
Lecture 16:

Structure learning

Wed 10 Nov 2004

Maximizing the score (K&F 14.4.3)

• Consider the family of DAGs Gd with maximum fan-in (number of
parents) equal to d.

• Theorem 14.4.3: It is NP-hard to find

G∗ = arg max
G∈Gd

score(G,D)

for any d ≥ 2.

• For d ≤ 1 (i.e., trees), we can solve the problem in O(n2) time using
max spanning tree.

• In general, we need to use heuristic local search.

Directed Tree Graphical Models (K&F 14.4.1)

•Directed trees are DAGMs in which each variable xi has exactly one
other variable as its parent xπi except the “root” xroot which has
no parents. Thus, the probability of a variable taking on a certain
value depends only on the value of its parent:

p(x) = p(xroot)
∏

i 6=root

p(xi|xπi)

• Trees are the next step up from assuming independence.
Instead of considering variables in isolation, consider them in pairs.

NB: each node (except root) has
exactly one parent, but nodes
may have more than one child.

x x

x

x

x

x

1,n 3,n

2,n

4,n

6,n

5,n

Undirected Tree Graphical Models

• Undirected trees are connected, acyclic graphs with exactly (D-1)
edges if there are D nodes (variables).

• For undirected trees, the cliques are all pairs of connected nodes.

p(x) =
1

Z

∏

i

ψi(xi, xπi)

where we can make Z = 1 with the choice ψi = p(xi|xπi) except
for one clique involving the root: ψj = p(xr)p(xj|xπj)

• Trees have no “explaining-away” (converging arrows).
Therefore, d-separation and regular separation are equivalent.

•Directed and undirected trees are equivalent and the choice of root
is arbitrary (for fully observed models).

• Another characterization of trees: there is exactly one path between
any pair of nodes (without doubling back).

Likelihood function

• Notation:
yi ≡ a node xi and its single parent xπi.
Vi ≡ set of joint configurations of node i and its parent xπi
(yroot ≡ xroot and Vroot ≡ vroot)

•Directed model likelihood:

`(θ;D) =
∑

n

log p(xn) =
∑

n

log pr(x
n
r) +

∑

i 6=r

log p(xi
n|xπi

n)

=
∑

n

∑

i

∑

v∈Vi

[yni = v] log pi(v) indicator trick

=
∑

i

∑

v∈Vi

Ni(v) log pi(v)

where Ni(v) =
∑

n[y
n
i = v] and pi(vi) = p(xi|xπi).

More on the Likelihood function

• Undirected model likelihood:

`(θ;D) =
∑

n

log
∏

i

ψi(y
n
i)

=
∑

n

∑

i

∑

v∈Vi

[yni = v] logψi(v)

=
∑

i

∑

v∈Vi

Ni(v) logψi(v)

where Ni(y) =
∑

n[y
n
i = y] and ψi(yi) = p(xi|xπi).

(Except for one clique involving the root: ψj = p(xr)p(xj|xπj))

•Directed and undirected likelihoods are the same!

• Trees are in the exponential family with yi as sufficient statistics.

Maximum Likelihood Parameters Given Structure

• Trees are just a special case of fully observed graphical models.

• For discrete data xi with values vi, each node stores a conditional
probability table (CPT) over its values given its parent’s value.
The ML parameter estimates are just the empirical histograms of
each node’s values given its parent:

p∗(xi = vi|xπi = vj) =
N (xi = vi, xπi = vj)

∑

vi
N (xi = vi, xπi = vj)

=
Ni(yi)

Nπi(vj)

except for the root which uses marginal counts Nr(vr)/N .

• For continuous data, the most common model is a two-dimensional
Gaussian at each node. The ML parameters are just to set the
mean of pi(yi) to be the sample mean of [xi;xπi] and the
covariance matrix to the sample covariance.

• In practice we should use some kind of smoothing/regularization.

Structure Learning

•What about the tree structure (links)?
How do we know which nodes to make parents of which?

x x

x

x

x

x

1,n 3,n

2,n

4,n

6,n

5,n

• Bold idea: how can we also learn the optimal structure?
In principle, we could search all combinatorial structures, for each
compute the ML parameters, and take the best one.

• But is there a better way? Yes. It turns out that structure learning
in tree models can be converted to a good old computer science
problem: maximum weight spanning tree.

Optimal Structure

• Let us rewrite the likelihood function:

`(θ;D) =
∑

x∈Vall

N(x) log p(x)

=
∑

x

N(x)

log p(xr) +
∑

i 6=r

log p(xi|xπi)

•ML parameters, are equal to the observed frequency counts q(·):

`∗

N
=

∑

x∈Vall

q(x)

log q(xr) +
∑

i 6=r

log q(xi|xπi)

=
∑

x

q(x)

log q(xr) +
∑

i 6=r

log
q(xi, xπi)

q(xπi)

=
∑

x

q(x)
∑

i 6=r

log
q(xi, xπi)

q(xi)q(xπi)
+

∑

x

q(x)
∑

i

log q(xi)

• NB: second term does not depend on structure.

Edge Weights

• Each term in sum i 6= r corresponds to an edge from i to its parent.
`∗

N
=

∑

x

q(x)
∑

i 6=r

log
q(xi, xπi)

q(xi)q(xπi)
+ C

=
∑

i 6=r

∑

xi,xπi

q(xi, xπi) log
q(xi, xπi)

q(xi)q(xπi)
+ C

=
∑

i 6=r

∑

yi

q(yi) log
q(yi)

q(xi)q(xπi)
+ C

=
∑

i 6=r

W (i;πi) + C

where the edge weights W are defined by mutual information:

W (i; j) =
∑

xi,xj

q(xi, xj) log
q(xi, xj)

q(xi)q(xj)

• So overall likelihood is sum of weights on edges that we use.
We need the maximum weight spanning tree.

Kruskal’s algorithm (Greedy Search)

• To find the maximum weight spanning tree A on a graph with
nodes U and weighted edges E:

1.A← empty

2. Sort edges E by nonincreasing weight: e1, e2, . . . , eK .

3. for k = 1 to K {A +=ek unless doing so creates a cycle}

a

b d

e

fgh

i

8 7

10
67

8

14

c

a

b d

e

fgh

i

4

8 7

9

102

67

18

14

c

42
11

11

Maximum Likelihood Trees

We can now completely solve the tree learning problem:

1. Compute the marginal counts q(xi) for each node
and pairwise counts q(xi, xj) for all pairs of nodes.

2. Set the weights to the mutual informations:

W (i; j) =
∑

xi,xj

q(xi, xj) log
q(xi, xj)

q(xi)q(xj)

3. Find the maximum weight spanning tree A=MWST(W).

4. Using the undirected tree A chosen by MWST, pick a root
arbitrarily and orient the edges away from the root.
Set the conditional functions to the observed frequencies:

p(xi|xπi) =
q(xi, xπi)

∑

xi
q(xi, xπi)

=
q(xi, xπi)

q(xπi)

Notes

• Any directed tree consistent with the undirected tree found by the
algorithm above will assign the same likelihood to any dataset.

• Amazingly, as far as likelihood goes, the root is arbitrary.
We can just pick one node and orient the edges away from it.
Or we can work with undirected models.

• For continuous nodes (e.g. Gaussian), the situation is similar,
except that computing the mutual information requires an integral.

•Mutual information is the Kullback-Leibler divergence
(cross-entropy) between a distribution and the product of its
marginals. Measures how far from independent the joint
distribution is.

W (i; j) = I[xi;xj] = KL[q(xi, xj)‖q(xi)q(xj)]

Beyond trees

•Mixtures of trees - add hidden variables

• General graphs - local search

Bayesian model averaging (K&F 14.5)

• So far, we have just tried to find the mode of P (G|D), i.e., the best
scoring network.

• But the mode may be untypical of the distribution: most of the mass
may be elsewhere.

• Suppose we are trying to determine if there is an edge X → Y in
the “true” model.

•We can compute features like this using

P (f |D) =
∑

G

f (G)P (G|D)

where P (G|D) ∝ P (D|G)P (G) ∝
∏

i exp FamScore(D(Xi,Πi)).

• The main problem is that there are 2Θ(n2) DAGs on n nodes.

• Even if we restrict indegree to ≤ d, there are still 2Θ(dn log n) DAGs.

MCMC for feature probability

• Suppose we can find a set G′ of high-scoring networks. Then

P (f |D) ≈

∑

G∈G′ P (G|D)f (G)
∑

G∈G′ P (G|D)

• If we can uniformly sample graphs from P (G|D), we can approximate
this using

P (f |D) ≈
1

T
f (Gt)

where Gk is the k’th sample.

•Markov chain Monte Carlo (MCMC) provides a way of sampling from
complex distributions such as this.

MCMC

•We define a Markov chain on graph structures (in this case) with
transition probability given by the Metropolis-Hastings rule

P (G′|G) = min

(

1,
P (G′|D)Q(G′|G)

P (G|D)Q(G|Q′)

)

where Q(G′|G) is the proposal probability and the ratio is the ac-

ceptance probability.

• The proposal Q has to be such that the Markov chain is ergodic,
i.e., we can get to any state from any other state.

•We start the chain off in some inital state and then perform a random
walk according to the above dynamics.

• Theory shows the stationary distribution of such a Markov chain is
P (G|D).

MCMC convergence

• The mixing time is how long it takes the chain to converge from a
random starting point.

•Once the chain has converged (after the burnin), we can draw (cor-
related) samples from P (G|D).

•We can diagnose convergence by running the chain from multiple
starting points and comparing the results. (Diagnosing convergence
is an open problem.)

MCMC for DAG structure

• Suppose the proposal Q picks randomly from the following operators
(where legal): add an edge, delete an edge, reverse an edge.

• The MH acceptance probability requires computing the Bayes factor
P (G′|D)/P (G|D), which is efficient for decomposable scores.

• However, small changes to the graph can result in large changes to
the score, resulting in a jagged landscape.

• So the chain does not mix rapidly (it gets stuck in local optima).

Rao-Blackwellised MCMC

• An alternative idea is to do MCMC sampling in the space of node
orderings ≺, which “only” has size n!.

• Given an ordering, we can sum over all graphs efficiently (see below).
Hence

P (f |D) ≈
1

T
P (f |D,≺t)

• This combination of sampling and exact integration/ marginalization
is called Rao-Blackwellised sampling.

• This is named after the Rao-Blackwell theorem, which says (roughly)
that variance is reduced if you sample in a smaller space:

VarE [E[f (G)| ≺]] ≤ VarE[f (G)]

MCMC over orderings

•We use Metropolis-Hastings as before.

•One proposal is to flip 2 variables in the order, leaving the rest un-
changed:

(Xi1, . . . ,Xij
, . . . ,Xik

, . . . , Xin)→ (Xi1, . . . ,Xik
, . . . ,Xij

, . . . , Xin)

• Using score decomposability, only family scores for nodes inside the
bold range need to be recomputed.

• This is much more expensive than MCMC in DAG space, but each
move is much more powerful, and the space is much smaller.

Marginal likelihood given known node ordering

• If we know the ordering (eg. temporal), we have

P (D| ≺) =
∑

G∈Gd,≺

P (G| ≺)P (D|G)

• Given ≺, we can pick the parents for each node independently. Let
Ui,≺ = {U : U ≺ Xi, |U | ≤ d}. Assuming P (G| ≺) is uniform for
legal graphs,

P (D| ≺) =
∑

G∈Gd,≺

∏

i

exp FamScore(D(Xi, πi))

=
∏

i

∑

Ui∈Ui,≺

exp FamScore(D(Xi, πi))

•We marginalize out parameters θ and graph structures G.

• This is what we need to evaluate the MH acceptance probability.

Prob. feature given known node ordering

• Given a sampled ordering, we can compute the probability of a parent
set

P (πGi = U |D,≺) =
exp FamScore(D(Xi, U))

∑

U ′∈Ui,≺
exp FamScore(D(Xi, U ′))

• From this, we can sample parents and hence graphs compatible with
≺.

• From this, we can compute probability of features such as “There is
a directed path from Xi to Xj”.

• Useful for determining features of biological networks from small sets
of data.

Learning gene regulatory pathways

(Slide from Nir Friedman)

Hidden variables (K&F 15.7)

• So far, we have assumed all variables have been observed.

• In this case, we can compute the Bayesian score (evidence) exactly.

• But hidden variables can simplify a model a lot
eg. mixture models, HMMs.

H

17 parameters
59 parameters

• Can still run local search to pick best model.

• But hidden variables raise various problems:

– Efficiently computing the score from partially observed data.

– Detecting the presence of latent (confounding) factors.

– Inferring the dimensionality/ cardinality of latent factors.

Detecting presence of hidden variables

•One idea is to look for dense semi-cliques.

H

17 parameters
59 parameters

• Then insert a hidden variable “in the middle”, and let the search
algorithm figure out the detailed “wiring”.

• Unfortunately, many scoring criteria (e.g., BIC) produce very sparse
graphs, which makes such semi-cliques rare.

• Constraint-based methods sometimes can be used to detect con-
founding.

• In general, this is an open problem.

Structural EM algorithm (K&F 15.6)

• Assume the number of hidden variables is given. Let y be the ob-
served nodes, s be hidden, and z = (x, y) be all nodes.

•We can compute the BIC score for each candidate structure G′ by
applying EM to each one:

scoreBIC(G′|y) = logP (y|G′, θ̂)−
d(G)

2
logN

• But this is very expensive.

• Idea of structural EM: use current model (G, θ) to compute the
expected sufficient statistics (ESS) needed to evaluate each neighbor
G′, i.e., compute the expected BIC score.

• This requires computing ESS for nodes and potentially new parents;
such sets may not reside inside a clique of the jtree for G.

• Application: phylogenetic trees.

Approximating the evidence in latent variable
models

•When there are hidden variables, the parameter posterior has an
exponential number of modes.

• Hence computing the marginal likelihood is intractable.

• There are various possible approximations:

– Laplace

– BIC

– Cheeseman-Stutz (CS) lower bound

– Variational Bayes EM lower bound

– Sampling

Expectation-Maximization (EM) Algorithm

• EM is an optimization strategy for objective functions that can be
interpreted as likelihoods in the presence of missing data.

• It is much simpler than gradient methods:

– No need to choose step size.

– Enforces constraints automatically.

– Calls inference and fully observed learning as subroutines.

• EM is an Iterative algorithm with two linked steps:

– E-step: fill-in hidden values using inference, p(z|x, θt).

– M-step: update parameters θt+1 using standard MLE/MAP
method applied to completed data

•We will prove that this procedure monotonically improves `
(or leaves it unchanged). Thus it always converges to a local
optimum of the likelihood.

Complete & Incomplete Log Likelihoods

•Observed variables x, latent variables z, parameters θ:

`c(θ;x, z) = log p(x, z|θ)

is the complete log likelihood.

• Usually optimizing `c(θ) given both z and x is straightforward.
(e.g. class conditional Gaussian fitting, linear regression)

•With z unobserved, we need the log of a marginal probability:

`(θ;x) = log p(x|θ) = log
∑

z

p(x, z|θ)

which is the incomplete log likelihood.

Expected Complete Log Likelihood

• For any distribution q(z) define expected complete log likelihood:

`q(θ;x) = 〈`c(θ;x, z)〉q ≡
∑

z

q(z|x) log p(x, z|θ)

• Amazing fact: `(θ) ≥ `q(θ) +H(q) because of concavity of log:

`(θ;x) = log p(x|θ)

= log
∑

z

p(x, z|θ)

= log
∑

z

q(z|x)
p(x, z|θ)

q(z|x)

≥
∑

z

q(z|x) log
p(x, z|θ)

q(z|x)

•Where the inequality is called Jensen’s inequality.
(It is only true for distributions:

∑

q(z) = 1; q(z) > 0.)

Lower Bounds and Free Energy

• For fixed data x, define a functional called the free energy:

F (q, θ) ≡
∑

z

q(z|x) log
p(x, z|θ)

q(z|x)
≤ `(θ)

• The EM algorithm is coordinate-ascent on F :
E-step: qt+1 = argmaxq F (q, θt)

M-step: θt+1 = argmaxθ F (qt+1, θt)

M-step: maximization of expected `c

• Note that the free energy breaks into two terms:

F (q, θ) =
∑

z

q(z|x) log
p(x, z|θ)

q(z|x)

=
∑

z

q(z|x) log p(x, z|θ)−
∑

z

q(z|x) log q(z|x)

= `q(θ;x) +H(q)

(this is where its name comes from)

• The first term is the expected complete log likelihood (energy) and
the second term, which does not depend on θ, is the entropy.

• Thus, in the M-step, maximizing with respect to θ for fixed q we
only need to consider the first term:

θt+1 = argmaxθ `q(θ;x) = argmaxθ
∑

z

q(z|x) log p(x, z|θ)

E-step: inferring latent posterior

• Claim: the optimim setting of q in the E-step is:

qt+1 = p(z|x, θt)

• This is the posterior distribution over the latent variables given the
data and the parameters. Often we need this at test time anyway
(e.g. to perform classification).

• Proof (easy): this setting saturates the bound `(θ;x) ≥ F (q, θ)

F (p(z|x, θt), θt) =
∑

z

p(z|x, θt) log
p(z|x, θt)p(x|θt)

p(z|x, θt)

=
∑

z

p(z|x, θt) log p(x|θt)

= log p(x|θt)
∑

z p(z|x, θ
t)

= `(θ;x) · 1

• Can also show this result using variational calculus or the fact that
`(θ)− F (q, θ) = KL[q||p(z|x, θ)]

EM Constructs Sequential Convex Lower Bounds

• Consider the likelihood function and the function F (qt+1, ·).

θ

likelihood

θt

F(,q)θ t+1

Recap: EM Algorithm

• A way of maximizing likelihood function for latent variable models.
Finds ML parameters when the original (hard) problem can be
broken up into two (easy) pieces:

1. Estimate some “missing” or “unobserved” data from observed
data and current parameters.

2. Using this “complete” data, find the maximum likelihood
parameter estimates.

• Alternate between filling in the latent variables using our best guess
(posterior) and updating the paramters based on this guess:
E-step: qt+1 = p(z|x, θt)
M-step: θt+1 = argmaxθ

∑

z q(z|x) log p(x, z|θ)

• In the M-step we optimize a lower bound on the likelihood.
In the E-step we close the gap, making bound=likelihood.

Variational Bayes EM (VBEM) algorithm

• Latent variables are now x and parameters θ, observations are y.

• Goal: Maximize lower bound on marginal likelihood P (y).

• Key assumption: assume a factorized posterior q(x, θ) ≈ qx(x)qθ(θ):

log p(y) ≥

∫

qx(x)qθ(θ) log
p(y, x, θ)

qx(x)qθ(θ)
dxdθ

def
= F (qx(x), qθ(θ), y)

• Replaces stochastic dependence between x and θ with deterministic
constraints on moments.

• VB E step:

qt+1
x (x) ∝ exp

[∫

log p(x, y|θ)qtθ(θ)dθ

]

• VB M step:

qt+1
θ (θ) ∝ p(θ) exp

[∫

log p(x, y|θ)qt+1
x (x)dx

]

Conjugate exponential models

• Assumption 1: the complete-data log-likelihood is that of an expo-
nential family:

p(x, y|θ) = f (x, y)g(θ) exp(φ(θ)Tu(x, u))

• Assumption 2: the parameter prior is conjugate to the likelihood:

p(θ|η, ν) = h(η, ν)g(θ)η exp(φ(θ)Tν)

• Thm: at every step of VBEM, the parameter posterior is

q(θ|η + n, ν +

n
∑

i=1

u(yi)), where u(yi) = Eqxiu(xi, yi)

and the latent variable posterior is qx(x) =
∏

i qxi(xi) where

qxi(xi) = p(xi|y, φ) ∝ f (xi, yi) exp
[

φ
T
u(xi, yi)

]

where φ = Eqθφ(θ)

VBEM in practice

• E-step: Do inference as usual, but use parameters θ̃ s.t. φ(θ̃) = φ
(expected natural parameters)

•M-step: update hyper-parameters using expected sufficient statistics.

• The normalizing constant of inference is a lower bound on p(y).

• Examples: HMMs, factor analysis (PCA), linear dynamical systems

• Variational message passing (VMP) is a way of implementing VBEM
for any conjugate-exponential model, but makes the additional mean-
field approximation that q(x) =

∏

k q(xk).

VBEM for model selection

