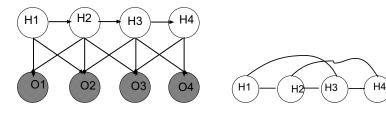


Advantages of CRFs

- Do not need to waste parameters modeling observed inputs o.
- Can use supervised machine learning methods to learn local evidence $P(h_i|o)$.
- Can incorporate arbitrary, nonlocal features of the input, without increasing complexity of inference.



FEATURE VECTORS FOR MRFS

 $\bullet \; \mathsf{An} \; \mathsf{MRF} \; \mathsf{is}$

$$P(h) = \frac{1}{Z} \prod_{c} \psi_c(h_c)$$

• The clique potentials are often defined in terms of feature vectors

$$\psi_c(h_c) = \exp\left(\theta_c^T f_c(h_c)\right)$$

• By using indicator features, we can recover tabular potentials:

$$f_c(h_c) = [\delta(h_c, 1), \dots, \delta(h_c, K)]$$

• A CRF is

$P(h|v) = \frac{1}{Z(v)} \prod_{c} \psi_c(h_c, v)$

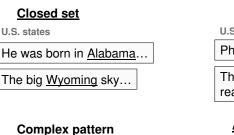
• The (input-dependent) clique potentials are often defined in terms of feature vectors

$$\psi_c(h_c, v) = \exp\left(\theta_c^T f_c(h_c, v)\right)$$

• Example: logistic regression. Hidden node $H \in \{-1, +1\}$, cliques $= edges = \{(H, v_c)\}:$

$$P(h|v) = \frac{1}{Z(v)} \prod_{c} e^{\theta_{c} v_{c} h}$$

• Example application: entity extraction from text (logistic regression with correlation amongst the hidden labels/ discriminative version of an HMM)



U.S. postal addresses

University of Arkansas P.O. Box 140 Hope, AR 71802

Headquarters: 1128 Main Street, 4th Floor Cincinnati, Ohio 45210

Regular set

U.S. phone numbers

Phone: (413) 545-1323

The CALD main office can be reached at 412-268-1299

Ambiguous patterns, needing context and many sources of evidence

Person names

...was among the six houses sold by Hope Feldman that year.

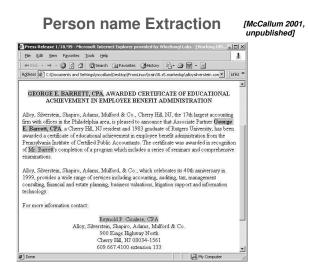
Pawel Opalinski, Software Engineer at WhizBang Labs.

EXAMPLE: FEATURES USED

Capitalized Mixed Caps All Caps Initial Cap Contains Digit All lowercase Initial Punctuation Period Comma Apostrophe Dash Preceded by HTM	Xxxxx XxXxxx XXXXX X xxx5 xxxx X ;;!(), etc , , L tag	Character n-gram classifier says string is a person name (80% accurate) In stopword list (the, of, their, etc) In honorific list (Mr, Mrs, Dr, Sen, etc) In person suffix list (Jr, Sr, PhD, etc) In name particle list (de, la, van, der, etc) In Census lastname list; segmented by P(name) In Census firstname list; segmented by P(name) In locations lists (states, cities, countries) In company name list	 Hand-built FSM person-name extractor says yes, (prec/recall ~ 30/95) Conjunctions of all previous feature pairs, evaluated at the current time step. Conjunctions of all previous feature pairs, evaluated at current step and one step ahead. All previous features, evaluated two steps ahead. All previous features, evaluated one step behind. 		
		("J. C. Penny")	Total number of features = ~200k		
		In list of company suffixes (Inc, & Associates, Foundation)			

EXAMPLE: PERSON NAME EXTRACTION

Mallet Software



Conditional models are not generative models of the data

- MaxEnt models are a generalized version of exponential family models, and so they can be thought of as generative models which assign probability distribution to joint settings of the features $f_i(\mathbf{x})$.
- But they *are not* generative models of the original inputs x, because the features may be very complicated, nonlinear functions.
- Futhermore, it may be possible to generate joint feature settings which do not correspond to *any* possible input x.
- For example, what if our generative model of English spelling gives $f_{ing}(c_1, c_2, c_3) = 1$ and $f_{?ed}(c_1, c_2, c_3) = 1$?

- \bullet A CRF is $P(h|v) = \frac{1}{Z(v)} \prod_c \psi_c(h_c,v)$
- The (input-dependent) clique potentials are often defined in terms of feature vectors $\psi_c(h_c, v) = \exp\left(\theta_c^T f_c(h_c, v)\right)$
- \bullet Assume fully labeled data, (h^m, v^m) pairs. Log-likelihood is

$$\begin{split} \ell &= \sum_m \log P(h^m | v^m) = \sum_m \sum_c \theta_c^T f_c(h_c^m, v^m) - \log Z(v^m) \\ \text{where } Z(v^m) &= \sum_h \prod_c \psi_c(h_c, v^m). \end{split}$$

• Derivative of log-likelihood is

$$\frac{\partial \ell}{\partial \theta_c} = \sum_m f_c(h_c^m, v^m) - \sum_{h_c} P(h_c | v^m) f_c(h_c, v^m)$$

= counts - expected counts

DERIVATIVE OF LOG-PARTITION FUNCTION

$$Z_{v,\theta} = \sum_{h} \exp\left(\sum_{c} \theta_{c}^{T} f_{c}(h_{c}, v)\right)$$

$$\frac{\partial \log Z_{v,\theta}}{\partial \theta_{c}} = \frac{1}{Z_{v,\theta}} \frac{\partial}{\partial \theta_{c}} \sum_{h} \exp\left(\sum_{c} \theta_{c}^{T} f_{c}(h_{c}, v)\right)$$

$$= \frac{1}{Z_{v,\theta}} \sum_{h} \frac{\partial}{\partial \theta_{c}} \exp\left(\sum_{c} \theta_{c}^{T} f_{c}(h_{c}, v)\right)$$

$$= \frac{1}{Z_{v,\theta}} \sum_{h} \exp\left(\sum_{c} \theta_{c}^{T} f_{c}(h_{c}, v)\right) f_{c}(h_{c}, v)$$

$$= \sum_{h_{c'}} \sum_{h_{c}} P(h_{c'}, h_{c} | v, \theta) f_{c}(h_{c}, v)$$

$$= E_{h_{c}} f_{c}(h_{c}, v)$$

PARAMETER TIEING

• Frequently we assumed tied parameters, to handle models of variable-size e.g., sequences of varying length, images of different size, web-data with multiple web-pages

$$\psi_c(h_c, v) = \exp(\theta^T f_c(h_c, v))$$

• In this case, we just sum the (expected) features over all cliques that share the same weight

$$\frac{\partial \ell}{\partial \theta_c} = \sum_m \left[\sum_c f_c(h_c^m, v^m) \right] - \left[\sum_c \sum_{h_c} P(h_c | v^m) f_c(h_c, v^m) \right]$$

• We can associate a weight with each type (class) of clique, to specify the tying pattern. This is called a *relational Markov network*.

- We usually put a $\mathcal{N}(\theta;0,\sigma^2 I)$ prior on the weights to do "soft" feature selection.
- The penalized log-likelihood is

$$\ell = \sum_{m} \sum_{c} \theta_{c}^{T} f_{c}(h_{c}^{m}, v^{m}) - \log Z(v^{m}) - \frac{\theta^{T} \theta}{2\sigma^{2}} + C$$

• Derivative of penalized log-likelihood is

$$\frac{\partial \ell}{\partial \theta_c} = \sum_m f_c(h_c^m, v^m) - \sum_{h_c} P(h_c | v^m) f_c(h_c, v^m) - \frac{\theta}{\sigma^2}$$

 \bullet The prior variance σ^2 is usually set by cross-validation.

• Derivative of penalized log-likelihood is

$$\frac{\partial \ell}{\partial \theta_c} = \sum_m f_c(h_c^m, v^m) - \sum_{h_c} P(h_c | v^m) f_c(h_c, v^m) - \frac{\theta}{\sigma^2}$$

- This can be passed to any gradient-based optimizer, e.g., conjugate gradient or BFGS. This will find the global optimum (since fully observed, convex problem).
- There is an alternative method called iterative scaling, but it is slower, more complex and less general.
- Learning requires computing $P(h_c|v^m)$ for every clique c, every training case m, and every iteration of the gradient algorithm, so it can be very slow.

APPROXIMATE SOLUTION TO EXACT LOG-LIKELIHOOD

- If inference is intractable, we can approximate $P(h_c|v^m)$.
- If we use loopy belief propagation, one can show (Wainwright, Jaakkola, Willsky, AISTATS 03) that for pairwise tabular MRFs, one possible local optimum is

$$\hat{\theta}_{s,j} = \log \tilde{P}(X_s = j), \quad \hat{\theta}_{st,jk} = \log \frac{\tilde{P}(X_s = j, X_t = k)}{\tilde{P}(X_s = j)\tilde{P}(X_t = k)}$$

so we can set the parameters from the empirical distribution \tilde{P} without running BP.

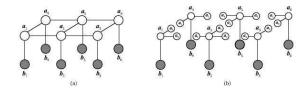
- If we run BP with these parameters, one possible fixed point is that the model marginals will match the empirical marginals!
- However, this may not match the behavior of the true MLEs when the local evidence changes.
- For more general models, one can use approximate inference to compute an approximate gradient, but this may not converge.

EXACT SOLUTION TO APPROXIMATE LOG-LIKELIHOOD

• Instead of doing approximate inference, we can change the objective function:

$$\ell(h^m | v^m) = \frac{1}{Z(v^m)} \prod_i \phi_i(h_i^m, v^m) \prod_{j \in N_i} \psi_{ij}(h_i^m, h_j^m)$$
$$\approx \prod_i \frac{1}{Z_i} \phi_i(h_i^m, v^m) \prod_{j \in N_i} \psi_{ij}(h_i^m, h_j^m)$$
$$= \prod_i P(h_i^m | h_{N_i}^m, v^m)$$

where $Z_i = \sum_{h_i} \phi_i(h_i, v^m) \prod_{j \in N_i} \psi_{ij}(h_i, h_j^m)$



• Pseudo-likelihood learns to trust its hidden neighbors too much (since they are assumed known during learning), hence leading to oversmooth estimates at run time.

$$\ell(h^m | v^m) \approx \prod_i P(h_i^m | h_{N_i}^m, v^m)$$

 \bullet One hack is to regularize the pairwise interaction potential $\psi_{ij}.$

APPLICATION: MAN-MADE BUILDING DETECTION

- "Discriminative Fields for Modeling Spatial Dependencies in Natural Images", Kumar & Herbert, NIPS 2003
- Goal: estimate $h_i \in \{-1, +1\}$ at each pixel i.
- \bullet Local-evidence defined in terms of features $f_i(\upsilon)$:

 $\phi_i(h_i, v; w) = \log \sigma(h_i w^T f_i(v))$

• Image-dependent smoothing between neighboring labels

$$\psi_{ij}(h_i, h_j, v; \theta) = h_i h_h \theta^T g_{ij}(v)$$

• Inference= graph cuts, Learning= pseudo-likelihood

FEATURE INDUCTION

- We assumed $\psi_c(x_c) = \exp \theta_c^T f_c(x_c)$.
- Where do the features come from?
- McCallum (UAI 03) suggested a greedy feature induction scheme for 1D CRFs applied to text:
 - At each iteration, consider (in parallel) adding new atomic features (binary tests on the input) and conjunctions of existing features.
 - Evaluate quality of proposed candidates using the change in pseudolikelihood.
 - $-\operatorname{Having}$ chosen a set of features, add them and refit the weights using BFGS.
 - It learned features like $f_i(v) = \delta(v_i = the', v_{i+1} = of')$.
- Dietterich et al (ICML 04) suggested using boosting to solve a similar task.

CRFs with hidden variables

• Let v be visible, h be always hidden, and s be desired output state (observed in training).

$$P(s^{m}|v^{m}) = \sum_{h} P(s^{m}, h|v^{m})$$
$$= \sum_{h} \frac{1}{Z(v^{m})} e^{\Psi(s^{m}, h, v^{m})}$$
$$= \frac{\sum_{h} e^{\Psi(s^{m}, h, v^{m})}}{\sum_{h} \sum_{s} e^{\Psi(s, h, v^{m})}} \stackrel{\text{def}}{=} \frac{Z(s^{m}, v^{m})}{Z(v^{m})}$$

where

$$\Psi(s,h,v) = \sum_{c} \theta_{c}^{T} f_{c}(s_{c},h_{c},v)$$

• Log-likelihood

$$\operatorname{og} P(s^m | v^m) = \log Z(s^m, v^m) - \log Z(v^m)$$

• Derivative is

$$\frac{\partial \log P(s^m | v^m)}{\partial \theta_c} = E_h f_c(s^m, h, v^m) - E_h E_s f_c(s, h, v)$$

 \bullet Or we can use EM.

- -E-step: compute expected sufficient statistics.
- M-step: maximize expected complete-data log-likelihood using standard techniques for fully observed MRFs (eg IPF or gradient).

- Log-likelihood $\ell(\mu,\sigma) = \sum_n \log P(x_n|\mu,\sigma)$
- MLE for mean: $\hat{\mu}_{ML} = \frac{1}{N} \sum_{n} x_{n}$
- MLE for variance: $\hat{\sigma^2}_{ML} = \frac{1}{N}S$, where $S = \sum_n (x_n \overline{x})^2$
- $\hat{\sigma^2}_{ML}$ is biased: $E_{X_{1:n} \sim \mathcal{N}(\mu, \sigma^2)} \hat{\sigma^2}_{ML}(X_{1:n}) = \frac{N-1}{N} \sigma^2$
- So we use $\hat{\sigma}_{N-1}^2 = \frac{1}{N-1}S$
- \bullet Unbiased is not enough, e.g $E_{X_{1:n}\sim\mathcal{N}(\mu,\sigma^2)}\tilde{\mu}(X_{1:n})=EX_1=\mu$
- Also need consistency: $E(\hat{\theta} \theta)^2 \rightarrow 0$. $\hat{\mu}$, $\hat{\sigma}_N^2$ and $\hat{\sigma}_{N-1}^2$ are all consistent.
- e.g., for data below, N = 5, $\overline{x} = 1.0$, S = 1.0, $\sigma_N = 1/\sqrt{5} = 0.45$, $\sigma_{N-1} = 1/\sqrt{4} = 0.5$.

We plot likelihood $\ell(\mu, \sigma)$ for σ vs μ . $\int_{a}^{a} \int_{a}^{a} \int_{a}^{a$

BAYESIAN UPDATING IN DISCRETE HYPOTHESIS SPACE

MIXTURE OF 2 GAUSSIANS

Maybe this data would be better fit by

$$p(x|\mu_1, \sigma_1, \pi_1, \mu_2, \sigma_2, \pi_2) =$$

$$= \frac{\pi_1}{\sqrt{(2\pi)\sigma_1}} \exp(-\frac{(x-\mu_1)^2}{2\sigma_1^2}) + \frac{\pi_2}{\sqrt{(2\pi)\sigma_2}} \exp(-\frac{(x-\mu_2)^2}{2\sigma_2^2})$$

where $\pi_1 + \pi_2 = 1$.

Top-half: $\pi_1 = 0.6$, bottom-half $\pi_1 = 0.8$. We plot μ vs σ .

L	0.0, 50		" " T		proc μ vs
	~~~~	~~~~	~~~~		
	$\sim$ $\sim$ $\sim$ $\sim$	~~~~	~~~~	~~~~	
			~~~~		
	$\leq \leq \leq \leq \sim$	$\leq \leq \leq \leq \sim$	\sim \sim \sim \sim \sim	$ \frown \land \land \land \checkmark$	
	\sim \sim \sim \sim	~~~~~	~~~~	~~~~	
			~~~~		
			$\sim$ $\land$ $\land$ $\sim$ $\sim$		
	$\sqrt{-}$ $\sqrt{-}$ $\sqrt{-}$ $\sqrt{-}$ $\sqrt{-}$		$\sim$ $\land$ $\land$ $\land$ $\sim$	$\sim$ $\sim$ $\sim$ $\sim$ $\sim$	ک حد حد حد حه
			~~~~~		
			$\land \land \land \land \land$		
			ممہم		
	<u>A</u> <u>A</u> <u>A</u> <u>A</u>		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~	ک_ مد مد مد مد
		A A A A A	$\land \land \land \land \land \land$	$\land \land \land \land \land \land$	<u> </u>
			$\nabla \nabla \nabla \nabla \nabla$		
			~ ^ ^ ^ ^ <u></u>	~ ~ ^ ^ ^ <u></u>	الــــ المـــ المـــــــــــــــــــــــ
			~ ~ ~ ~ ~ ~	* * * * *	لـــــ همــ همـ هـــ
			~~~~		
			~~~~		
			~~~~		
	$\sim \sim \sim \sim \sim$	~~~~~	~~~~~	~~~~~	
			~~~~		
			~~~~		
			$ \frown \frown$		
	$\sim$ $\sim$ $\sim$ $\sim$		~~~~~	~~~~~	
			$\triangle$ $\triangle$ $\triangle$ $\triangle$ $\triangle$		
			$\land \land \land \land \land$		
			$\Delta \Delta \Delta \Delta \Delta$		
			~ ~ ~ ~ ~ ~		
			$\nabla \nabla \nabla \nabla \nabla$		
			$\nabla \nabla \nabla \nabla \nabla$		
	<u>4</u> <u>6</u> <u>6</u> <u>6</u> <u>6</u>	$\land$ $\land$ $\land$ $\land$ $\land$	$\nabla \nabla \dot{\nabla} \dot{\nabla} \dot{\nabla} \nabla$	$\nabla \nabla \dot{\nabla} \dot{\nabla} \dot{\nabla}$	بک کسر کسر کسر
	A_ A_ A_ A_		$\checkmark$ $\lor$ $\checkmark$ $\checkmark$ $\checkmark$ $\checkmark$	$\checkmark$ $\checkmark$ $\checkmark$ $\checkmark$ $\checkmark$	لا الما الما الما الما

Top-half:  $\pi_1 = 0.6$ , bottom-half  $\pi_1 = 0.8$ . We plot  $\mu$  vs  $\sigma$ . ≫ ____ ___ ------0.5 0 0.5 1 1.5 2  $\sim \sim$  $\sim \sim$ <u>~</u> ~ ~~~~~~~~~~~~~~~~~ ~~~~**~~~~~~~~~** ~~~ ^^^**^^^** ~~~~  $\sim \sim$ ص**د مد** مد <u>~</u>_ <u>___</u>__ <u>~ ~</u> <u>M</u> M Δ_ ____ _____ **_____** 

__

-^ 

____ ____ _م_

LARE ARAGA ARAAA ARAAAA ###### 

____ **____** 

 $\sim \sim$ 

#### MODEL SELECTION

- Maximum likelihood always picks the most complex model.
- Instead we should pick the most probable model  $P(M|D) \propto P(D|M)$ , where P(D|M) is the *marginal* likelihood:

$$P(D|M) = \int_{\mu,\sigma} P(D|\mu,\sigma,M) P(\mu,\sigma|M)$$

- The integral over parameters penalizes overly complex models (Bayesian Occam's razor).
- This can be used for model selection (Bayesian version of hypothesis testing).
- Examples of model selection: number of clusters in K-means, order in K-th order Markov model, structure learning...