LECTURE 12:

PARAMETER LEARNING FOR BNS WITH HIDDEN NODES

Kevin Murphy

Wed 27 Oct 2004

OUTLINE

e Latent variable models
e Maximum likelihood learning

— Gradient ascent

—EM

e (Bayesian learning)

UNOBSERVED VARIABLES

e Certain variables () in our models may be unobserved,
either some of the time or always,
either at training time or at test time.
0, 0, Q; Q, Qs Qs
Xl Xz X3 X4 X5 X6

Graphically, we will use shading to indicate observation.

e \We shall assume values are missing at random; if not, we need to
model the data censoring mechanism explicitly.

e c.g., probability we observe a medical record may depend on values
of the other attributes.

PARTIALLY UNOBSERVED (MISSING) VARIABLES

e If variables are occasionally unobserved they are missing data.
e.g. undefinied inputs, missing class labels, erroneous target values

e Variables which are always unobserved are called /atent variables.

e Now we maximize the likelihood of the observed data: we have to
sum out or marginalize the missing values at training or test time:

(0:D)=) logp(xy°l)+ > logp(x"|6)

complete missing

Z log p(x%, y©|0) + Z logZp ,7|0)

complete missing

WHY IS LEARNING HARDER?

e In fully observed iid settings, the log likelihood decomposes into a
sum of local terms (at least for directed models).

((0; D) = log p(x, z|0) = log p(2|02) + log p(x|z, 0)

e With latent variables, all the parameters become coupled together

via log > °():
= logZp(X,z\H logZp z|0,)p(x|z, 0,)
Z

Z Z

O O

X X> X X X5 X

(a) (b)

WHERE DO LATENT VARIABLES COME FROM?

e Missing values can arise because something wasn't measured,

because of faulty sensors, etc.

e But we may also intentionally introduce latent variables to simplify

a model.

e Discrete latent variables can be used to partition/ cluster data into

sub-groups.

e Continuous latent variables (factors) can be used for dimensionality

reduction (PCA, etc).

i

Z

MIXTURE MODELS

e A density model p(x) may be multi-modal.

e \We may be able to model it as a mixture of uni-modal distributions
(e.g., Gaussians).

e Each mode may correspond to a different sub-population (e.g.,
male and female).

Z,

GAUSSIAN MIXTURE MODELS (GMMs)

e Consider a mixture of &' Gaussian components:

p(Z = k) = aj. mixing weights
p(x|z = k) = N(x|ug, X1) class-conditional densities

0
X -3 -2 -1 0 1 2 3
X

e This can be used for unsupervised clustering.

e This model (fit by AutoClass) has been used to discover new kinds
of stars in astronomical data, etc.

(FAUSSIAN MIXTURE MODELS

e [he posterior probability that a data point x is assigned to cluster
k is given by

ol o) - _PexlOr)
p(z = k|x,0) > oy (xl6) k()

e These quantities are called responsibilities or soft assignments.

e Vector quantization (VQ) = hard assignment of = to the most
probable cluster.

e T he log-likelihood is

06;D) =) logp(x™) =) log > opN(x"|py,)
n n k

e \We will discuss how to maximize this later.

CONDITIONAL MIXTURE MODEL: MIXTURE OF EXPERTS

X.

(a)

e We will model P(Y | X)) using different experts, each responsible for
different regions of the input space.

e Latent variable Z chooses expert using softmax gating function:
P(Z =klx) = 0(6’%:5).

e Each expert can be a linear regression model:
plyle, Z = k) = N(y; B =, o).

e [he posterior expert responsibilities are
ap(x)pr(y|x, 0f)

> aj(x)p;(ylx, 0;)

p(z = k|x,y,0) =

HIERARCHICAL MIXTURE OF EXPERTS

A twe level bodenced Hierardhical Mixtiwes of Experty micdel ax . ..

oo verdd oy Mewwals Met ... Bayesicre Met

Gating L|
Metarark
£z
xT
Fadl
- &1
rating —I
Metaark
gzn
xT #y Ll
Expert Expert
Hetbarork Hebarork Hetarork Hetarork

I A A I

e This is like a soft version of a depth-2 classification/ regression tree.

e P(Y|X, 71, Zy) can be modelled as a GLIM, with parameters

dependent on the values of Z| and Z5 (which specify the path to a
given leaf in the tree).

MIXTURE OF OVERLAPPING EXPERTS

X,
&

X
X X
X
X = %
x x
X
Zon X
X

x
x X
x
¥ X X X
e X x
i
X

X

e By removing the X — Z arc, we can make the partitions
independent of the input, thus allowing overlap.

e This is a mixture of linear regressors; each subpopulation has a
different conditional mean.

(GRADIENT LEARNING FOR MIXTURE MODELS

e \We can learn mixture densities using gradient descent on the log
likelihood. The gradients are quite interesting:

£(0) = log p(x0) = log > _ appy,(x]6y,)

2
Opy. X\Qk
ae xye ZO‘
B 1 0log py(x|0)

X]@ aek 8¢9k
e In other words, the gradlent is the respons:bl/lty weighted sum of
the individual log likelihood gradients.

e Can pass this to a conjugate gradient routine.

PARAMETER CONSTRAINTS

e Often we have constraints on the parameters, e.g. > ;. ap = 1,
>J symmetric positive definite (hence YJ;; > 0).

e \We can use constrained optimization, or we can reparameterize in
terms of unconstrained values.

e For discrete variables, use the softmax transform: aj. = Zex@p}ig;a)
j J

e For covariance matrices, use the Cholesky decomposition:
nl=ATA
where A is upper diagonal with positive diagonal:
Ajj=exp(r;) >0 Ajj=ay (J>1) A;y=0 (j<i
e The variables ¢;,7;,a;; € R are unconstrained.

e Use chain rule to compute g—ﬁ, g_fl

LoGsuM

e You may encounter numerical problems when computing the
log-likelihood:

£(0) = log p(x|0) = log > _ cvgpy(x6)
k
since pr.(x|0;) may be extremely small.

e T he class conditional /og likelihoods are well-behaved:
by, = log pi.(x|0y).
e But the following will underflow:

log Z elk
k

LoGsuM

e You should use

logz e’k = log (Z e’k)e =Bl
k

where B = max;. by

e Example

log(e 1V 47121y = 1og (6_120(60 + 6_1)) — log(e"+e™1) =120

(ARADIENT LEARNING FOR BNS WITH TABULAR CPDs

o let (9@]/-6 = P(XZ =]‘Xﬂz = k)
e For a fully observed case, the gradient of the likelihood is

0 0
Plzi.n) = 0.
C{?ka <x1N> C{?ka 1;[Zlaxgaxﬁi/

(ARADIENT LEARNING FOR BNS WITH TABULAR CPDs

e For a partially observed case,

0
P P(x
00, i, e) 8«97% Z

, Plx.
- Z(S(xE =)0, = o n, = K)o
- ik
L P(xl :jaxﬂ'z' — kve)
0; ik

e A more complex expression can be used if 0;;1. = 0.
e The numerator can be computed using probabilistic inference.
e A junction tree will always contain X; and X, in the same clique.

e For batch learning, we need to do inference for every training case
for every iteration of gradient ascent (slow!).

(ARADIENT LEARNING FOR BNS wiTH GENERAL CPDs

e Consider CPD P(X = z| X = u; ¢).

e We have
O0P(e) - PX=u2,X;=u,c¢e)
OP(X =z|Xr=v) P(X =z|X; =u)

e By the chain rule

P(e) OP(X = x| X5 = u)
Z OP(X =z, X5 =u) 0P

e This can be used to learn noisy-OR, sigmoids, etc.

IDENTIFIABILITY

e A mixture model induces a multi-modal likelihood.
e Hence gradient ascent can only find a local maximum.

e Mixture models are unidentifiable, since we can always switch the
hidden labels without affecting the likelihood.

e Hence we should be careful in trying to interpret the “meaning” of
latent variables.

likelihood

/

parameter space

EXPECTATION-MAXIMIZATION (EM) ALGORITHM

e EM is an optimization strategy for objective functions that can be
interpreted as likelihoods in the presence of missing data.

e |t is much simpler than gradient methods:

— No need to choose step size.
— Enforces constraints automatically.
— Calls inference and fully observed learning as subroutines.

e EM is an Iterative algorithm with two linked steps:

— E-step: fill-in hidden values using inference, p(z|x, 6°).
— M-step: update parameters §'*! using standard MLE/MAP
method applied to completed data

e \We will prove that this procedure monotonically improves /¢
(or leaves it unchanged). Thus it always converges to a local
optimum of the likelihood.

COMPLETE & INCOMPLETE LOG LIKELIHOODS

e Observed variables x, latent variables z, parameters 6:
£0(0: x,7) = log p(x, 7]0)
Is the complete log likelihood.

e Usually optimizing £.(6) given both z and x is straightforward.
(e.g. class conditional Gaussian fitting, linear regression)

e With z unobserved, we need the log of a marginal probability:

0(0;x) = log p(x|0) = logZp X, z|6)

which is the incomplete log likelihood.

EXPECTED COMPLETE LOG LIKELIHOOD

e For any distribution ¢(z) define expected complete log likelihood:

lg(0;%) = (Le(0;%,2))q = > q(z|x) log p(x, z[0)
Z
e Amazing fact: ¢(0) > £,(6) + H(q) because of concavity of log:
£(6:) = log p(x/6)

— (;)
long ’X XZ]@) /

z|x)
>Zq Z|X) 10g XZ‘H) /

e Where the inequality is called Jensen's inequality.
(It is only true for distributions: > " q(z) = 1; ¢(z) > 0.)

LOWER BOUNDS AND FREE ENERGY

e For fixed data x, define a functional called the free energy:

p(x,z|0)
F(q,0) = q(z|x) log < /(6
00 = Zalab) " LI <40
e The EM algorithm is coordinate-ascent on F":
E-step: gt = argmax, I’ (q,0")
M-step: 'l = argmaxy F(q't,6Y)

Q (]

M-STEP: MAXIMIZATION OF EXPECTED /.

e Note that the free energy breaks into two terms:
p(x, z|0)
q(z|x) log
Z q(z|x)
—Zq z|x) log p(x, z|6) — Zq z|x) log q(z|x)

= %(9; x) + H(q)

(this is where its name comes from)

e The first term is the expected complete log likelihood (energy) and
the second term, which does not depend on 6, is the entropy.

e Thus, in the M-step, maximizing with respect to 6 for fixed g we
only need to consider the first term:

A = argmax lq(0;x) = argmaxy Z q(z|x) log p(x, z|0)
Z

E-STEP: INFERRING LATENT POSTERIOR

e Claim: the optimim setting of ¢ in the E-step is:
1
¢ = plzlx, 0")

e This is the posterior distribution over the latent variables given the
data and the parameters. Often we need this at test time anyway
(e.g. to perform classification).

e Proof (easy): this setting saturates the bound ¢(0;x) > F(q,0)

0")p(x]6")
Qt Qt (9?5 1 (Z‘Xa

= ZP z|x, 0") log p(x|0")
= log p(x|0") 3, p(z|x, 0")
=/0(0;x) -1

e Can also show this result using variational calculus or the fact that

((0) — F(q,0) = KL|q||p(z|x, 0)]

EM CONSTRUCTS SEQUENTIAL CONVEX LOWER BOUNDS

t—H7)

e Consider the likelihood function and the function F'(q
4 l1kelihood

REcaP: EM ALGORITHM

e A way of maximizing likelihood function for latent variable models.
Finds ML parameters when the original (hard) problem can be
broken up into two (easy) pieces:

1. Estimate some “missing” or “unobserved” data from observed
data and current parameters.

2. Using this “complete” data, find the maximum likelihood
parameter estimates.

e Alternate between filling in the latent variables using our best guess
(posterior) and updating the paramters based on this guess:
E-step: ¢!t = p(z|x,)

M-step: 011 = argmaxg >, q(z|x) log p(x, z|6)

e In the M-step we optimize a lower bound on the likelihood.
In the E-step we close the gap, making bound=likelihood.

EXAMPLE: MIXTURES OF (FAUSSIANS

e Recall: a mixture of K Gaussians:
p(x]0) = > apN (x| g, X)
00;D) = >, log > apN (X" g, X,)

e Learning with EM algorithm:

E — step : p’;m = N(Xn\,u}g, E}Z)
t. .t
o
q]i;;l p(z=Fk|x" Qt) = kptknt
Zj &jpkn
Z qt—l—l n
M — step : ,utkH =
Z qt—l—l
t 1 t+1 t+1N\T
2t+1 Z d;. - (_/L]:)(_/L]:)
k Z qt—l—l

ol = _Z T

EM ror MOG

L=1

(@)

(f)

9) (h)

DERIVATION OF M-STEP

e Expected complete log likelihood ¢4(6; D):

|

1

> Y llogozk—§(x — T x™ — bt)—§1og\2ﬂk\]
mn

e For fixed ¢ we can optimize the parameters:

Olg -1
6—/% =2 Z Uhen (X" — [1g,)
Z ik | SF — (" — (" — 7]

_ — M

N
and 6}%;14}(— xXx |

~Qlog|A~1 T
e Fact: 814‘—1 | _ A

COMPARE: K-MEANS

e The EM algorithm for mixtures of Gaussians is just like a soft
version of the K-means algorithm.

e In the K-means “E-step” we do hard assignment:
e = argming (x" — 1) TS (%™ — pp)

e In the K-means "M-step” we update the means as the weighted
sum of the data, but now the weights are 0 or 1:

t+1 _
1 _ Zn[" n|x"

K, Zn[t+1]

(@) (b) () (d) (e) (f)

REMINDER: HMM GRAPHICAL MODEL

e Hidden states {x;}, outputs {y;}
Joint probability factorizes:

T

P{x},{y}) = H (zt|xi—1)P(yt|xt)

= Tx H S, w41 H Azy(yt)
t=1 t=1

e \We saw efficient recursions for computing

L=P{y}) = s PUx} v} and 55(t) = Play = il{y}).

BAUM-WELCH ALGORITHM: EM TRAINING

. Intuition: if only we knew the true state path then ML parameter
estimation would be trivial (MM1 on x, conditional on y).

. But: can estimate state path using inference recursions.

. Baum-Welch algorithm (special case of EM): estimate the states,
then compute params, then re-estimate states, and so on ...

. This works and we can prove that it always improves likelihood.

5. However: finding the ML parameters is NP complete, so initial
conditions matter a lot and convergence is hard to tell.

likelihood

/

parameter space

PARAMETER ESTIMATION USING EM

e 5;; are transition probs; state j has output distribution 5;(y)
Pl 1 =jloy=1) =S Pler =j) =7
P(y: = ylze = j) = Bj(y)
e Complete log likelihood:

T—1 T
log p(,y) = log{mx, H Sy, H Bz, (yt)}
t= 1 t=1

1og{H7rX1 il [15;; sl T] By

t=1 1y t=1 k
T 1
= Z[]logwﬁ— Z thvxtﬂ] 10?53@] +szt log By(y+t)
? t=1 13 t=1 k

where the indicator [z] = 1 if 2; = i and 0 otherwise

e For EM, we need to compute the expected complete log likelihood.

STATE EXPECTATIONS REQUIRED FROM THE E-STEP

e The expected complete log likelihood requires
Yi(t) =< [gl] > and &;(t) =< [}, 2],] >
e So in the E-step we need to compute both
7i(t) = plar = il{y}) and &;;(t) = plar = i, 2¢41 = JH{Y}).
e We can use the forwards-backwards (Shafer-Shenoy) or
Lauritzen-Spiegelhalter algorithms.

M-STEP: NEW PARAMETERS ARE JUST
RATIOS OF FREQUENCY COUNTS

e |nitial state distribution: expected #times in state ¢ at time 1:
i = i(1)
e Expected #transitions from state ¢ to j which begin at time ¢:
§ij(t) = a;(t)5i;Bj(yt4+1)58;(t + 1)/ L
so the estimated transition probabilities are:
T T—1
Sii= > &i(t) [> vl(t)
t=1 t=1

e The output distributions are the expected number of times we
observe a particular symbol in a particular state:

T
Bily)= Y 7;(t) Zl’yj(t)
.

Ly+=y

HMM PRACTICALITIES

e Multiple observation sequences: can be dealt with by averaging
numerators and averaging denominators in the ratios given above.

e Initialization: mixtures of Naive Bayes or mixtures of Gaussians for
the output (observation) models, left-to-right for the transition
matrix (if appropriate).

e Numerical scaling: the probability values P(X¢,y1.+) can get very
small, so normalize to get P(X¢|y;+) or use logsum trick.

EM FOR GENERAL BNS

while not converged

// E-step
for each node 7

ESS; =0 // reset expected sufficient statistics
for each case m

do inference with e(m)

for each node 7

ESSi+ = SS(P(X;, Xr.lem))

// M-step
for each node 7

0; = MLE(ESS;)

PARTIALLY HIDDEN DATA

e Of course, we can learn when there are missing (hidden) variables
on some cases and not on others.

e |In this case the cost function was:
Uo:Dy=) logp(xylo)+) 1ongogp ", y10)
complete missing

e Now you can think of this in a new way: in the E—step we estimate
the hidden variables on the incomplete cases only.

e The M-step optimizes the log likelihood on the complete data plus
the expected likelihood on the incomplete data using the E-step.

EM VARIANTS

e Sparse EM:
Do not recompute exactly the posterior probability on each data
point under all models, because it is almost zero.
Instead keep an “active list” which you update every once in a

while.

e Generalized (Incomplete) EM: It might be hard to find the ML
parameters in the M-step, even given the completed data. We can
still make progress by doing an M-step that improves the likelihood

a bit (e.g. gradient step).

A REPORT CARD FOR EM

e Some good things about EM:

—no learning rate (step-size) parameter

— automatically enforces parameter constraints

— very fast for low dimensions

—each iteration guaranteed to improve likelihood

e Some bad things about EM:

—can get stuck in local minima

— can be slower than conjugate gradient (especially near
convergence)

— requires expensive inference step
—is a maximum likelihood/MAP method

