Lecture 15

Model selection/ structure learning
Koller \& Friedman chapter 14
Mackay Chapter 28

Kevin Murphy

8 November 2004

LEARNING GENE REGULATORY PATHWAYS

- We often want to learn the structure of the graphical model:
- Scientific discovery (data mining)
- Use a good model for prediction, compression, classification etc.
- Often there may be more than one good model
- Look for features that they all share
- Average predictions over models

Structure learning: how?

- Constraint-based approach:
- Assume some way of testing conditional independencies $X_{1} \perp X_{2} \mid X_{3}$
- Then construct model consistent with these results
- Search-and-score approach:
- Define a scoring function for measuring model quality (e.g., marginal likelihood or penalized likelihood)
- Use a search algorithm to find a (local) maximum of the score
- DAGs are l-equivalent if they encode the same set of conditional independencies, e.g., $X \rightarrow Y \rightarrow Z$ and $X \leftarrow Y \leftarrow Z$ are indistinguishable given just observational data.
- However, $X \rightarrow Y \leftarrow Z$ has a v-structure, which has a unique statistical signature. Hence some arc directions can be inferred from passive observation.
- The set of I-equivalent DAGs can be represented by a PDAG (partially directed acyclic graph).
- Distinguishing between members of an equivalence class requires interventions/ experiments.
- Bad
- Faithfulness assumption rules out certain CPDs like noisy-OR.
- Hard to make a reliable independence test (especially given small data sets) which does not make too many errors (either false positives or false negatives).
- One misleading independence test result can result in multiple errors in the resulting PDAG, so overall the approach is not very robust to noise.
- Good
- PC algorithm is less dumb than local search
- The build-PDAG algorithm from K\&F chapter 3 can recover the true DAG up to l-equivalence in $O\left(N^{3} 2^{d}\right)$ time if we make the following assumptions:
- The maximum fan-in (number of parents) of any node is d
- The independence test oracle can handle up to $2 d+2$ variables
- The underlying distribution P^{*} is faithful to G^{*} i.e., there are no spurious independencies that are not sanctioned by $G^{*}\left(G^{*}\right.$ is a P-map of P^{*}).
- This is often called the IC or PC algorithm.

Independence tests

- An independence test $X \perp Y$ seeks to accept or reject the null hypothesis H_{0} that $P^{*}(X, Y)=P^{*}(X) P^{*}(Y)$.
- We need a decision rule that maps data to accept/reject.
- We define a scalar measure of deviance $d(D)$ from the null hypothesis.
- The p -value of a threshold t is the probability of falsely rejecting the null hypothesis:

$$
p(t)=P\left(\{D: d(D)>t\} \mid H_{0}, N\right)
$$

- Note that we need to know the size of the data set N (stopping rule) ahead of time!
- We usually choose a threshold t so that the probability of a false rejection is below some significance level $\alpha=0.05$.
- For discrete data, a common deviance is the χ^{2} statistic, which measures how far the counts are from what we would expect given independence:

$$
d_{\chi^{2}}(D)=\sum_{x, y} \frac{\left(O_{x, y}-E_{x, y}\right)^{2}}{E_{x, y}}=\sum_{x, y} \frac{(N(x, y)-N P(x) P(y))^{2}}{N P(x) P(y)}
$$

- The p-value requires summing over all datasets of size N :

$$
p(t)=P\left(\{D: d(D)>t\} \mid H_{0}, N\right)
$$

- Since this is expensive in general, a standard approximation is to consider the expected distribution of $d(D)$ (under the null hypothesis) as $N \rightarrow \infty$, and use this to define thresholds to achieve a given significance.

Bayesian approach

- We want to compute the posterior ratio of the 2 hypotheses:

$$
\frac{P\left(H_{1} \mid D\right)}{P\left(H_{0} \mid D\right)}=\frac{P\left(D \mid H_{1}\right) P\left(H_{1}\right)}{P\left(D \mid H_{0}\right) P\left(H_{0}\right)}
$$

- Let us assume a uniform prior $P\left(H_{0}\right)=P\left(H_{1}\right)=0.5$.
- Then we just focus on the ratio of the marginal likelihoods:

$$
P\left(D \mid H_{1}\right)=\int_{0}^{1} d \theta \quad P\left(D \mid \theta, H_{1}\right) P\left(\theta \mid H_{1}\right)
$$

- For H_{0}, there is no free parameter, so

$$
P\left(D \mid H_{0}\right)=0.5^{N}
$$

where N is the number of coin tosses in D.

- When spun on edge $N=250$ times, a Belgian one-euro coin came up heads $Y=140$ times and tails 110 .
- We would like to distinguish two models, or hypotheses: H_{0} means the coin is unbiased (so $p=0.5$); H_{1} means the coin is biased (has probability of heads $p \neq 0.5$).
- p -value is "less than 7% ": $p=P(Y \geq 140)+P(Y \leq 110)=0.066$:
$\mathrm{n}=250$; $\mathrm{p}=0.5$; $\mathrm{y}=140$;
$\mathrm{p}=(1-\mathrm{binocdf}(\mathrm{y}-1, \mathrm{n}, \mathrm{p}))+\operatorname{binocdf}(\mathrm{n}-\mathrm{y}, \mathrm{n}, \mathrm{p})$
- If $Y=141$, we get $p=0.0497$, so we can reject the null hypothesis at significance level 0.05 .
- But is the coin really biased?

Parameter prior

- How to compute $P\left(D \mid H_{1}\right)$?
- Let us assume a beta prior on the coin bias θ

$$
P\left(\theta \mid \alpha, H_{1}\right)=\beta\left(\theta ; \alpha_{h}, \alpha_{t}\right)=\frac{1}{Z\left(\alpha_{h}, \alpha_{t}\right)} \theta^{\alpha_{h}-1}(1-\theta)^{\alpha_{t}-1}
$$

where

$$
Z\left(\alpha_{h}, \alpha_{t}\right)=\int_{0}^{1} d \theta \quad \theta^{\alpha_{h}-1}(1-\theta)^{\alpha_{t}-1}=\frac{\Gamma\left(\alpha_{h}\right) \Gamma\left(\alpha_{t}\right)}{\Gamma\left(\alpha_{h}+\alpha_{t}\right)}
$$

- $\Gamma(n)=(n-1)$! for positive integers.
- Mean $E \theta=\frac{\alpha_{h}}{\alpha_{h}+\alpha_{t}}$.
- If we set $\alpha_{h}=\alpha_{t}=1$, we get a uniform prior (and $Z=1$).
- Suppose we see D_{h} heads and D_{t} tails. The parameter posterior is

$$
\begin{aligned}
P(\theta \mid D, \alpha) & =\frac{p(\theta \mid \alpha) P(D \mid \theta, \alpha)}{P(D \mid \alpha)} \\
& =\frac{1}{P(D \mid \alpha)} \frac{1}{Z\left(\alpha_{h}, \alpha_{t}\right)} \theta^{\alpha_{h}-1}(1-\theta)^{\alpha_{t}-1} \theta^{D_{h}(1-\theta)^{D_{t}}} \\
& =\beta\left(\theta ; \alpha_{h}+D_{h}, \alpha_{t}+D_{t}\right)
\end{aligned}
$$

PARAMETER POSTERIOR - SMALL SAMPLE, STRONG PRIOR

PARAMETER POSTERIOR - COIN DATA, UNIFORM PRIOR

thetas $=0: 0.01: 1$;
alphaH = 1; alphaT = 1;
prior = betapdf(thetas, alphaH, alphaT);
lik = thetas.^Nh .* (1-thetas).^Nt;
post $=$ betapdf(thetas, alphaH+Nh, alphaT+Nt);

- Suppose we see D_{h} heads and D_{t} tails. The parameter posterior is

$$
\begin{aligned}
P(\theta \mid D, \alpha) & =\frac{p(\theta \mid \alpha) P(D \mid \theta, \alpha)}{P(D \mid \alpha)} \\
& =\frac{1}{P(D \mid \alpha)} \frac{1}{Z\left(\alpha_{h}, \alpha_{t}\right)} \theta^{\alpha_{h}-1}(1-\theta)^{\alpha_{t}-1} \theta^{D_{h}}(1-\theta)^{D_{t}} \\
& =\beta\left(\theta ; \alpha_{h}+D_{h}, \alpha_{t}+D_{t}\right)
\end{aligned}
$$

where the marginal likelihood (evidence) is

$$
\begin{aligned}
P(D \mid \alpha) & =\frac{Z\left(\alpha_{h}+N_{h}, \alpha_{t}+N_{t}\right)}{Z\left(\alpha_{h}, \alpha_{t}\right)} \\
& =\frac{\Gamma(\alpha)}{\Gamma(\alpha+N)} \cdot \frac{\Gamma\left(\alpha_{h}+N_{h}\right)}{\Gamma(\alpha+N)} \cdot \frac{\Gamma\left(\alpha_{t}+N_{t}\right)}{\Gamma(\alpha+N)}
\end{aligned}
$$

Model evidence

- For integers,

$$
\begin{aligned}
& (\alpha)(\alpha+1) \cdots(\alpha+M-1) \\
& =\frac{(a+M-1)!}{(\alpha-1)!} \\
& =\frac{(a+M-1)(a+M-2) \cdots(a+M-M)(a+M-M-1) \cdots 2 \cdot 1}{(a-1)(a-2) \cdots 2 \cdot 1} \\
& =\frac{(a+M-1)(a+M-2) \cdots(a)(a-1) \cdots 2 \cdot 1}{(a-1)(a-2) \cdots 2 \cdot 1}
\end{aligned}
$$

- For reals, we replace $(a-1)$! with $\Gamma(a)$.
- Hence

$$
\begin{aligned}
P(D) & =\frac{\left[\left(\alpha_{h}\right) \cdots\left(\alpha_{h}+N_{h}-1\right)\right]\left[\left(\alpha_{t}\right) \cdots\left(\alpha_{t}+N_{t}-1\right)\right]}{(\alpha) \cdots(\alpha+N)} \\
& =\frac{\Gamma(\alpha)}{\Gamma(\alpha+N)} \cdot \frac{\Gamma\left(\alpha_{h}+N_{h}\right)}{\Gamma(\alpha+N)} \cdot \frac{\Gamma\left(\alpha_{t}+N_{t}\right)}{\Gamma(\alpha+N)}
\end{aligned}
$$

- By the chain rule of probability,

$$
P\left(x_{1: N}\right)=P\left(x_{1}\right) P\left(x_{2} \mid x_{1}\right) P\left(x_{3} \mid x_{1: 2}\right) \ldots
$$

- Also, after N data cases, $P\left(X \mid D_{1: N}\right)=\operatorname{Dir}(\vec{\alpha}+\vec{N})$, so

$$
P\left(X=k \mid D_{1: N}, \vec{\alpha}\right)=\frac{N_{k}+\alpha_{k}}{\sum_{i} N_{i}+\alpha_{i}} \stackrel{\text { def }}{=} \frac{N_{k}+\alpha_{k}}{N+\alpha}
$$

- Suppose $D=H, T, T, H, H, H$. Then

$$
\begin{aligned}
P(D) & =\frac{\alpha_{h}}{\alpha} \cdot \frac{\alpha_{t}}{\alpha+1} \cdot \frac{\alpha_{t}+1}{\alpha+2} \cdot \frac{\alpha_{h}+1}{\alpha+3} \cdot \frac{\alpha_{h}+2}{\alpha+4} \\
& =\frac{\left[\alpha_{h}\left(\alpha_{h}+1\right)\left(\alpha_{h}+2\right)\right]\left[\alpha_{t}\left(\alpha_{t}+1\right)\right]}{\alpha(\alpha+1) \cdots(\alpha+4)} \\
& =\frac{\left[\left(\alpha_{h}\right) \cdots\left(\alpha_{h}+N_{h}-1\right)\right]\left[\left(\alpha_{t}\right) \cdots\left(\alpha_{t}+N_{t}-1\right)\right]}{(\alpha) \cdots(\alpha+N)}
\end{aligned}
$$

Ratio of evidences (Bayes factor)

- We compute the ratio of marginal likelihoods (evidence):

$$
\begin{aligned}
\frac{P\left(H_{1} \mid D\right)}{P\left(H_{0} \mid D\right)} & =\frac{P\left(D \mid H_{1}\right)}{P\left(D \mid H_{0}\right)}=\frac{Z\left(\alpha_{h}+N_{h}, \alpha_{t}+N_{t}\right)}{Z\left(\alpha_{h}, \alpha_{t}\right)} \frac{1}{0.5^{N}} \\
& =\frac{\Gamma(140+\alpha) \Gamma(110+\alpha)}{\Gamma(250+2 \alpha)} \times \frac{\Gamma(2 \alpha)}{\Gamma(\alpha) \Gamma(\alpha)} \times 2^{250}
\end{aligned}
$$

- Must work in log domain!
alphas $=\left[\begin{array}{llllllll}0.37 & 1 & 2.7 & 7.4 & 20 & 55 & 148 & 403 \\ 1096\end{array}\right] ;$
$\mathrm{Nh}=140$; $\mathrm{Nt}=110 ; \mathrm{N}=\mathrm{Nh}+\mathrm{Nt}$;
numer $=$ gammaln(Nh+alphas) + gammaln(Nt+alphas) + gammaln
denom $=$ gammaln(N+2*alphas) $+2 *$ gammaln(alphas);
$r=\exp ($ numer.$/$ denom) ;
- We plot the likelihood ratio vs hyperparameter α :

- For a uniform prior, $\frac{P\left(H_{1} \mid D\right)}{P\left(H_{0} \mid D\right)}=0.48$, (weakly) favoring the fair coin hypothesis H_{0} !
- At best, for $\alpha=50$, we can make the biased hypothesis twice as likely.
- Not as dramatic as saying "we reject the null hypothesis (fair coin) with significance 6.6% ".

From dice to tabular Bayes nets

- If we assume global parameter independence, the evidence decomposes into one term per node:

$$
P(D \mid G)=\prod_{i} P\left(D\left(X_{i}, X_{\pi_{i}}\right) \mid \vec{\alpha}_{i}\right)
$$

- If we also assume local parameter independence, each node term decomposes into a product over rows (conditioning cases):

$$
\begin{aligned}
P(D \mid G) & =\prod_{i} \prod_{k \in \operatorname{Val}\left(\pi_{i}\right)} P\left(D\left(X_{i}, X_{\pi_{i}}=k\right) \mid \vec{\alpha}_{i, \cdot, k}\right) \\
& =\prod_{i} \prod_{k \in \operatorname{Val}\left(\pi_{i}\right)} \frac{Z\left(\vec{\alpha}_{i, \cdot, k}+N_{i, \cdot, k}\right)}{Z\left(\vec{\alpha}_{i, \cdot, k}\right)} \\
& =\prod_{i} \prod_{k \in \operatorname{Val}\left(\pi_{i}\right)}\left[\prod_{j} \frac{\Gamma\left(\alpha_{i j k}+N_{i j k}\right)}{\Gamma\left(\alpha_{i j k}\right)}\right]\left[\frac{\Gamma\left(\sum_{j} \alpha_{i j k}\right)}{\Gamma\left(\sum_{j} \alpha_{i j k}+N_{i j k}\right)}\right]
\end{aligned}
$$

- Likelihood: binomial \rightarrow multinomial

$$
P(D \mid \vec{\theta})=\prod_{i} \theta_{i}^{N_{i}}
$$

- Prior: beta \rightarrow Dirichlet

$$
P(\vec{\theta} \mid \vec{\alpha})=\frac{1}{Z(\vec{\alpha})} \prod_{i} \theta_{i}^{\alpha_{i}-1}
$$

where

$$
Z(\vec{\alpha})=\frac{\prod_{i} \Gamma\left(\alpha_{i}\right)}{\Gamma\left(\sum_{i} \alpha_{i}\right)}
$$

- Posterior: beta \rightarrow Dirichlet

$$
P(\vec{\theta} \mid D)=\operatorname{Dir}(\vec{\alpha}+\vec{N})
$$

- Evidence (marginal likelihood)

$$
P(D \mid \vec{\alpha})=\frac{Z(\vec{\alpha}+\vec{N})}{Z(\vec{\alpha})}=\frac{\prod_{i} \Gamma\left(\alpha_{i}+N_{i}\right)}{\prod_{i} \Gamma\left(\alpha_{i}\right)} \frac{\Gamma\left(\sum_{i} \alpha_{i}\right)}{\Gamma\left(\sum_{i} \alpha_{i}+N_{i}\right)}
$$

Example of model selection

- Suppose we generate data from $X \rightarrow Y$, where $P(X=0)=$ $P(X=1)=0.5$ and $P(Y=1 \mid X=0)=0.5-\epsilon, P(Y=1 \mid X=1)=0.5+\epsilon$.
- As we increase ϵ, we increase the dependence of Y on X.
- Let us consider 3 hypotheses: $H_{0}=X \quad Y, H_{1}=X \rightarrow Y$, $H_{2}=Y \leftarrow X$, and use uniform priors.
- We will plot model posteriors vs N for different ϵ and different random trials:

$$
P\left(H_{i} \mid D_{1: N}\right)=\frac{P\left(D_{1: N} \mid H_{i}\right) P\left(H_{i}\right)}{\sum_{j} P\left(D_{1: N} \mid H_{j}\right) P\left(H_{j}\right)}
$$

red $=H_{0}$ (independence), blue/green $=H_{1} / H_{2}$ (dependence).
See BNT/examples/static/StructLearn/model-select1.m.

- Why is $P\left(H_{0} \mid D\right)$ higher when then dependence on X and Y is weak (small ϵ)?
- It is not because the prior $P\left(H_{i}\right)$ explicitly favors simpler models (although this is possible).
- It because the evidence $P(D)=\int d w P(D \mid w) P(w)$, automatically penalizes complex models.
- Occam's razor says "If two models are equally predictive, prefer the simpler one".
- This is an automatic consequence of using Bayesian model selection.
- Maximum likelihood would always pick the most complex model, since it has more parameters, and hence can fit the training data better.
- Good test for a learning algorithm: feed it random noise, see if it "discovers" structure!
- $X \rightarrow Y$ and $X \leftarrow Y$ are I-equivalent (have the same likelihood).
- Suppose we use a uniform Dirichlet prior for each node in each graph, with equivalent sample size α (K2-prior):

$$
P\left(\theta_{X} \mid H_{1}\right)=\operatorname{Dir}(\alpha, \alpha), \quad P\left(\theta_{X \mid Y=i} \mid H_{2}\right)=\operatorname{Dir}(\alpha, \alpha)
$$

- In H_{1}, the equivalent sample size for X is 2α, but in H_{2} it is 4α (since two conditioning contexts). Hence the posterior probabilities are different.
- The BDe (Bayesian Dirichlet likelihood equivalent) prior is to use weights $\alpha_{X_{i} \mid X_{\pi_{i}}}=\alpha P^{\prime}\left(X_{i}, X_{\pi_{i}}\right)$ where P^{\prime} could be represented by e.g., a Bayes net.
- The BDeu (uniform) prior is $P^{\prime}\left(X_{i}, X_{\pi_{i}}\right)=\frac{1}{\left|X_{i}\right| \mid X_{\pi_{i}}}$.
- Using the BDeu prior, the curves for $X \rightarrow Y$ and $X \leftarrow Y$ are indistinguishable. Using the K2 prior, they are not.

Laplace approximation to the evidence

- Consider a large sample approximation, where the parameter posterior becomes peaked.
- Take a second order Taylor expansion around theta ${ }_{M P}$:

$$
\log P(\theta \mid D) \approx \log P\left(\hat{\theta}_{M P} \mid D\right)-\frac{1}{2}(\theta-\hat{\theta})^{T} H(\theta-\hat{\theta})
$$

where

$$
H \stackrel{\text { def }}{=}-\left.\frac{\partial^{2} \log P(\theta \mid D)}{\partial \theta \partial \theta^{T}}\right|_{\hat{\theta}_{M P}}
$$

is the Hessian.

- By properties of Gaussian integrals,

$$
\begin{aligned}
P(D) & \approx \int d \theta P(D \mid \hat{\theta}) P(\hat{\theta}) e^{-\frac{1}{2}(\theta-\hat{\theta})^{T} H(\theta-\hat{\theta})} \\
& =P(D \mid \hat{\theta}) P(\hat{\theta})(2 \pi)^{d / 2}|H|^{-\frac{1}{2}}
\end{aligned}
$$

- H is like the precision (inverse covariance) of a Gaussian.
- In the 1 d case, $|H|^{-\frac{1}{2}}=\sigma_{\theta \mid D}$, the width of the posterior.
- Consider a uniform prior with width σ_{θ}.

Then $P(D) \approx P(D \mid \hat{\theta}) P(\hat{\theta})|H|^{-\frac{1}{2}} \approx P(D \mid \hat{\theta}) \frac{1}{\sigma_{\theta}} \sigma_{\theta \mid D}$

- The ratio of posterior accessible volume of the parameter space to the prior, $\sigma_{\theta \mid D} / \sigma_{\theta}$, is called the Occam factor, i.e., the factor by which H_{i} 's hypothesis space collapses when the data arrive.

BAYESIAN IMAGE INTERPRETATION

- How many boxes behind the tree?
- The intrepretation that the tree is in front of one box is much more probable than there being 2 boxes which happen to have the same height and color (suspicious coincidence).
- This can be formalized by assuming (uniform) priors on the box parameters, and computing the Occam factors.

- $P\left(D \mid H_{1}\right)$ is smallest, since it is too simple a model.
- $P\left(D \mid H_{3}\right)$ is second smallest, since it is too complex, so it spreads its probability mass more thinly over the (D, θ) space (fewer dots on the horizontal line).
- We trust an expert who predicts a few specific (and correct!) things more than an expert who predicts many things.

LEAVE ONE OUT CROSS VALIDATION (LOOCV)

- The evidence can be evaluated sequentially

$$
P\left(x_{1: N}\right)=P\left(x_{1}\right) P\left(x_{2} \mid x_{1}\right) P\left(x_{3} \mid x_{1: 2}\right) \ldots
$$

- LOOCV approximates $P\left(X_{t} \mid X_{1: t-1}, \hat{\theta}_{1: t-1}\right)$ under different permutations of the data.
- Advantages of LOOCV
- Simple (no need to integrate out parameters)
- Robust (works well even if "truth not in model class")
- Advantages of LOOCV
- Slow (in general, must rerun training many times)
- Does not use all the data
- Another way of thinking about Bayesian Occam's razor is in terms of information theory.
- To losslessly send a message about an event x with probability $P(x)$ takes $L(x)=-\log _{2} P(x)$ bits.
- Suppose instead of sending the raw data, you send a model and then the residual errors (the parts of the data not predicted by the model).
- This takes $L(D, H)$ bits:
$L(D, H)=-\log P(H)-\log (P(D \mid H))=-\log P(H \mid D)+$ const
- The best model is the one with the overall shortest message.

BIC APPROXIMATION TO THE EVIDENCE

- Laplace approximation

$$
P(D) \approx P(D \mid \hat{\theta}) P(\hat{\theta})(2 \pi)^{d / 2}|H|^{-\frac{1}{2}}
$$

- Taking logs

$$
\log P(D)=\log P(D \mid \hat{\theta})+\log P(\hat{\theta})+\frac{d}{2} \log (2 \pi)-\frac{1}{2} \log |H|
$$

- BIC (Bayesian Information Criterion): drop terms that are independent of N , and approximate $\log |H| \approx d \log N$. So

$$
\log P(D) \approx \log P\left(D \mid \hat{\theta}_{M L}\right)-\frac{d}{2} \log N
$$

where d is the number of free parameters.

- AIC (Akaike Information Criterion): derived by minimizing KL divergence independent of N , and approximate $\log |H| \approx d \log N$. So

$$
\log P(D) \approx \log P\left(D \mid \hat{\theta}_{M L}\right)-\frac{d}{2} \log N
$$

LOG-LIKELIHOOD IN INFORMATION THEORETIC TERMS

$$
\begin{aligned}
\frac{1}{N} \ell= & \frac{1}{N} \sum_{i} \sum_{j} \sum_{k} N_{i j k} \log \theta_{i j k} \\
= & \sum_{i} \sum_{j} \sum_{k} \hat{P}\left(X_{i}=j, X_{\pi_{i}}=k\right) \log P\left(X_{i}=j \mid X_{\pi_{i}}=k\right) \\
= & \sum_{i j k} \hat{P}\left(X_{i}=j, X_{\pi_{i}}=k\right) \log \frac{P\left(X_{i}=j, X_{\pi_{i}}=k\right) P\left(X_{i}=j\right)}{P\left(X_{\pi_{i}}=k\right) P\left(X_{i}=j\right)} \\
= & \sum_{i} \sum_{j k} \hat{P}\left(X_{i}=j, X_{\pi_{i}}=k\right) \log \frac{P\left(X_{i}=j, X_{\pi_{i}}=k\right)}{P\left(X_{\pi_{i}}=k\right) P\left(X_{i}=j\right)} \\
& +\sum_{i j}\left(\sum_{k} \hat{P}\left(X_{i}=j, X_{\pi_{i}}=k\right)\right) \log P\left(X_{i}=j\right) \\
= & \sum_{i} I\left(X_{i}, X_{\pi_{i}}\right)-H\left(X_{i}\right)
\end{aligned}
$$

$$
\begin{aligned}
\text { score }_{B I C}(G \mid D) & =\ell(\hat{\theta})-\frac{d(G)}{2} \log N(D) \\
& =N \sum_{i} I\left(X_{i}, X_{\pi_{i}}\right)-N \sum_{i} H\left(X_{i}\right)-\frac{d}{2} \log N
\end{aligned}
$$

- The mutual information term grows linearly in N, the complexity penalty is logarithmic in N.
- So for large datasets, we pay more attention to fitting the data better.
- Also, the structural prior is independent of N, so does not matter very much.

Maximizing the score

- Consider the family of DAGs G_{d} with maximum fan-in (number of parents) equal to d.
- Theorem 14.4.3: It is NP-hard to find

$$
G^{*}=\arg \max _{G \in G_{d}} \operatorname{score}(G, D)
$$

for any $d \geq 2$.

- In general, we need to use heuristic local search.
- Consistency: i.e., if the data is generated by G^{*}, then G^{*} and all I-equivalent models maximize the score.
- Decomposability:

$$
\operatorname{score}(G \mid D)=\sum_{i} \operatorname{FamScore}\left(D\left(X_{i}, X_{\pi_{i}}\right)\right)
$$

which makes it cheap to compare score of G and G^{\prime} if they only differ in a small number of families.

- Bayesian score (evidence), likelihood and penalized likelihood (BIC) are all decomposable and consistent.

Maximizing the score: tractable cases

- For $d \leq 1$ (i.e., trees), we can solve the problem in $O\left(n^{2}\right)$ time using max spanning tree (next lecture).
- If we know the ordering of the nodes, we can solve the problem in $O\left(d\binom{n}{d}\right)$ time (see below).
- Suppose we a total ordering of the nodes $X_{1} \prec X_{2} \ldots \prec X_{n}$ and want to find a DAG consistent with this with maximum score.
- The choice of parents for X_{i}, from $P a_{i} \subseteq\left\{X_{1}, \ldots, X_{i-1}\right\}$, is independent of the choice for X_{j} : since we obey the ordering, we cannot create a cycle.
- Hence we can pick the best set of parents for each node independently.
- For X_{i}, we need to search all $\binom{i-1}{d}$ subsets of size up to d for the set which maximizes FamScore.
- We can use greedy techniques for this, c.f., learning a decision tree.

Searching in DAG space

- Typical search operators:
- Add an edge
- Delete an edge
- Reverse an edge
- We can get from any graph to any other graph in at most $O\left(n^{2}\right)$ moves (the diameter of the search space).
- Moves are reversable.
- Simplest search algorithm: greedy hill climbing.
- We can only apply a search operator o to the current graph G if the resulting graph $o(G)$ satisfies the constraints, e.g., acyclicity, indegree bound, induced treewidth bound ("thin junction trees"), hard prior knowledge.
- Search in the space of DAGs.
- Search in the space of orderings, then conditioned on \prec, pick best graph using K2 (Rao-Blackwellised sampling).
- Can also search in space of undirected graphs.
- Can also search in space of graphs of variable size, to allow creation of hidden nodes (next lecture).

Cost of evaluating moves

- There are $O\left(n^{2}\right)$ operators we could apply at each step.
- For each operator, we need to check if $o(G)$ is acylic.
- We can check acyclicity in $O(e)$ time, where $e=O(n d)$ is the number of edges.
- For local moves, we can check acyclicity in amortized $O(1)$ time using the ancestor matrix.
- If $o(G)$ is acyclic, we need to evaluate its quality. This requires computing sufficient statistics for every family, which takes $O(M n)$ time, for M training cases.
- Suppose there are K steps to convergence. (We expect $K \ll n^{2}$, since the diameter is n^{2}.)
- Hence total time is $O\left(K \cdot n^{2} \cdot M n\right)$.
- If the operator is valid, we need to evaluate its quality. Define

$$
\delta_{G}(o)=\operatorname{score}(o(G) \mid D)-\operatorname{score}(G \mid D)
$$

- If the score is decomposable, and we want to modify an edge involving X and Y, we only need to look at the sufficient statistics for X and Y 's families.
- e.g., if $o=$ add $X \rightarrow Y$:
$\delta_{G}(o)=\operatorname{FamScore}(Y, \operatorname{Pa}(Y, G) \cup X \mid D)-\operatorname{FamScore}(Y, \operatorname{Pa}(Y, G) \mid D)$
- So we can evaluate quality in $O(M)$ time by extracting sufficient statistics for the columns related to X, Y and their parents.
- This reduces the time from $O\left(K n^{3} M\right)$ to $O\left(K n^{2} M\right)$.

LOCAL MAXIMA

- Greedy hill climbing will stop when it reaches a local maximum or a plateau (a set of neighboring networks that have the same score).
- Unfortunately, plateaux are common, since equivalence classes form contiguous regions of search space (thm 14.4.4), and such classes can be exponentially large.
- Solutions:
- Random restarts
- TABU search (prevent the algorithm from undoing an operator applied in the last L steps, thereby forcing it to explore new terrain).
- Data perturbation (dynamic local search): reweight the data and take step.
-Simulated annealing: if $\delta(o)>0$, take move, else accept with probability $e^{\frac{\delta(o)}{t}}$, where t is the temperature. Slow!
- After eg adding $X \rightarrow Y$, we only need to update $\delta(o)$ for the $O(n)$ operators that involve X or Y.
- Also, we can update a heap in $O(n \log n)$ time and thereby find the best o in $O(1)$ time at each step.
- So total cost goes from $O\left(K n^{2} M\right)$ to $O(K(n M+n \log n))$.
- For large M, we can use fancy data sructures (e.g., kd-trees) to compute sufficient statistics in sub-linear time.

Searching in space of equivalence classes

- The space of class PDAGs is smaller.
- We avoid many of the plateux of I-equivalent DAGs.
- Operators are more complicated to implement and evaluate, but can still be done locally (see paper by Max Chickering).
- Cannot exploit causal/ interventional data (which can distinguish members of an equivalence class).
- Currently less common than searching in DAG space.
- Learned structures often simpler than "true" model (fewer edges), but predict just as well.
- Can only recover structure up to Markov equivalence.
- 10 minutes to learn structure for 100 variables and 5000 cases.

