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Outline

• Latent variable models

•Maximum likelihood learning

– Gradient ascent

– EM

• (Bayesian learning)

Unobserved Variables

• Certain variables Q in our models may be unobserved,
either some of the time or always,
either at training time or at test time.
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Graphically, we will use shading to indicate observation.

•We shall assume values are missing at random; if not, we need to
model the data censoring mechanism explicitly.

• e.g., probability we observe a medical record may depend on values
of the other attributes.

Partially Unobserved (Missing) Variables

• If variables are occasionally unobserved they are missing data.
e.g. undefinied inputs, missing class labels, erroneous target values

• Variables which are always unobserved are called latent variables.

• Now we maximize the likelihood of the observed data; we have to
sum out or marginalize the missing values at training or test time:

`(θ;D) =
∑

complete

log p(xc,yc|θ) +
∑

missing

log p(xm|θ)

=
∑

complete

log p(xc,yc|θ) +
∑

missing

log
∑

z

p(xm, z|θ)



Why is Learning Harder?

• In fully observed iid settings, the log likelihood decomposes into a
sum of local terms (at least for directed models).

`(θ;D) = log p(x, z|θ) = log p(z|θz) + log p(x|z, θx)

•With latent variables, all the parameters become coupled together
via log

∑

():

`(θ;D) = log
∑

z

p(x, z|θ) = log
∑

z

p(z|θz)p(x|z, θx)
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Where Do Latent Variables Come From?

•Missing values can arise because something wasn’t measured,
because of faulty sensors, etc.

• But we may also intentionally introduce latent variables to simplify
a model.

•Discrete latent variables can be used to partition/ cluster data into
sub-groups.

• Continuous latent variables (factors) can be used for dimensionality
reduction (PCA, etc).
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Mixture models

• A density model p(x) may be multi-modal.

•We may be able to model it as a mixture of uni-modal distributions
(e.g., Gaussians).

• Each mode may correspond to a different sub-population (e.g.,
male and female).
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Gaussian Mixture Models (GMMs)

• Consider a mixture of K Gaussian components:

p(Z = k) = αk mixing weights

p(x|z = k) = N (x|µk, Σk) class-conditional densities
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• This can be used for unsupervised clustering.

• This model (fit by AutoClass) has been used to discover new kinds
of stars in astronomical data, etc.



Gaussian Mixture Models

• The posterior probability that a data point x is assigned to cluster
k is given by

p(z = k|x, θ) =
αkpk(x|θk)

∑

j αjpj(x|θj)
= rk(x)

• These quantities are called responsibilities or soft assignments.

• Vector quantization (VQ) = hard assignment of x to the most
probable cluster.

• The log-likelihood is

`(θ;D) =
∑

n

log p(xn) =
∑

n

log
∑

k

αkN (xn|µk, Σk)

•We will discuss how to maximize this later.

Conditional mixture model: Mixture of experts

•We will model P (Y |X) using different experts, each responsible for
different regions of the input space.

• Latent variable Z chooses expert using softmax gating function:
P (Z = k|x) = σ(θT

k x).

• Each expert can be a linear regression model:
p(y|x, Z = k) = N (y; βT

k x, σ2
k).

• The posterior expert responsibilities are

p(z = k|x,y, θ) =
αk(x)pk(y|x, θk)

∑

j αj(x)pj(y|x, θj)

Hierarchical mixture of experts

• This is like a soft version of a depth-2 classification/ regression tree.

• P (Y |X,Z1, Z2) can be modelled as a GLIM, with parameters
dependent on the values of Z1 and Z2 (which specify the path to a
given leaf in the tree).

Mixture of overlapping experts

• By removing the X → Z arc, we can make the partitions
independent of the input, thus allowing overlap.

• This is a mixture of linear regressors; each subpopulation has a
different conditional mean.



Gradient Learning for mixture models

•We can learn mixture densities using gradient descent on the log
likelihood. The gradients are quite interesting:

`(θ) = log p(x|θ) = log
∑

k

αkpk(x|θk)

∂`

∂θ
=

1

p(x|θ)

∑

k

αk
∂pk(x|θk)

∂θ

=
∑

k

αk
1

p(x|θ)
pk(x|θk)

∂ log pk(x|θk)

∂θ

=
∑

k

αk
pk(x|θk)

p(x|θ)

∂`k
∂θk

=
∑

k

rk
∂`k
∂θk

• In other words, the gradient is the responsibility weighted sum of
the individual log likelihood gradients.

• Can pass this to a conjugate gradient routine.

Parameter Constraints

•Often we have constraints on the parameters, e.g.
∑

k αk = 1,
Σ symmetric positive definite (hence Σii > 0).

•We can use constrained optimization, or we can reparameterize in
terms of unconstrained values.

• For discrete variables, use the softmax transform: αk =
exp(qk)

∑

j exp(qj)

• For covariance matrices, use the Cholesky decomposition:

Σ−1 = A>A

where A is upper diagonal with positive diagonal:

Aii = exp(ri) > 0 Aij = aij (j > i) Aij = 0 (j < i)

• The variables qi, ri, aij ∈ IR are unconstrained.

• Use chain rule to compute ∂`
∂α, ∂`

∂A.

Logsum

• You may encounter numerical problems when computing the
log-likelihood:

`(θ) = log p(x|θ) = log
∑

k

αkpk(x|θk)

since pk(x|θk) may be extremely small.

• The class conditional log likelihoods are well-behaved:
bk = log pk(x|θk).

• But the following will underflow:

log
∑

k

ebk

Logsum

• You should use

log
∑

k

ebk = log



(
∑

k

ebk)e−BeB





= log



(
∑

k

ebk−B)eB





=



log(
∑

k

ebk−B)



 + B

where B = maxk bk

• Example

log(e−120 +e−121) = log
(

e−120(e0 + e−1)
)

= log(e0 +e−1)−120



Gradient learning for BNs with tabular CPDs

• Let θijk = P (Xi = j|Xπi = k).

• For a fully observed case, the gradient of the likelihood is

∂

∂θijk
P (x1:N ) =

∂

∂θijk

∏

i′

θi′,x′i,xπ
i′

= δ(xi = j, xπi = k)θijk

∏

i′ 6=i

θi′,xi′,xπi′

= δ(xi = j, xπi = k)

∏

i′ θi′,xi′,xπ
i′

θijk

= δ(xi = j, xπi = k)
P (x1:N )

θijk

Gradient learning for BNs with tabular CPDs

• For a partially observed case,

∂

∂θijk
P (e) =

∂

∂θijk

∑

x:x(E)=e

P (x)

=
∑

x

δ(xE = e)δ(xi = j, xπi = k)
P (x1:N )

θijk

=
P (xi = j, xπi = k, e)

θijk

• A more complex expression can be used if θijk = 0.

• The numerator can be computed using probabilistic inference.

• A junction tree will always contain Xi and Xπi in the same clique.

• For batch learning, we need to do inference for every training case
for every iteration of gradient ascent (slow!).

Gradient learning for BNs with general CPDs

• Consider CPD P (X = x|Xπ = u; φ).

•We have
∂P (e)

∂P (X = x|Xπ = u)
=

P (X = x,Xπ = u, e)

P (X = x|Xπ = u)

• By the chain rule

∂P (e)

∂φ
=

∑

x,u

∂P (e)

∂P (X = x,Xπ = u)

∂P (X = x|Xπ = u)

∂φ

• This can be used to learn noisy-OR, sigmoids, etc.

Identifiability

• A mixture model induces a multi-modal likelihood.

• Hence gradient ascent can only find a local maximum.

•Mixture models are unidentifiable, since we can always switch the
hidden labels without affecting the likelihood.

• Hence we should be careful in trying to interpret the “meaning” of
latent variables.
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Expectation-Maximization (EM) Algorithm

• EM is an optimization strategy for objective functions that can be
interpreted as likelihoods in the presence of missing data.

• It is much simpler than gradient methods:

– No need to choose step size.

– Enforces constraints automatically.

– Calls inference and fully observed learning as subroutines.

• EM is an Iterative algorithm with two linked steps:

– E-step: fill-in hidden values using inference, p(z|x, θt).

– M-step: update parameters θt+1 using standard MLE/MAP
method applied to completed data

•We will prove that this procedure monotonically improves `
(or leaves it unchanged). Thus it always converges to a local
optimum of the likelihood.

Complete & Incomplete Log Likelihoods

•Observed variables x, latent variables z, parameters θ:

`c(θ;x, z) = log p(x, z|θ)

is the complete log likelihood.

• Usually optimizing `c(θ) given both z and x is straightforward.
(e.g. class conditional Gaussian fitting, linear regression)

•With z unobserved, we need the log of a marginal probability:

`(θ;x) = log p(x|θ) = log
∑

z

p(x, z|θ)

which is the incomplete log likelihood.

Expected Complete Log Likelihood

• For any distribution q(z) define expected complete log likelihood:

`q(θ;x) = 〈`c(θ;x, z)〉q ≡
∑

z

q(z|x) log p(x, z|θ)

• Amazing fact: `(θ) ≥ `q(θ) + H(q) because of concavity of log:

`(θ;x) = log p(x|θ)

= log
∑

z

p(x, z|θ)

= log
∑

z

q(z|x)
p(x, z|θ)

q(z|x)

≥
∑

z

q(z|x) log
p(x, z|θ)

q(z|x)

•Where the inequality is called Jensen’s inequality.
(It is only true for distributions:

∑

q(z) = 1; q(z) > 0.)

Lower Bounds and Free Energy

• For fixed data x, define a functional called the free energy:

F (q, θ) ≡
∑

z

q(z|x) log
p(x, z|θ)

q(z|x)
≤ `(θ)

• The EM algorithm is coordinate-ascent on F :
E-step: qt+1 = argmaxq F (q, θt)

M-step: θt+1 = argmaxθ F (qt+1, θt)



M-step: maximization of expected `c

• Note that the free energy breaks into two terms:

F (q, θ) =
∑

z

q(z|x) log
p(x, z|θ)

q(z|x)

=
∑

z

q(z|x) log p(x, z|θ) −
∑

z

q(z|x) log q(z|x)

= `q(θ;x) + H(q)

(this is where its name comes from)

• The first term is the expected complete log likelihood (energy) and
the second term, which does not depend on θ, is the entropy.

• Thus, in the M-step, maximizing with respect to θ for fixed q we
only need to consider the first term:

θt+1 = argmaxθ `q(θ;x) = argmaxθ

∑

z

q(z|x) log p(x, z|θ)

E-step: inferring latent posterior

• Claim: the optimim setting of q in the E-step is:

qt+1 = p(z|x, θt)

• This is the posterior distribution over the latent variables given the
data and the parameters. Often we need this at test time anyway
(e.g. to perform classification).

• Proof (easy): this setting saturates the bound `(θ;x) ≥ F (q, θ)

F (p(z|x, θt), θt) =
∑

z

p(z|x, θt) log
p(z|x, θt)p(x|θt)

p(z|x, θt)

=
∑

z

p(z|x, θt) log p(x|θt)

= log p(x|θt)
∑

z p(z|x, θt)

= `(θ;x) · 1

• Can also show this result using variational calculus or the fact that
`(θ) − F (q, θ) = KL[q||p(z|x, θ)]

EM Constructs Sequential Convex Lower Bounds

• Consider the likelihood function and the function F (qt+1, ·).

θ

likelihood

θt

F(  ,q    )θ t+1

Recap: EM Algorithm

• A way of maximizing likelihood function for latent variable models.
Finds ML parameters when the original (hard) problem can be
broken up into two (easy) pieces:

1. Estimate some “missing” or “unobserved” data from observed
data and current parameters.

2. Using this “complete” data, find the maximum likelihood
parameter estimates.

• Alternate between filling in the latent variables using our best guess
(posterior) and updating the paramters based on this guess:
E-step: qt+1 = p(z|x, θt)
M-step: θt+1 = argmaxθ

∑

z q(z|x) log p(x, z|θ)

• In the M-step we optimize a lower bound on the likelihood.
In the E-step we close the gap, making bound=likelihood.



Example: Mixtures of Gaussians

• Recall: a mixture of K Gaussians:
p(x|θ) =

∑

k αkN (x|µk, Σk)
`(θ;D) =

∑

n log
∑

k αkN (xn|µk, Σk)

• Learning with EM algorithm:

E − step : pt
kn = N (xn|µt

k, Σ
t
k)

qt+1
kn = p(z=k|xn, θt) =

αt
kp

t
kn

∑

j αt
jp

t
kn

M − step : µt+1
k =

∑

n qt+1
kn xn

∑

n qt+1
kn

Σt+1
k =

∑

n qt+1
kn (xn − µt+1

k )(xn − µt+1
k )>

∑

n qt+1
kn

αt+1
k =

1

M

∑

n

qt+1
kn

EM for MOG

(a) (c) (d)
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Derivation of M-step

• Expected complete log likelihood `q(θ;D):

∑

n

∑

k

qkn

[

log αk −
1

2
(xn − µt+1

k )>Σ−1
k (xn − µt+1

k ) −
1

2
log |2πΣk|

]

• For fixed q we can optimize the parameters:

∂`q
∂µk

= Σ−1
k

∑

n

qkn(xn − µk)

∂`q

∂Σ−1
k

=
1

2

∑

n

qkn

[

Σ>
k − (xn − µt+1

k )(xn − µt+1
k )>

]

∂`q
∂αk

=
1

αk

∑

n

qkn − λ (λ = M )

• Fact:
∂ log |A−1|

∂A−1 = A> and ∂x>Ax
∂A = xx>

Compare: K-means

• The EM algorithm for mixtures of Gaussians is just like a soft
version of the K-means algorithm.

• In the K-means “E-step” we do hard assignment:

ct+1
n = argmink(xn − µt

k)>Σ−1
k (xn − µt

k)

• In the K-means “M-step” we update the means as the weighted
sum of the data, but now the weights are 0 or 1:

µt+1
k =

∑

n[ct+1
k = n]xn

∑

n[ct+1
k = n]

(a) (b) (c) (d) (e) (f)



Reminder: HMM Graphical Model

x1

y1

x2

y2

x3

y3

xT

yT

• Hidden states {xt}, outputs {yt}
Joint probability factorizes:

P({x}, {y}) =
T
∏

t=1

P(xt|xt−1)P(yt|xt)

= πx1

T−1
∏

t=1

Sxt,xt+1

T
∏

t=1

Axt(yt)

•We saw efficient recursions for computing
L = P({y}) =

∑

{x} P({x}, {y}) and γi(t) = P(xt = i|{y}).

Baum-Welch Algorithm: EM Training

1. Intuition: if only we knew the true state path then ML parameter
estimation would be trivial (MM1 on x, conditional on y).

2. But: can estimate state path using inference recursions.

3. Baum-Welch algorithm (special case of EM): estimate the states,
then compute params, then re-estimate states, and so on . . .

4. This works and we can prove that it always improves likelihood.

5. However: finding the ML parameters is NP complete, so initial
conditions matter a lot and convergence is hard to tell.
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Parameter Estimation using EM

• Sij are transition probs; state j has output distribution Bj(y)

P(xt+1 = j|xt = i) = Sij P(x1 = j) = πj

P(yt = y|xt = j) = Bj(y)

• Complete log likelihood:

log p(x, y) = log{πx1

T−1
∏

t=1

Sxt,xt+1

T
∏

t=1

Bxt(yt)}

= log{
∏

i

π
[xi

1]
i

T−1
∏

t=1

∏

ij

S
[xi

t,x
j
t+1]

ij

T
∏

t=1

∏

k

Bk(yt)
[xk

t ]}

=
∑

i

[xi
1] log πi +

T−1
∑

t=1

∑

ij

[xi
t, x

j
t+1] log Sij +

T
∑

t=1

∑

k

[xk
t ] log Bk(yt)

where the indicator [xi
t] = 1 if xt = i and 0 otherwise

• For EM, we need to compute the expected complete log likelihood.

State expectations required from the E-Step

• The expected complete log likelihood requires

γi(t) =< [xi
t] > and ξij(t) =< [xi

t, x
j
t+1] >

• So in the E-step we need to compute both
γi(t) = p(xt = i|{y}) and ξij(t) = p(xt = i, xt+1 = j|{y}).

•We can use the forwards-backwards (Shafer-Shenoy) or
Lauritzen-Spiegelhalter algorithms.



M-step: New Parameters are just
Ratios of Frequency Counts

• Initial state distribution: expected #times in state i at time 1:

π̂i = γi(1)

• Expected #transitions from state i to j which begin at time t:

ξij(t) = αi(t)SijBj(yt+1)βj(t + 1)/L

so the estimated transition probabilities are:

Ŝij =
T−1
∑

t=1

ξij(t)

/

T−1
∑

t=1

γi(t)

• The output distributions are the expected number of times we
observe a particular symbol in a particular state:

B̂j(y) =
∑

t:yt=y

γj(t)

/

T
∑

t=1

γj(t)

HMM Practicalities

•Multiple observation sequences: can be dealt with by averaging
numerators and averaging denominators in the ratios given above.

• Initialization: mixtures of Naive Bayes or mixtures of Gaussians for
the output (observation) models, left-to-right for the transition
matrix (if appropriate).

• Numerical scaling: the probability values P (Xt, y1:t) can get very
small, so normalize to get P (Xt|y1:t) or use logsum trick.

EM for general BNs

while not converged
// E-step
for each node i

ESSi = 0 // reset expected sufficient statistics
for each case m

do inference with e(m)
for each node i

ESSi+ = SS(P (Xi, Xπi|em))
// M-step
for each node i

θi := MLE(ESSi)

Partially Hidden Data

•Of course, we can learn when there are missing (hidden) variables
on some cases and not on others.

• In this case the cost function was:

`(θ;D) =
∑

complete

log p(xc,yc|θ) +
∑

missing

log
∑

y

log p(xm,y|θ)

• Now you can think of this in a new way: in the E-step we estimate
the hidden variables on the incomplete cases only.

• The M-step optimizes the log likelihood on the complete data plus
the expected likelihood on the incomplete data using the E-step.



EM Variants

• Sparse EM:
Do not recompute exactly the posterior probability on each data
point under all models, because it is almost zero.
Instead keep an “active list” which you update every once in a
while.

• Generalized (Incomplete) EM: It might be hard to find the ML
parameters in the M-step, even given the completed data. We can
still make progress by doing an M-step that improves the likelihood
a bit (e.g. gradient step).

A Report Card for EM

• Some good things about EM:

– no learning rate (step-size) parameter

– automatically enforces parameter constraints

– very fast for low dimensions

– each iteration guaranteed to improve likelihood

• Some bad things about EM:

– can get stuck in local minima

– can be slower than conjugate gradient (especially near
convergence)

– requires expensive inference step

– is a maximum likelihood/MAP method


