x})}
\end{aligned}
$$

- Where the inequality is called Jensen's inequality.
(It is only true for distributions: $\sum q(\mathbf{z})=1 ; q(\mathbf{z})>0$.)

Lower Bounds and Free Energy

- For fixed data \mathbf{x}, define a functional called the free energy:

$$
F(q, \theta) \equiv \sum_{\mathbf{z}} q(\mathbf{z} \mid \mathbf{x}) \log \frac{p(\mathbf{x}, \mathbf{z} \mid \theta)}{q(\mathbf{z} \mid \mathbf{x})} \quad \leq \ell(\theta)
$$

- The EM algorithm is coordinate-ascent on F :

$$
\begin{array}{lll}
\text { E-step: } & q^{t+1}=\operatorname{argmax}_{q} & F\left(q, \theta^{t}\right) \\
\text { M-step: } & \theta^{t+1}=\operatorname{argmax}_{\theta} & F\left(q^{t+1}, \theta^{t}\right)
\end{array}
$$

M-STEP: MAXIMIZATION OF EXPECTED ℓ_{c}

- Note that the free energy breaks into two terms:

$$
\begin{aligned}
F(q, \theta) & =\sum_{\mathbf{z}} q(\mathbf{z} \mid \mathbf{x}) \log \frac{p(\mathbf{x}, \mathbf{z} \mid \theta)}{q(\mathbf{z} \mid \mathbf{x})} \\
& =\sum_{\mathbf{z}} q(\mathbf{z} \mid \mathbf{x}) \log p(\mathbf{x}, \mathbf{z} \mid \theta)-\sum_{\mathbf{z}} q(\mathbf{z} \mid \mathbf{x}) \log q(\mathbf{z} \mid \mathbf{x}) \\
& =\ell_{q}(\theta ; \mathbf{x})+\mathcal{H}(q)
\end{aligned}
$$

(this is where its name comes from)

- The first term is the expected complete log likelihood (energy) and the second term, which does not depend on θ, is the entropy.
- Thus, in the M -step, maximizing with respect to θ for fixed q we only need to consider the first term:

$$
\theta^{t+1}=\operatorname{argmax}_{\theta} \ell_{q}(\theta ; \mathbf{x})=\operatorname{argmax}_{\theta} \sum_{\mathbf{z}} q(\mathbf{z} \mid \mathbf{x}) \log p(\mathbf{x}, \mathbf{z} \mid \theta)
$$

E-STEP: INFERRING LATENT POSTERIOR

- Claim: the optimim setting of q in the E-step is:

$$
q^{t+1}=p\left(\mathbf{z} \mid \mathbf{x}, \theta^{t}\right)
$$

- This is the posterior distribution over the latent variables given the data and the parameters. Often we need this at test time anyway (e.g. to perform classification).
- Proof (easy): this setting saturates the bound $\ell(\theta ; \mathbf{x}) \geq F(q, \theta)$

$$
\begin{aligned}
F\left(p\left(\mathbf{z} \mid \mathbf{x}, \theta^{t}\right), \theta^{t}\right) & =\sum_{\mathbf{z}} p\left(\mathbf{z} \mid \mathbf{x}, \theta^{t}\right) \log \frac{p\left(\mathbf{z} \mid \mathbf{x}, \theta^{t}\right) p\left(\mathbf{x} \mid \theta^{t}\right)}{p\left(\mathbf{z} \mid \mathbf{x}, \theta^{t}\right)} \\
& =\sum_{\mathbf{z}} p\left(\mathbf{z} \mid \mathbf{x}, \theta^{t}\right) \log p\left(\mathbf{x} \mid \theta^{t}\right) \\
& =\log p\left(\mathbf{x} \mid \theta^{t}\right) \sum_{\mathbf{z}} p\left(\mathbf{z} \mid \mathbf{x}, \theta^{t}\right) \\
& =\ell(\theta ; \mathbf{x}) \cdot 1
\end{aligned}
$$

- Can also show this result using variational calculus or the fact that $\ell(\theta)-F(q, \theta)=\operatorname{KL}[q \| p(\mathbf{z} \mid \mathbf{x}, \theta)]$

EM Constructs Sequential Convex Lower Bounds

- Consider the likelihood function and the function $F\left(q^{t+1}, \cdot\right)$.

Recap: EM Algorithm

- A way of maximizing likelihood function for latent variable models. Finds ML parameters when the original (hard) problem can be broken up into two (easy) pieces:

1. Estimate some "missing" or "unobserved" data from observed data and current parameters.
2. Using this "complete" data, find the maximum likelihood parameter estimates.

- Alternate between filling in the latent variables using our best guess (posterior) and updating the paramters based on this guess:
E-step: $q^{t+1}=p\left(\mathbf{z} \mid \mathbf{x}, \theta^{t}\right)$
M-step: $\theta^{t+1}=\operatorname{argmax}_{\theta} \sum_{\mathbf{z}} q(\mathbf{z} \mid \mathbf{x}) \log p(\mathbf{x}, \mathbf{z} \mid \theta)$
- In the M-step we optimize a lower bound on the likelihood. In the E-step we close the gap, making bound=likelihood.

Variational Bayes EM (VBEM) algorithm

- Latent variables are now x and parameters θ, observations are y.
- Goal: Maximize lower bound on marginal likelihood $P(y)$.
- Key assumption: assume a factorized posterior $q(x, \theta) \approx q_{x}(x) q_{\theta}(\theta)$:

$$
\log p(y) \geq \int q_{x}(x) q_{\theta}(\theta) \log \frac{p(y, x, \theta)}{q_{x}(x) q_{\theta}(\theta)} d x d \theta \stackrel{\text { def }}{=} F\left(q_{x}(x), q_{\theta}(\theta), y\right)
$$

- Replaces stochastic dependence between x and θ with deterministic constraints on moments.
- VB E step:

$$
q_{x}^{t+1}(x) \propto \exp \left[\int \log p(x, y \mid \theta) q_{\theta}^{t}(\theta) d \theta\right]
$$

- VB M step:

$$
q_{\theta}^{t+1}(\theta) \propto p(\theta) \exp \left[\int \log p(x, y \mid \theta) q_{x}^{t+1}(x) d x\right]
$$

Conjugate exponential models

- Assumption 1: the complete-data log-likelihood is that of an exponential family:

$$
p(x, y \mid \theta)=f(x, y) g(\theta) \exp \left(\phi(\theta)^{T} u(x, u)\right)
$$

- Assumption 2: the parameter prior is conjugate to the likelihood:

$$
p(\theta \mid \eta, \nu)=h(\eta, \nu) g(\theta)^{\eta} \exp \left(\phi(\theta)^{T} \nu\right)
$$

- Thm: at every step of VBEM, the parameter posterior is

$$
q\left(\theta \mid \eta+n, \nu+\sum_{i=1}^{n} \bar{u}\left(y_{i}\right)\right), \text { where } \bar{u}\left(y_{i}\right)=E_{q_{x_{i}}} u\left(x_{i}, y_{i}\right)
$$

and the latent variable posterior is $q_{x}(x)=\prod_{i} q_{x_{i}}\left(x_{i}\right)$ where
$q_{x_{i}}\left(x_{i}\right)=p\left(x_{i} \mid y, \bar{\phi}\right) \propto f\left(x_{i}, y_{i}\right) \exp \left[\bar{\phi}^{T} u\left(x_{i}, y_{i}\right)\right]$ where $\bar{\phi}=E_{q_{\theta}} \phi(\theta)$

VBEM IN PRACTICE

- E-step: Do inference as usual, but use parameters $\tilde{\theta}$ s.t. $\phi(\tilde{\theta})=\bar{\phi}$ (expected natural parameters)
- M-step: update hyper-parameters using expected sufficient statistics.
- The normalizing constant of inference is a lower bound on $p(y)$.
- Examples: HMMs, factor analysis (PCA), linear dynamical systems
- Variational message passing (VMP) is a way of implementing VBEM for any conjugate-exponential model, but makes the additional meanfield approximation that $q(x)=\prod_{k} q\left(x_{k}\right)$.

VBEM FOR MODEL SELECTION

