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Generative vs discriminative models

• Generative model defines P (h, o) = P (h)P (o|h).

– HMM (hidden Markov model)

P (h, o) = [
∏

t

P (ht|ht−1)][
∏

t

p(ot|ht)]

– MRF (Markov random field)

P (h, o) = [
1

Z

∏

i

∏

j∈Ni

ψij(hi, hj)]
∏

i

P (oi|hi)
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• Conditional model defines P (h|o).

– CRF (conditional random field)

P (h|o) =
1

Z(o)

∏

i

∏

j∈Ni

ψij(hi, hj, o)



Advantages of CRFs

•Do not need to waste parameters modeling observed inputs o.

• Can use supervised machine learning methods to learn local
evidence P (hi|o).

• Can incorporate arbitrary, nonlocal features of the input, without
increasing complexity of inference.
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Feature vectors for MRFs

• An MRF is

P (h) =
1

Z

∏

c

ψc(hc)

• The clique potentials are often defined in terms of feature vectors

ψc(hc) = exp
(

θTc fc(hc)
)

• By using indicator features, we can recover tabular potentials:

fc(hc) = [δ(hc, 1), . . . , δ(hc,K)]



Feature vectors for CRFs

• A CRF is

P (h|v) =
1

Z(v)

∏

c

ψc(hc, v)

• The (input-dependent) clique potentials are often defined in terms
of feature vectors

ψc(hc, v) = exp
(

θTc fc(hc, v)
)

• Example: logistic regression. Hidden node H ∈ {−1,+1}, cliques
= edges = {(H, vc)}:

P (h|v) =
1

Z(v)

∏

c

eθcvch

• Example application: entity extraction from text (logistic regression
with correlation amongst the hidden labels/ discriminative version
of an HMM)



Entity Extraction

Closed set

He was born in Alabama…

Regular set

Phone: (413) 545-1323

Complex pattern

University of Arkansas

P.O. Box 140

Hope, AR 71802
…was among the six houses

sold by Hope Feldman that year.

Ambiguous patterns,
needing context and
many sources of evidence

The CALD main office can be

reached at 412-268-1299
The big Wyoming sky…

U.S. states U.S. phone numbers

U.S. postal addresses

Person names

Headquarters:

1128 Main Street, 4th Floor

Cincinnati, Ohio 45210

Pawel Opalinski, Software

Engineer at WhizBang Labs.



Example: Features Used

Capitalized Xxxxx

Mixed Caps XxXxxx

All Caps XXXXX

Initial Cap X….

Contains Digit xxx5

All lowercase xxxx

Initial X

Punctuation .,:;!(), etc

Period .

Comma ,

Apostrophe ‘

Dash -

Preceded by HTML tag

Character n-gram classifier
says string is a person
name (80% accurate)

In stopword list
(the, of, their, etc)

In honorific list
(Mr, Mrs, Dr, Sen, etc)

In person suffix list
(Jr, Sr, PhD, etc)

In name particle list
(de, la, van, der, etc)

In Census lastname list;
segmented by P(name)

In Census firstname list;
segmented by P(name)

In locations lists
(states, cities, countries)

In company name list
(“J. C. Penny”)

In list of company suffixes
(Inc, & Associates, Foundation)

Hand-built FSM person-name
extractor says yes,
(prec/recall ~ 30/95)

Conjunctions of all previous
feature pairs, evaluated at
the current time step.

Conjunctions of all previous
feature pairs, evaluated at
current step and one step
ahead.

All previous features, evaluated
two steps ahead.

All previous features, evaluated
one step behind.

Total number of features = ~200k



Example: Person Name Extraction

Person name Extraction [McCallum 2001,

unpublished]

Mallet Software



Conditional models are not generative models of
the data

•MaxEnt models are a generalized version of exponential family
models, and so they can be thought of as generative models which
assign probability distribution to joint settings of the features fi(x).

• But they are not generative models of the original inputs x,
because the features may be very complicated, nonlinear functions.

• Futhermore, it may be possible to generate joint feature settings
which do not correspond to any possible input x.

• For example, what if our generative model of English spelling gives
fing(c1, c2, c3) = 1 and f?ed(c1, c2, c3) = 1 ?



Parameter learning in MRFs/CRFs

• A CRF is P (h|v) = 1
Z(v)

∏

cψc(hc, v)

• The (input-dependent) clique potentials are often defined in terms

of feature vectors ψc(hc, v) = exp
(

θTc fc(hc, v)
)

• Assume fully labeled data, (hm, vm) pairs. Log-likelihood is

` =
∑

m

logP (hm|vm) =
∑

m

∑

c

θTc fc(h
m
c , v

m) − logZ(vm)

where Z(vm) =
∑

h
∏

cψc(hc, v
m).

•Derivative of log-likelihood is

∂`

∂θc
=
∑

m

fc(h
m
c , v

m) −
∑

hc

P (hc|v
m)fc(hc, v

m)

= counts − expected counts



Derivative of log-partition function

Zv,θ =
∑

h

exp

(

∑

c

θTc fc(hc, v)

)

∂ logZv,θ
∂θc

=
1

Zv,θ

∂

∂θc

∑

h

exp

(

∑

c

θTc fc(hc, v)

)

=
1

Zv,θ

∑

h

∂

∂θc
exp

(

∑

c

θTc fc(hc, v)

)

=
1

Zv,θ

∑

h

exp

(

∑

c

θTc fc(hc, v)

)

fc(hc, v)

=
∑

hc′

∑

hc

P (hc′, hc|v, θ)fc(hc, v)

= Ehcfc(hc, v)



Parameter tieing

• Frequently we assumed tied parameters, to handle models of
variable-size e.g., sequences of varying length, images of different
size, web-data with multiple web-pages

ψc(hc, v) = exp(θTfc(hc, v))

• In this case, we just sum the (expected) features over all cliques
that share the same weight

∂`

∂θc
=
∑

m

[

∑

c

fc(h
m
c , v

m)

]

−





∑

c

∑

hc

P (hc|v
m)fc(hc, v

m)





•We can associate a weight with each type (class) of clique, to
specify the tying pattern. This is called a relational Markov network.



Regularization

•We usually put a N (θ; 0, σ2I) prior on the weights to do “soft”
feature selection.

• The penalized log-likelihood is

` =
∑

m

∑

c

θTc fc(h
m
c , v

m) − logZ(vm) −
θTθ

2σ2
+ C

•Derivative of penalized log-likelihood is

∂`

∂θc
=
∑

m

fc(h
m
c , v

m) −
∑

hc

P (hc|v
m)fc(hc, v

m) −
θ

σ2

• The prior variance σ2 is usually set by cross-validation.



Gradient ascent on log-likelihood

•Derivative of penalized log-likelihood is

∂`

∂θc
=
∑

m

fc(h
m
c , v

m) −
∑

hc

P (hc|v
m)fc(hc, v

m) −
θ

σ2

• This can be passed to any gradient-based optimizer, e.g., conjugate
gradient or BFGS. This will find the global optimum (since fully
observed, convex problem).

• There is an alternative method called iterative scaling, but it is
slower, more complex and less general.

• Learning requires computing P (hc|v
m) for every clique c, every

training case m, and every iteration of the gradient algorithm, so it
can be very slow.



Approximate solution to exact log-likelihood

• If inference is intractable, we can approximate P (hc|v
m).

• If we use loopy belief propagation, one can show (Wainwright,
Jaakkola, Willsky, AISTATS 03) that for pairwise tabular MRFs,
one possible local optimum is

θ̂s,j = log P̃ (Xs = j), θ̂st,jk = log
P̃ (Xs = j,Xt = k)

P̃ (Xs = j)P̃ (Xt = k)

so we can set the parameters from the empirical distribution P̃
without running BP.

• If we run BP with these parameters, one possible fixed point is that
the model marginals will match the empirical marginals!

• However, this may not match the behavior of the true MLEs when
the local evidence changes.

• For more general models, one can use approximate inference to
compute an approximate gradient, but this may not converge.



Exact solution to approximate log-likelihood

• Instead of doing approximate inference, we can change the objective
function:

`(hm|vm) =
1

Z(vm)

∏

i

φi(h
m
i , v

m)
∏

j∈Ni

ψij(h
m
i , h

m
j )

≈
∏

i

1

Zi
φi(h

m
i , v

m)
∏

j∈Ni

ψij(h
m
i , h

m
j )

=
∏

i

P (hmi |h
m
Ni
, vm)

where Zi =
∑

hi
φi(hi, v

m)
∏

j∈Ni
ψij(hi, h

m
j )



Pseudo-likelihood approximation

• Pseudo-likelihood learns to trust its hidden neighbors too much (since
they are assumed known during learning), hence leading to over-
smooth estimates at run time.

`(hm|vm) ≈
∏

i

P (hmi |h
m
Ni
, vm)

•One hack is to regularize the pairwise interaction potential ψij.



Application: man-made building detection

• “Discriminative Fields for Modeling Spatial Dependencies in Natural
Images”, Kumar & Herbert, NIPS 2003

• Goal: estimate hi ∈ {−1,+1} at each pixel i.

• Local-evidence defined in terms of features fi(v):

φi(hi, v;w) = log σ(hiw
Tfi(v))

• Image-dependent smoothing between neighboring labels

ψij(hi, hj, v; θ) = hihhθ
Tgij(v)

• Inference= graph cuts, Learning= pseudo-likelihood



Feature induction

•We assumed ψc(xc) = exp θTc fc(xc).

•Where do the features come from?

•McCallum (UAI 03) suggested a greedy feature induction scheme for
1D CRFs applied to text:

– At each iteration, consider (in parallel) adding new atomic features
(binary tests on the input) and conjunctions of existing features.

– Evaluate quality of proposed candidates using the change in pseudo-
likelihood.

– Having chosen a set of features, add them and refit the weights
using BFGS.

– It learned features like fi(v) = δ(vi =′ the′, vi+1 =′ of ′).

•Dietterich et al (ICML 04) suggested using boosting to solve a similar
task.



CRFs with hidden variables

• Let v be visible, h be always hidden, and s be desired output state
(observed in training).

P (sm|vm) =
∑

h

P (sm, h|vm)

=
∑

h

1

Z(vm)
eΨ(sm,h,vm)

=

∑

h e
Ψ(sm,h,vm)

∑

h
∑

s e
Ψ(s,h,vm)

def
=
Z(sm, vm)

Z(vm)

where
Ψ(s, h, v) =

∑

c

θTc fc(sc, hc, v)



Learning CRFs with hidden variables

• Log-likelihood

logP (sm|vm) = logZ(sm, vm) − logZ(vm)

•Derivative is
∂ logP (sm|vm)

∂θc
= Ehfc(s

m, h, vm) − EhEsfc(s, h, v)

•Or we can use EM.

– E-step: compute expected sufficient statistics.

– M-step: maximize expected complete-data log-likelihood using stan-
dard techniques for fully observed MRFs (eg IPF or gradient).



Hw5: MLEs for 1d Gaussians

• Log-likelihood `(µ, σ) =
∑

n logP (xn|µ, σ)

•MLE for mean: µ̂ML = 1
N

∑

n xn

•MLE for variance: σ̂2
ML = 1

NS, where S =
∑

n(xn − x)2

• σ̂2
ML is biased: EX1:n∼N (µ,σ2)σ̂

2
ML(X1:n) = N−1

N σ2

• So we use σ̂2
N−1 = 1

N−1S

• Unbiased is not enough, e.g EX1:n∼N (µ,σ2)µ̃(X1:n) = EX1 = µ

• Also need consistency: E(θ̂ − θ)2 → 0.
µ̂, σ̂2

N and σ̂2
N−1 are all consistent.

• e.g., for data below, N = 5, x = 1.0, S = 1.0, σN = 1/
√

(5) =

0.45, σN−1 = 1/
√

(4) = 0.5.

-0.5 0 0.5 1 1.5 2 2.5



Bayesian updating in discrete hypothesis space

We plot likelihood `(µ, σ) for σ vs µ.
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Mixture of 2 Gaussians

-0.5 0 0.5 1 1.5 2 2.5

Maybe this data would be better fit by

p(x|µ1, σ1, π1, µ2, σ2, π2) =

=
π1

√

(2π)σ1
exp(−

(x− µ1)
2

2σ2
1

) +
π2

√

(2π)σ2
exp(−

(x− µ2)
2

2σ2
2

)

where π1 + π2 = 1.



Prior hypothesis space for MOG2

Top-half: π1 = 0.6, bottom-half π1 = 0.8. We plot µ vs σ.



Posterior hypothesis space for MOG2

Top-half: π1 = 0.6, bottom-half π1 = 0.8. We plot µ vs σ.
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Model selection

•Maximum likelihood always picks the most complex model.

• Instead we should pick the most probable model P (M |D) ∝ P (D|M ),
where P (D|M ) is the marginal likelihood:

P (D|M ) =

∫

µ,σ
P (D|µ, σ,M )P (µ, σ|M )

• The integral over parameters penalizes overly complex models (Bayesian
Occam’s razor).

• This can be used for model selection (Bayesian version of hypothesis
testing).

• Examples of model selection: number of clusters in K-means, order
in K-th order Markov model, structure learning...


