OUTLINE

LECTURE 12 e Latent variable models

e Maximum likelihood learning

PARAMETER LEARNING FOR BNS WITH HIDDEN NODES _ Gradient ascent

—EM

e (Bayesian learning)

Kevin Murphy

Wed 27 Oct 2004

UNOBSERVED VARIABLES PARTIALLY UNOBSERVED (MISSING) VARIABLES
e Certain variables () in our models may be unobserved, e If variables are occasionally unobserved they are missing data.
either some of the time or always, e.g. undefinied inputs, missing class labels, erroneous target values

either at training time or at test time. e Variables which are always unobserved are called /atent variables.

1 2 3 Q4 Qs Qs
o Now we maximize the likelihood of the observed data; we have to
sum out or marginalize the missing values at training or test time:
(6;D) = > logp(x,y10) + Y logp(x"|0)
complete missing
X X X X X X

= Z log p(x€,y“|0) + Z logZp ' z|0)

Graphically, we will use shading to indicate observation. complete missing

e We shall assume values are missing at random; if not, we need to
model the data censoring mechanism explicitly.

e e.g., probability we observe a medical record may depend on values
of the other attributes.

WHY 1S LEARNING HARDER?

e In fully observed iid settings, the log likelihood decomposes into a
sum of local terms (at least for directed models).

((0; D) = log p(x, z|0) = log p(z0-) + log p(x|z,)

e With latent variables, all the parameters become coupled together

via log > °():
((6:D) =log Y p(x,zl0) =1log > p(z[0.)p(x|z, 0,)

z z
X X X, X X, X
(@) (o)

MIXTURE MODELS

WHERE DO LATENT VARIABLES COME FrROM?

e Missing values can arise because something wasn't measured,
because of faulty sensors, etc.

e But we may also intentionally introduce latent variables to simplify
a model.

e Discrete latent variables can be used to partition/ cluster data into
sub-groups.

e Continuous latent variables (factors) can be used for dimensionality
reduction (PCA, etc).

e A density model p(z) may be multi-modal.

e \We may be able to model it as a mixture of uni-modal distributions
(e.g., Gaussians).

e Each mode may correspond to a different sub-population (e.g.,
male and female).

Z,

.o:o.o Z .:v‘o
o° °®a®
ot
[
o.o. o ':
[T oe
oo ® .‘/ (X
.cn :.0 o. *
0,70
X A

GAUSSIAN MIXTURE MODELS (GMMS)

e Consider a mixture of K Gaussian components:
p(Z = k) = ;. mixing weights
p(x|z = k) = N(x|ug, Xp,) class-conditional densities

()
D

o
X 3 -2 - 0 1 2 3
x

e This can be used for unsupervised clustering.

e This model (fit by AutoClass) has been used to discover new kinds
of stars in astronomical data, etc.

GAUSSIAN MIXTURE MODELS

e The posterior probability that a data point x is assigned to cluster

k is given by

e Vector quantization (VQ) = hard assignment of x to the most

p(z = k|x,0)

probable cluster.

e The log-likelihood is

(6:D) = S logp(x") = 3 log 3 ap N (x" |y,)
n n k

-, agpy(x(6;)

e These quantities are called responsibilities or soft assignments.

apr(x|0)

o We will discuss how to maximize this later.

= ri(z)

HIERARCHICAL MIXTURE OF EXPERTS

CONDITIONAL MIXTURE MODEL: MIXTURE OF EXPERTS

e We will model P(Y|X) using different experts, each responsible for
different regions of the input space.

e Latent variable Z chooses expert using softmax gating function:
P(Z = k|x) = U(QkTa:).

e Each expert can be a linear regression model:
plyle, Z = k) = N(y; 5} =, 07).

e The posterior expert responsibilities are
ap(x)pi(y %, Ok)

> aj(x)pi(ylx, 0;)

p(z=klx,y,0) =

MIXTURE OF OVERLAPPING EXPERTS

A Twe level bulanced Hierardhical Misxtiwes of Experty werdel ax . ..

st wrerdedlow Newwal Net

"

[y
Hetwork
€2
X

Ay
T g1 \
Hetorork T 1
A Hyy]

Epert Trpert
Hetweake| | Metomk

@

X X

Bayeyian Net

e This is like a soft version of a depth-2 classification/ regression tree.

e P(Y|X,Z,Z5) can be modelled as a GLIM, with parameters
dependent on the values of Z; and Z5 (which specify the path to a

given leaf in the tree).

X

Ya

x

e By removing the X — Z arc, we can make the partitions
independent of the input, thus allowing overlap.

e This is a mixture of linear regressors; each subpopulation has a
different conditional mean.

GRADIENT LEARNING FOR MIXTURE MODELS

e We can learn mixture densities using gradient descent on the log
likelihood. The gradients are quite interesting:

((6) =log p(x|6) = log > _ g (x6y,)
k

(% . 1 ka(xwk)
20 (xye)zo‘k 00

8logpk(><|9k)
Z e pk x|0p)——,——
]0
Z Pr(x10k) 00k Z (Wk
X\Q 00, 89k
e In other words, the gradlent is the responSIb/l/ty weighted sum of

the individual log likelihood gradients.

e Can pass this to a conjugate gradient routine.

LoagsuMm

PARAMETER CONSTRAINTS

e You may encounter numerical problems when computing the
log-likelihood:

0(0) = log p(x|0) = log _ aypy(x|6;)
k
since pp(x|6;.) may be extremely small.
e The class conditional log likelihoods are well-behaved:
by = log py,(x|0p,).
e But the following will underflow:

log Z elk
k

e Often we have constraints on the parameters, e.g. > ;. ap = 1,
Y. symmetric positive definite (hence ¥;; > 0).

e We can use constrained optimization, or we can reparameterize in
terms of unconstrained values.

e For discrete variables, use the softmax transform: o, = olay)
> exp(gj)
e For covariance matrices, use the Cholesky decomposition:
nl=ATA

where A is upper diagonal with positive diagonal:
Ajj=exp(ry) >0 Ajj=ay (j>i) Ajj=0 (j<i)
e The variables ¢;, 7, a;; € R are unconstrained.

: ol ot
e Use chain rule to compute 7, 77.

Loagsum

e You should use

logZebk = log (Z elk)e=Beb
k

where B = maxy, by,

e Example

log(e ™12V 47121y = 1og <6_120(60 + 6_1)> — log(e+e™ 1) —120

GRADIENT LEARNING FOR BNS WITH TABULAR CPDs

o let ka = P(XZ = j|X7Ti = k‘)

e For a fully observed case, the gradient of the likelihood is

0 0
Pxi.ny)= =110/, .,
80@]]@ (xlN) (90];[Zl,l,ll-,lﬂ-i/

ijk
= §(z; = j,xm; = k)0, ju; H Oit w1 2r,
i+ '
. Hi/ ei’,wi/,xm
= 6(x; = J, o = k)H—Z
ijk
) P(xq.
ijk

GRADIENT LEARNING FOR BNS wITH GENERAL CPDs

GRADIENT LEARNING FOR BNS WITH TABULAR CPDs

e Consider CPD P(X = z|X; = u; ¢).
e We have
O0P(e) P(X =2,X; =u,e)
OP(X =2[Xy=u) P(X =2|Xy = u)
e By the chain rule
dOP(e) Z OP(e) OP(X =z| Xz =u)
0] o OP(X =z, Xz =u) o)

e This can be used to learn noisy-OR, sigmoids, etc.

e For a partially observed case,

9, 9,
" P

ijk A
. P(xq.
= 3 blag = e)dla; = j.rr, = KL
— ijk
_ P(CI}Z :j7$7ri =]{7,6)
Oiilk

e A more complex expression can be used if ¢; ;. = 0.
e The numerator can be computed using probabilistic inference.
e A junction tree will always contain X; and Xz, in the same clique.

e For batch learning, we need to do inference for every training case
for every iteration of gradient ascent (slow!).

IDENTIFIABILITY

e A mixture model induces a multi-modal likelihood.
e Hence gradient ascent can only find a local maximum.

e Mixture models are unidentifiable, since we can always switch the
hidden labels without affecting the likelihood.

e Hence we should be careful in trying to interpret the “meaning” of
latent variables.

likelihood

/

parameter space

EXPECTATION-MAXIMIZATION (EM) ALGORITHM

COMPLETE & INCOMPLETE LOG LIKELIHOODS

e EM is an optimization strategy for objective functions that can be
interpreted as likelihoods in the presence of missing data.

e It is much simpler than gradient methods:

—No need to choose step size.
— Enforces constraints automatically.
— Calls inference and fully observed learning as subroutines.

e EM is an lIterative algorithm with two linked steps:
— E-step: fill-in hidden values using inference, p(z|x, #").

— M-step: update parameters /1! using standard MLE/MAP
method applied to completed data

e We will prove that this procedure monotonically improves /¢
(or leaves it unchanged). Thus it always converges to a local
optimum of the likelihood.

ExPECTED COMPLETE LOG LIKELIHOOD

e For any distribution ¢(z) define expected complete log likelihood:

(g(6;%) = (Le(0;%,2))g = Y q(z]x) log p(x, 7|6)

e Amazing fact: £(0) > £4(0) + H(q) because of concavity of log:

£(0;x) = log p(x0)

= logZp(x, z|0)

b 1P 210)

=1 gZZ:Q([x) q(zm /
>Zq z|x) log plx, |Z)l()9>

e Where the inequality is called Jensen's inequality.
(It is only true for distributions: »_ ¢(z) = 1; q(z) > 0.)

e Observed variables x, latent variables z, parameters 6:
0e(0;x,2) = log p(x,z|0)
is the complete log likelihood.

e Usually optimizing ¢.(6) given both z and x is straightforward.
(e.g. class conditional Gaussian fitting, linear regression)

e With z unobserved, we need the log of a marginal probability:

0(0;x) = log p(x|0) = logZp x,z|6)

which is the incomplete log likelihood.

LOWER BOUNDS AND FREE ENERGY

e For fixed data x, define a functional caIIed the free energy:

Zq z|x) log x, 2lf) < ((0)

q(zlx)

e The EM algorithm is coordinate-ascent on F"
E-step: gt = argmax, F(q,0")

M-step: o'l = argmaxy F(q¢', 6%

=4

F@e)

Q«f

M-STEP: MAXIMIZATION OF EXPECTED /.

e Note that the free energy breaks into two terms:

p(x,z|0)
Zq z|x) log 1)

—Zq z|x) log p(x, z|0) — Zq z|x) log q(z|x)
—gq(9,X)+H()

(this is where its name comes from)

e The first term is the expected complete log likelihood (energy) and
the second term, which does not depend on 6, is the entropy.

e Thus, in the M-step, maximizing with respect to 6 for fixed ¢ we
only need to consider the first term:

9+ = argmaxy l4(0; x) = argmaxy Z q(z|x) log p(x, z|0)

V4

EM CONSTRUCTS SEQUENTIAL CONVEX LOWER BOUNDS

E-STEP: INFERRING LATENT POSTERIOR

e Consider the likelihood function and the function F(g'*!,).
likelihood

\J

e Claim: the optimim setting of ¢ in the E-step is:
qt+1 - p(Z‘X, et)
e This is the posterior distribution over the latent variables given the

data and the parameters. Often we need this at test time anyway
(e.g. to perform classification).

e Proof (easy): this setting saturates the bound ¢(6;x) > F(q,0)

), %) f) (Z|X> 0")p(x|0")

= Zp z|x, 0") log p(x|6")
Z

= log p(x0") 3=, p(z|x, ")

=/((0;x) -1

e Can also show this result using variational calculus or the fact that

(0) = F(g,0) = KL{g||p(z|x, 0)]

REcaP: EM ALGORITHM

e A way of maximizing likelihood function for latent variable models.
Finds ML parameters when the original (hard) problem can be
broken up into two (easy) pieces:

1. Estimate some “missing” or “unobserved” data from observed
data and current parameters.

2. Using this “complete” data, find the maximum likelihood
parameter estimates.

e Alternate between filling in the latent variables using our best guess
(posterior) and updating the paramters based on this guess:
E-step: ¢'*! = p(z|x, 6")

M-step: 017! = argmaxy >, q(z|x) log p(x, z|6)

e In the M-step we optimize a lower bound on the likelihood.

In the E-step we close the gap, making bound=likelihood.

EXAMPLE: MIXTURES OF (GAUSSIANS

o Recall: a mixture of K Gaussians:
p(x|0) = > p N (x[pg, 2)
((6: D) = 32, log 3o N (x" | g, X

e Learning with EM algorithm:

EM ror MOG
O ’.:. L=1 ...’-... L=4 @
" A
(@) (c) (d) (e)
L=6 ...,:Q.;... L=8 ...{-b:.. L=10 @ L=12 @
& F % &7

E — step P, = N (X", 20)
t+1 t Py
Q= P(z=k[x",0") = i
2. Pkn
t+1 <"
. t+1 Zn qkn
M —step: p. = S —~
n qkn
t+1 t+1 t+1\T
gl Do Ay (X7 — iy) (X" —)T
t+1
>0 Gy

t—i—l t+1
Q. MZ Tkn

DERIVATION OF M-STEP

e Expected complete log likelihood /4(6; D):

_ 1
Z qum llog ap — —(X - ufjl) X Ix" — ,u}?rl) - §log]2%2,&1
n

e For fixed q we can optimize the parameters:

Y 1ZanX _Ulf

3uk

) Z dkn [Ek (x" — N?l)(x - Nt/fl)]
n

o, 1
s R A (A=M
S ak;%n ()

dlog|A~Y

o Fact: AT

.
= A" and % = xx!

) () (h) 0}

COMPARE: K-MEANS

e The EM algorithm for mixtures of Gaussians is just like a soft
version of the K-means algorithm.
e In the K-means “E-step” we do hard assignment:
eyt = argming(x" — 1) TS (X" — i)
o In the K-means “M-step” we update the means as the weighted
sum of the data, but now the weights are 0 or 1:

1 ley! = nlx

H, Zn[+1 _ }

n

(@) (b) © (d) (e) 0]

REMINDER: HMM GRAPHICAL MODEL

)
) ®» O D
e Hidden states {z;}, outputs {y;}

Joint probability factorizes:
T

P{x},{y}) = H (z¢[x¢—1)P(yt|ze)

= Txy H Sy H Azy(yt)
t=1 t=1

e We saw efficient recursions for computing

L=P({y}) = >qxy P{x}. {y}) and ~;(t) = P(z¢ = i[{y}).

PARAMETER ESTIMATION USING EM

BAUM-WELCH ALGORITHM: EM TRAINING

e 5;; are transition probs; state j has output distribution Bj(y)
P11 = jlor = 1) = Sj; P(x1 =j) =,
P(yt = ylzr = j) = Bj(y)
e Complete log likelihood:

T—1 T
logp(z,y) = log{mx; [I Szpaps 11 Bae(ye)}
t=1 t=1

_ el T gl]
B IOg{H w11 119 [T 11 Br(ye)™'}
' t=11ij t=1 k
T 1

Z[Xl] logm + > Y| :Uf, xt+1] log S;; + Z > xt log By (y+)

i t=1 1ij t=1 k

where the indicator [2]] = 1 if 2y = i and 0 otherwise

e For EM, we need to compute the expected complete log likelihood.

. Intuition: if only we knew the true state path then ML parameter

estimation would be trivial (MM1 on z, conditional on y).

2. But: can estimate state path using inference recursions.

3. Baum-Welch algorithm (special case of EM): estimate the states,

then compute params, then re-estimate states, and so on ...

. This works and we can prove that it always improves likelihood.

5. However: finding the ML parameters is NP complete, so initial

conditions matter a lot and convergence is hard to tell.

likelihood

/

parameter space

STATE EXPECTATIONS REQUIRED FROM THE E-STEP

e The expected complete log likelihood requires

vilt) =< [2}] > and &;(t) =< [z} 2]] >

e So in the E-step we need to compute both

%i(t) = ploe = i[{y}) and &;;(t) = p(wy = i, 2441 = FH{Y})-

e We can use the forwards-backwards (Shafer-Shenoy) or

Lauritzen-Spiegelhalter algorithms.

M-STEP: NEW PARAMETERS ARE JUST
RATIOS OF FREQUENCY COUNTS

HMM PRACTICALITIES

e Initial state distribution: expected #times in state ¢ at time 1:

7t = vi(1)

e Expected #transitions from state ¢ to j which begin at time ¢:

§ij(t) = a;(t)S;;Bj(yt41)8;(t +1)/L
so the estimated transition probabilities are:
T T-1
Sij= Y &j(t) [D lt)
t=1 t=1

e The output distributions are the expected number of times we
observe a particular symbol in a particular state:

T
Bily) = 3 () zlvj@)
t=

Lyt=y

EM FOR GENERAL BNSs

e Multiple observation sequences: can be dealt with by averaging
numerators and averaging denominators in the ratios given above.

e Initialization: mixtures of Naive Bayes or mixtures of Gaussians for
the output (observation) models, left-to-right for the transition
matrix (if appropriate).

e Numerical scaling: the probability values P(X¢, y1.+) can get very
small, so normalize to get P(X¢|y;.+) or use logsum trick.

PARTIALLY HIDDEN DATA

while not converged

// E-step
for each node i

ESS; =0 // reset expected sufficient statistics
for each case m

do inference with e(m)

for each node ¢

ESSi+ = SS(P(X;, Xx,lem))

// M-step
for each node i

0; .= MLE(ESS;)

e Of course, we can learn when there are missing (hidden) variables
on some cases and not on others.

e In this case the cost function was:
(6;D) = Y logp(xylf)+ > log> logp(x™,yl6)
complete missing y

e Now you can think of this in a new way: in the E-step we estimate
the hidden variables on the incomplete cases only.

e The M-step optimizes the log likelihood on the complete data plus
the expected likelihood on the incomplete data using the E-step.

EM VARIANTS A REPORT CARD FOR EM

e Sparse EM: e Some good things about EM:
Do. not recompute exactly the p(.)st.erior probability on each data —no learning rate (step-size) parameter
point under all models, because it is almost zero.
Instead keep an “active list” which you update every once in a
while.

e Generalized (Incomplete) EM: It might be hard to find the ML
parameters in the M-step, even given the completed data. We can

— automatically enforces parameter constraints
— very fast for low dimensions
— each iteration guaranteed to improve likelihood

e Some bad things about EM:

still make progress by doing an M-step that improves the likelihood —can get stuck in local minima
a bit (e.g. gradient step). —can be slower than conjugate gradient (especially near
convergence)

—requires expensive inference step
—is a maximum likelihood/MAP method

