Lecture 12:

Parameter Learning for BNs with hidden nodes

Kevin Murphy

Wed 27 Oct 2004

Outline

- Latent variable models
- Maximum likelihood learning
- Gradient ascent
- EM
- (Bayesian learning)

Unobserved Variables

- Certain variables Q in our models may be unobserved, either some of the time or always, either at training time or at test time.

Graphically, we will use shading to indicate observation.

- We shall assume values are missing at random; if not, we need to model the data censoring mechanism explicitly.
- e.g., probability we observe a medical record may depend on values of the other attributes.

Partially Unobserved (Missing) Variables

- If variables are occasionally unobserved they are missing data. e.g. undefinied inputs, missing class labels, erroneous target values
- Variables which are always unobserved are called latent variables.
- Now we maximize the likelihood of the observed data; we have to sum out or marginalize the missing values at training or test time:

$$
\begin{aligned}
\ell(\theta ; \mathcal{D}) & =\sum_{\text {complete }} \log p\left(\mathbf{x}^{c}, \mathbf{y}^{c} \mid \theta\right)+\sum_{\text {missing }} \log p\left(\mathbf{x}^{m} \mid \theta\right) \\
& =\sum_{\text {complete }} \log p\left(\mathbf{x}^{c}, \mathbf{y}^{c} \mid \theta\right)+\sum_{\text {missing }} \log \sum_{\mathbf{z}} p\left(\mathbf{x}^{m}, \mathbf{z} \mid \theta\right)
\end{aligned}
$$

Why is Learning Harder?

- In fully observed iid settings, the log likelihood decomposes into a sum of local terms (at least for directed models).

$$
\ell(\theta ; \mathcal{D})=\log p(\mathbf{x}, \mathbf{z} \mid \theta)=\log p\left(\mathbf{z} \mid \theta_{z}\right)+\log p\left(\mathbf{x} \mid \mathbf{z}, \theta_{x}\right)
$$

- With latent variables, all the parameters become coupled together via $\log \sum()$:

$$
\ell(\theta ; \mathcal{D})=\log \sum_{\mathbf{z}} p(\mathbf{x}, \mathbf{z} \mid \theta)=\log \sum_{\mathbf{z}} p\left(\mathbf{z} \mid \theta_{z}\right) p\left(\mathbf{x} \mid \mathbf{z}, \theta_{x}\right)
$$

Where Do Latent Variables Come From?

- Missing values can arise because something wasn't measured, because of faulty sensors, etc.
- But we may also intentionally introduce latent variables to simplify a model.
- Discrete latent variables can be used to partition/ cluster data into sub-groups.
- Continuous latent variables (factors) can be used for dimensionality reduction (PCA, etc).

Mixture models

- A density model $p(x)$ may be multi-modal.
- We may be able to model it as a mixture of uni-modal distributions (e.g., Gaussians).
- Each mode may correspond to a different sub-population (e.g., male and female).

(a)

(b)

Gaussian Mixture Models (GMMs)

- Consider a mixture of K Gaussian components:

$$
\begin{aligned}
p(Z=k) & =\alpha_{k} \text { mixing weights } \\
p(\mathbf{x} \mid z=k) & =\mathcal{N}\left(\mathbf{x} \mid \mu_{k}, \Sigma_{k}\right) \text { class-conditional densities }
\end{aligned}
$$

- This can be used for unsupervised clustering.
- This model (fit by AutoClass) has been used to discover new kinds of stars in astronomical data, etc.

Gaussian Mixture Models

- The posterior probability that a data point x is assigned to cluster k is given by

$$
p(z=k \mid \mathbf{x}, \theta)=\frac{\alpha_{k} p_{k}\left(\mathbf{x} \mid \theta_{k}\right)}{\sum_{j} \alpha_{j} p_{j}\left(\mathbf{x} \mid \theta_{j}\right)}=r_{k}(x)
$$

- These quantities are called responsibilities or soft assignments.
- Vector quantization $(V Q)=$ hard assignment of x to the most probable cluster.
- The log-likelihood is

$$
\ell(\theta ; \mathcal{D})=\sum_{n} \log p\left(\mathbf{x}^{n}\right)=\sum_{n} \log \sum_{k} \alpha_{k} \mathcal{N}\left(\mathbf{x}^{n} \mid \mu_{k}, \Sigma_{k}\right)
$$

- We will discuss how to maximize this later.

Conditional mixture model: Mixture of experts

- We will model $P(Y \mid X)$ using different experts, each responsible for different regions of the input space.
- Latent variable Z chooses expert using softmax gating function: $P(Z=k \mid x)=\sigma\left(\theta_{k}^{T} x\right)$.
- Each expert can be a linear regression model:

$$
p(y \mid x, Z=k)=\mathcal{N}\left(y ; \beta_{k}^{T} x, \sigma_{k}^{2}\right) .
$$

- The posterior expert responsibilities are

$$
p(z=k \mid \mathbf{x}, \mathbf{y}, \theta)=\frac{\alpha_{k}(\mathbf{x}) p_{k}\left(\mathbf{y} \mid \mathbf{x}, \theta_{k}\right)}{\sum_{j} \alpha_{j}(\mathbf{x}) p_{j}\left(\mathbf{y} \mid \mathbf{x}, \theta_{j}\right)}
$$

Hierarchical mixture of experts

- This is like a soft version of a depth-2 classification/ regression tree.
- $P\left(Y \mid X, Z_{1}, Z_{2}\right)$ can be modelled as a GLIM, with parameters dependent on the values of Z_{1} and Z_{2} (which specify the path to a given leaf in the tree).

Mixture of overlapping Experts

- By removing the $X \rightarrow Z$ arc, we can make the partitions independent of the input, thus allowing overlap.
- This is a mixture of linear regressors; each subpopulation has a different conditional mean.

GRADIENT LEARNING FOR MIXTURE MODELS

- We can learn mixture densities using gradient descent on the log likelihood. The gradients are quite interesting:

$$
\begin{aligned}
\ell(\theta) & =\log p(\mathbf{x} \mid \theta)=\log \sum_{k} \alpha_{k} p_{k}\left(\mathbf{x} \mid \theta_{k}\right) \\
\frac{\partial \ell}{\partial \theta} & =\frac{1}{p(\mathbf{x} \mid \theta)} \sum_{k} \alpha_{k} \frac{\partial p_{k}\left(\mathbf{x} \mid \theta_{k}\right)}{\partial \theta} \\
& =\sum_{k} \alpha_{k} \frac{1}{p(\mathbf{x} \mid \theta)} p_{k}\left(\mathbf{x} \mid \theta_{k}\right) \frac{\partial \log p_{k}\left(\mathbf{x} \mid \theta_{k}\right)}{\partial \theta} \\
& =\sum_{k} \alpha_{k} \frac{p_{k}\left(\mathbf{x} \mid \theta_{k}\right)}{p(\mathbf{x} \mid \theta)} \frac{\partial \ell_{k}}{\partial \theta_{k}}=\sum_{k} r_{k} \frac{\partial \ell_{k}}{\partial \theta_{k}}
\end{aligned}
$$

- In other words, the gradient is the responsibility weighted sum of the individual log likelihood gradients.
- Can pass this to a conjugate gradient routine.

Parameter Constraints

- Often we have constraints on the parameters, e.g. $\sum_{k} \alpha_{k}=1$, Σ symmetric positive definite (hence $\Sigma_{i i}>0$).
- We can use constrained optimization, or we can reparameterize in terms of unconstrained values.
- For discrete variables, use the softmax transform: $\alpha_{k}=\frac{\exp \left(q_{k}\right)}{\sum_{j} \exp \left(q_{j}\right)}$
- For covariance matrices, use the Cholesky decomposition:

$$
\Sigma^{-1}=A^{\top} A
$$

where A is upper diagonal with positive diagonal:

$$
A_{i i}=\exp \left(r_{i}\right)>0 \quad A_{i j}=a_{i j} \quad(j>i) \quad A_{i j}=0 \quad(j<i)
$$

- The variables $q_{i}, r_{i}, a_{i j} \in \mathbb{R}$ are unconstrained.
- Use chain rule to compute $\frac{\partial \ell}{\partial \alpha}, \frac{\partial \ell}{\partial A}$.

Logsum

- You may encounter numerical problems when computing the log-likelihood:

$$
\ell(\theta)=\log p(\mathbf{x} \mid \theta)=\log \sum_{k} \alpha_{k} p_{k}\left(\mathbf{x} \mid \theta_{k}\right)
$$

since $p_{k}\left(\mathbf{x} \mid \theta_{k}\right)$ may be extremely small.

- The class conditional log likelihoods are well-behaved: $b_{k}=\log p_{k}\left(\mathbf{x} \mid \theta_{k}\right)$.
- But the following will underflow:

$$
\log \sum_{k} e^{b_{k}}
$$

Logsum

- You should use

$$
\begin{aligned}
\log \sum_{k} e^{b_{k}} & =\log \left[\left(\sum_{k} e^{b_{k}}\right) e^{-B} e^{B}\right] \\
& =\log \left[\left(\sum_{k} e^{b_{k}-B}\right) e^{B}\right] \\
& =\left[\log \left(\sum_{k} e^{b_{k}-B}\right)\right]+B
\end{aligned}
$$

where $B=\max _{k} b_{k}$

- Example
$\log \left(e^{-120}+e^{-121}\right)=\log \left(e^{-120}\left(e^{0}+e^{-1}\right)\right)=\log \left(e^{0}+e^{-1}\right)-120$
- Let $\theta_{i j k}=P\left(X_{i}=j \mid X_{\pi_{i}}=k\right)$.
- For a fully observed case, the gradient of the likelihood is

$$
\begin{aligned}
\frac{\partial}{\partial \theta_{i j k}} P\left(x_{1: N}\right) & =\frac{\partial}{\partial \theta_{i j k}} \prod_{i^{\prime}} \theta_{i^{\prime}, x_{i}^{\prime}, x_{i^{\prime}}} \\
& =\delta\left(x_{i}=j, x_{\pi_{i}}=k\right) \theta_{i j k} \prod_{i^{\prime} \neq i} \theta_{i^{\prime}, x_{i^{\prime}}, x_{\pi_{i^{\prime}}}} \\
& =\delta\left(x_{i}=j, x_{\pi_{i}}=k\right) \frac{\prod_{i^{\prime}} \theta_{i^{\prime}, x_{i^{\prime}}, x_{\pi_{i^{\prime}}}}}{\theta_{i j k}} \\
& =\delta\left(x_{i}=j, x_{\pi_{i}}=k\right) \frac{P\left(x_{1: N}\right)}{\theta_{i j k}}
\end{aligned}
$$

- For a partially observed case,

$$
\begin{aligned}
\frac{\partial}{\partial \theta_{i j k}} P(e) & =\frac{\partial}{\partial \theta_{i j k}} \sum_{x: x(E)=e} P(x) \\
& =\sum_{x} \delta\left(x_{E}=e\right) \delta\left(x_{i}=j, x_{\pi_{i}}=k\right) \frac{P\left(x_{1: N}\right)}{\theta_{i j k}} \\
& =\frac{P\left(x_{i}=j, x_{\pi_{i}}=k, e\right)}{\theta_{i j k}}
\end{aligned}
$$

- A more complex expression can be used if $\theta_{i j k}=0$.
- The numerator can be computed using probabilistic inference.
- A junction tree will always contain X_{i} and $X_{\pi_{i}}$ in the same clique.
- For batch learning, we need to do inference for every training case for every iteration of gradient ascent (slow!).
- Consider CPD $P\left(X=x \mid X_{\pi}=u ; \phi\right)$.
- We have

$$
\frac{\partial P(e)}{\partial P\left(X=x \mid X_{\pi}=u\right)}=\frac{P\left(X=x, X_{\pi}=u, e\right)}{P\left(X=x \mid X_{\pi}=u\right)}
$$

- By the chain rule

$$
\frac{\partial P(e)}{\partial \phi}=\sum_{x, u} \frac{\partial P(e)}{\partial P\left(X=x, X_{\pi}=u\right)} \frac{\partial P\left(X=x \mid X_{\pi}=u\right)}{\partial \phi}
$$

- This can be used to learn noisy-OR, sigmoids, etc.

IDENTIFIABILITY

- A mixture model induces a multi-modal likelihood.
- Hence gradient ascent can only find a local maximum.
- Mixture models are unidentifiable, since we can always switch the hidden labels without affecting the likelihood.
- Hence we should be careful in trying to interpret the "meaning" of latent variables.

Expectation-Maximization (EM) Algorithm

- EM is an optimization strategy for objective functions that can be interpreted as likelihoods in the presence of missing data.
- It is much simpler than gradient methods:
- No need to choose step size.
- Enforces constraints automatically.
- Calls inference and fully observed learning as subroutines.
- EM is an Iterative algorithm with two linked steps:
- E-step: fill-in hidden values using inference, $p\left(\mathbf{z} \mid \mathbf{x}, \theta^{t}\right)$.
- M-step: update parameters θ^{t+1} using standard MLE/MAP method applied to completed data
- We will prove that this procedure monotonically improves ℓ (or leaves it unchanged). Thus it always converges to a local optimum of the likelihood.

Complete \& Incomplete Log Likelihoods

- Observed variables \mathbf{x}, latent variables \mathbf{z}, parameters θ :

$$
\ell_{c}(\theta ; \mathbf{x}, \mathbf{z})=\log p(\mathbf{x}, \mathbf{z} \mid \theta)
$$

is the complete log likelihood.

- Usually optimizing $\ell_{c}(\theta)$ given both \mathbf{z} and \mathbf{x} is straightforward. (e.g. class conditional Gaussian fitting, linear regression)
- With z unobserved, we need the log of a marginal probability:

$$
\ell(\theta ; \mathbf{x})=\log p(\mathbf{x} \mid \theta)=\log \sum_{\mathbf{z}} p(\mathbf{x}, \mathbf{z} \mid \theta)
$$

which is the incomplete log likelihood.

Expected Complete Log Likelihood

- For any distribution $q(\mathbf{z})$ define expected complete log likelihood:

$$
\ell_{q}(\theta ; \mathbf{x})=\left\langle\ell_{c}(\theta ; \mathbf{x}, \mathbf{z})\right\rangle_{q} \equiv \sum_{\mathbf{z}} q(\mathbf{z} \mid \mathbf{x}) \log p(\mathbf{x}, \mathbf{z} \mid \theta)
$$

- Amazing fact: $\ell(\theta) \geq \ell_{q}(\theta)+\mathcal{H}(q)$ because of concavity of log:

$$
\begin{aligned}
\ell(\theta ; \mathbf{x}) & =\log p(\mathbf{x} \mid \theta) \\
& =\log \sum_{\mathbf{z}} p(\mathbf{x}, \mathbf{z} \mid \theta) \\
& =\log \sum_{\mathbf{z}} q(\mathbf{z} \mid \mathbf{x}) \frac{p(\mathbf{x}, \mathbf{z} \mid \theta)}{q(\mathbf{z} \mid \mathbf{x})} \\
& \geq \sum_{\mathbf{z}} q(\mathbf{z} \mid \mathbf{x}) \log \frac{p(\mathbf{x}, \mathbf{z} \mid \theta)}{q(\mathbf{z} \mid \mathbf{x})}
\end{aligned}
$$

- Where the inequality is called Jensen's inequality.
(It is only true for distributions: $\sum q(\mathbf{z})=1 ; q(\mathbf{z})>0$.)

Lower Bounds and Free Energy

- For fixed data \mathbf{x}, define a functional called the free energy:

$$
F(q, \theta) \equiv \sum_{\mathbf{z}} q(\mathbf{z} \mid \mathbf{x}) \log \frac{p(\mathbf{x}, \mathbf{z} \mid \theta)}{q(\mathbf{z} \mid \mathbf{x})} \quad \leq \ell(\theta)
$$

- The EM algorithm is coordinate-ascent on F :

$$
\begin{array}{lll}
\text { E-step: } & q^{t+1}=\operatorname{argmax}_{q} & F\left(q, \theta^{t}\right) \\
\text { M-step: } & \theta^{t+1}=\operatorname{argmax}_{\theta} & F\left(q^{t+1}, \theta^{t}\right)
\end{array}
$$

M-STEP: MAXIMIZATION OF EXPECTED ℓ_{c}

- Note that the free energy breaks into two terms:

$$
\begin{aligned}
F(q, \theta) & =\sum_{\mathbf{z}} q(\mathbf{z} \mid \mathbf{x}) \log \frac{p(\mathbf{x}, \mathbf{z} \mid \theta)}{q(\mathbf{z} \mid \mathbf{x})} \\
& =\sum_{\mathbf{z}} q(\mathbf{z} \mid \mathbf{x}) \log p(\mathbf{x}, \mathbf{z} \mid \theta)-\sum_{\mathbf{z}} q(\mathbf{z} \mid \mathbf{x}) \log q(\mathbf{z} \mid \mathbf{x}) \\
& =\ell_{q}(\theta ; \mathbf{x})+\mathcal{H}(q)
\end{aligned}
$$

(this is where its name comes from)

- The first term is the expected complete log likelihood (energy) and the second term, which does not depend on θ, is the entropy.
- Thus, in the M -step, maximizing with respect to θ for fixed q we only need to consider the first term:

$$
\theta^{t+1}=\operatorname{argmax}_{\theta} \ell_{q}(\theta ; \mathbf{x})=\operatorname{argmax}_{\theta} \sum_{\mathbf{z}} q(\mathbf{z} \mid \mathbf{x}) \log p(\mathbf{x}, \mathbf{z} \mid \theta)
$$

E-STEP: INFERRING LATENT POSTERIOR

- Claim: the optimim setting of q in the E-step is:

$$
q^{t+1}=p\left(\mathbf{z} \mid \mathbf{x}, \theta^{t}\right)
$$

- This is the posterior distribution over the latent variables given the data and the parameters. Often we need this at test time anyway (e.g. to perform classification).
- Proof (easy): this setting saturates the bound $\ell(\theta ; \mathbf{x}) \geq F(q, \theta)$

$$
\begin{aligned}
F\left(p\left(\mathbf{z} \mid \mathbf{x}, \theta^{t}\right), \theta^{t}\right) & =\sum_{\mathbf{z}} p\left(\mathbf{z} \mid \mathbf{x}, \theta^{t}\right) \log \frac{p\left(\mathbf{z} \mid \mathbf{x}, \theta^{t}\right) p\left(\mathbf{x} \mid \theta^{t}\right)}{p\left(\mathbf{z} \mid \mathbf{x}, \theta^{t}\right)} \\
& =\sum_{\mathbf{z}} p\left(\mathbf{z} \mid \mathbf{x}, \theta^{t}\right) \log p\left(\mathbf{x} \mid \theta^{t}\right) \\
& =\log p\left(\mathbf{x} \mid \theta^{t}\right) \sum_{\mathbf{z}} p\left(\mathbf{z} \mid \mathbf{x}, \theta^{t}\right) \\
& =\ell(\theta ; \mathbf{x}) \cdot 1
\end{aligned}
$$

- Can also show this result using variational calculus or the fact that $\ell(\theta)-F(q, \theta)=\operatorname{KL}[q \| p(\mathbf{z} \mid \mathbf{x}, \theta)]$

EM Constructs Sequential Convex Lower Bounds

- Consider the likelihood function and the function $F\left(q^{t+1}, \cdot\right)$.

Recap: EM Algorithm

- A way of maximizing likelihood function for latent variable models. Finds ML parameters when the original (hard) problem can be broken up into two (easy) pieces:

1. Estimate some "missing" or "unobserved" data from observed data and current parameters.
2. Using this "complete" data, find the maximum likelihood parameter estimates.

- Alternate between filling in the latent variables using our best guess (posterior) and updating the paramters based on this guess:
E-step: $q^{t+1}=p\left(\mathbf{z} \mid \mathbf{x}, \theta^{t}\right)$
M-step: $\theta^{t+1}=\operatorname{argmax}_{\theta} \sum_{\mathbf{z}} q(\mathbf{z} \mid \mathbf{x}) \log p(\mathbf{x}, \mathbf{z} \mid \theta)$
- In the M-step we optimize a lower bound on the likelihood. In the E-step we close the gap, making bound=likelihood.

Example: Mixtures of Gaussians

- Recall: a mixture of K Gaussians:

$$
\begin{aligned}
& p(\mathbf{x} \mid \theta)=\sum_{k} \alpha_{k} \mathcal{N}\left(\mathbf{x} \mid \mu_{k}, \Sigma_{k}\right) \\
& \ell(\theta ; \mathcal{D})=\sum_{n} \log \sum_{k} \alpha_{k} \mathcal{N}\left(\mathbf{x}^{n} \mid \mu_{k}, \Sigma_{k}\right)
\end{aligned}
$$

- Learning with EM algorithm:

$$
\begin{aligned}
\text { E-step : } & p_{k n}^{t} \\
=q_{k n}^{t+1} & =p\left(z=k\left|\mathbf{x}^{n}\right| \mu_{k}^{t}, \Sigma_{k}^{t}\right) \\
\mathbf{M}-\text { step }: & \left.\theta^{t}\right)=\frac{\alpha_{k}^{t} p_{k n}^{t}}{\sum_{j} \alpha_{j}^{t} p_{k n}^{t}} \\
\Sigma_{k}^{t+1} & =\frac{\sum_{n} q_{k n}^{t+1} \mathbf{x}^{n}}{\sum_{n} q_{k n}^{t+1}} \\
\alpha_{k}^{t+1} & =\frac{\sum_{k n}\left(\mathbf{x}^{n}-\mu_{k}^{t+1}\right)\left(\mathbf{x}^{n}-\mu_{k}^{t+1}\right)^{\top}}{\sum_{n} q_{k n}^{t+1}} q_{k n}^{t+1}
\end{aligned}
$$

EM FOR MOG

Derivation of M-step

- Expected complete log likelihood $\ell_{q}(\theta ; \mathcal{D})$:

$$
\sum_{n} \sum_{k} q_{k n}\left[\log \alpha_{k}-\frac{1}{2}\left(\mathbf{x}^{n}-\mu_{k}^{t+1}\right)^{\top} \Sigma_{k}^{-1}\left(\mathbf{x}^{n}-\mu_{k}^{t+1}\right)-\frac{1}{2} \log \left|2 \pi \Sigma_{k}\right|\right]
$$

- For fixed q we can optimize the parameters:

$$
\begin{aligned}
\frac{\partial \ell_{q}}{\partial \mu_{k}} & =\Sigma_{k}^{-1} \sum_{n} q_{k n}\left(\mathbf{x}^{n}-\mu_{k}\right) \\
\frac{\partial \ell_{q}}{\partial \Sigma_{k}^{-1}} & =\frac{1}{2} \sum_{n} q_{k n}\left[\Sigma_{k}^{\top}-\left(\mathbf{x}^{n}-\mu_{k}^{t+1}\right)\left(\mathbf{x}^{n}-\mu_{k}^{t+1}\right)^{\top}\right] \\
\frac{\partial \ell_{q}}{\partial \alpha_{k}} & =\frac{1}{\alpha_{k}} \sum_{n} q_{k n}-\lambda \quad(\lambda=M)
\end{aligned}
$$

- Fact: $\frac{\partial \log \left|A^{-1}\right|}{\partial A^{-1}}=A^{\top}$ and $\frac{\partial \mathbf{x}^{\top} A \mathbf{x}}{\partial A}=\mathbf{x} \mathbf{x}^{\top}$

Compare: K-means

- The EM algorithm for mixtures of Gaussians is just like a soft version of the K-means algorithm.
- In the K-means "E-step" we do hard assignment:

$$
c_{n}^{t+1}=\operatorname{argmin}_{k}\left(\mathbf{x}^{n}-\mu_{k}^{t}\right)^{\top} \Sigma_{k}^{-1}\left(\mathbf{x}^{n}-\mu_{k}^{t}\right)
$$

- In the K-means "M-step" we update the means as the weighted sum of the data, but now the weights are 0 or 1 :

$$
\mu_{k}^{t+1}=\frac{\sum_{n}\left[c_{k}^{t+1}=n\right] \mathbf{x}^{n}}{\sum_{n}\left[c_{k}^{t+1}=n\right]}
$$

(d)

(e)

(f)

Reminder: HMM Graphical Model

- Hidden states $\left\{x_{t}\right\}$, outputs $\left\{\mathbf{y}_{t}\right\}$ Joint probability factorizes:

$$
\begin{aligned}
\mathrm{P}(\{\mathbf{x}\},\{\mathbf{y}\}) & =\prod_{t=1}^{T} \mathrm{P}\left(x_{t} \mid \mathbf{x}_{t-1}\right) \mathrm{P}\left(\mathbf{y}_{t} \mid x_{t}\right) \\
& =\pi_{\mathbf{x}_{1}} \prod_{t=1}^{T-1} S_{x_{t}, x_{t+1}} \prod_{t=1}^{T} A_{x_{t}}\left(\mathbf{y}_{t}\right)
\end{aligned}
$$

- We saw efficient recursions for computing
$L=\mathrm{P}(\{\mathbf{y}\})=\sum_{\{\mathbf{x}\}} \mathrm{P}(\{\mathbf{x}\},\{\mathbf{y}\})$ and $\gamma_{i}(t)=\mathrm{P}\left(x_{t}=i \mid\{\mathbf{y}\}\right)$.

Baum-Welch Algorithm: EM Training

1. Intuition: if only we knew the true state path then ML parameter estimation would be trivial (MM1 on x, conditional on y).
2. But: can estimate state path using inference recursions.
3. Baum-Welch algorithm (special case of EM): estimate the states, then compute params, then re-estimate states, and so on ...
4. This works and we can prove that it always improves likelihood.
5. However: finding the ML parameters is NP complete, so initial conditions matter a lot and convergence is hard to tell.

Parameter Estimation using EM

- $S_{i j}$ are transition probs; state j has output distribution $B_{j}(\mathbf{y})$

$$
\begin{aligned}
\mathrm{P}\left(x_{t+1}=j \mid x_{t}=i\right) & =S_{i j} \quad \mathrm{P}\left(x_{1}=j\right)=\pi_{j} \\
\mathrm{P}\left(\mathbf{y}_{t}=y \mid x_{t}=j\right) & =B_{j}(y)
\end{aligned}
$$

- Complete log likelihood:

$$
\begin{aligned}
& \log p(x, y)=\log \left\{\pi_{\mathbf{x}_{1}} \prod_{t=1}^{T-1} S_{x_{t}, x_{t+1}} \prod_{t=1}^{T} B_{x_{t}}\left(\mathbf{y}_{t}\right)\right\} \\
&=\log \left\{\prod_{i} \pi_{i}^{\left[\mathbf{x}_{1}^{i}\right]} \prod_{t=1}^{T-1} \prod_{i j} S_{i j}^{\left[x_{t}^{i}, x_{t+1}^{j}\right]} \prod_{t=1}^{T} \prod_{k} B_{k}\left(\mathbf{y}_{t}\right)^{\left[\mathbf{x}_{t}^{k}\right]}\right\} \\
&=\sum_{i}\left[\mathbf{x}_{1}^{i}\right] \log \pi_{i}+\sum_{t=1}^{T-1} \sum_{i j}\left[x_{t}^{i}, x_{t+1}^{j}\right] \log S_{i j}+\sum_{t=1}^{T} \sum_{k}\left[x_{t}^{k}\right] \log B_{k}\left(\mathbf{y}_{t}\right)
\end{aligned}
$$

where the indicator $\left[x_{t}^{i}\right]=1$ if $x_{t}=i$ and 0 otherwise

- For EM, we need to compute the expected complete log likelihood.

State expectations Required from the E-Step

- The expected complete log likelihood requires

$$
\gamma_{i}(t)=<\left[x_{t}^{i}\right]>\quad \text { and } \quad \xi_{i j}(t)=<\left[x_{t}^{i}, x_{t+1}^{j}\right]>
$$

- So in the E-step we need to compute both

$$
\gamma_{i}(t)=p\left(x_{t}=i \mid\{\mathbf{y}\}\right) \text { and } \xi_{i j}(t)=p\left(x_{t}=i, x_{t+1}=j \mid\{\mathbf{y}\}\right)
$$

- We can use the forwards-backwards (Shafer-Shenoy) or Lauritzen-Spiegelhalter algorithms.

M-step: New Parameters are Just Ratios of Frequency Counts

- Initial state distribution: expected \#times in state i at time 1 :

$$
\hat{\pi}_{i}=\gamma_{i}(1)
$$

- Expected \#transitions from state i to j which begin at time t :

$$
\xi_{i j}(t)=\alpha_{i}(t) S_{i j} B_{j}\left(\mathbf{y}_{t+1}\right) \beta_{j}(t+1) / L
$$

so the estimated transition probabilities are:

$$
\hat{S}_{i j}=\sum_{t=1}^{T-1} \xi_{i j}(t) / \sum_{t=1}^{T-1} \gamma_{i}(t)
$$

- The output distributions are the expected number of times we observe a particular symbol in a particular state:

$$
\hat{B}_{j}(y)=\sum_{t: \mathbf{y}_{t}=y} \gamma_{j}(t) / \sum_{t=1}^{T} \gamma_{j}(t)
$$

HMM Practicalities

- Multiple observation sequences: can be dealt with by averaging numerators and averaging denominators in the ratios given above.
- Initialization: mixtures of Naive Bayes or mixtures of Gaussians for the output (observation) models, left-to-right for the transition matrix (if appropriate).
- Numerical scaling: the probability values $P\left(X_{t}, y_{1: t}\right)$ can get very small, so normalize to get $P\left(X_{t} \mid y_{1: t}\right)$ or use logsum trick.

EM for general BNs

while not converged
// E-step
for each node i
$E S S_{i}=0 / /$ reset expected sufficient statistics
for each case m
do inference with $e(m)$
for each node i
$E S S_{i}+=S S\left(P\left(X_{i}, X_{\pi_{i}} \mid e_{m}\right)\right)$
// M-step
for each node i

$$
\theta_{i}:=M L E\left(E S S_{i}\right)
$$

Partially Hidden Data

- Of course, we can learn when there are missing (hidden) variables on some cases and not on others.
- In this case the cost function was:

$$
\ell(\theta ; \mathcal{D})=\sum_{\text {complete }} \log p\left(\mathbf{x}^{c}, \mathbf{y}^{c} \mid \theta\right)+\sum_{\text {missing }} \log \sum_{\mathbf{y}} \log p\left(\mathbf{x}^{m}, \mathbf{y} \mid \theta\right)
$$

- Now you can think of this in a new way: in the E-step we estimate the hidden variables on the incomplete cases only.
- The M-step optimizes the log likelihood on the complete data plus the expected likelihood on the incomplete data using the E-step.

EM Variants

- Sparse EM:

Do not recompute exactly the posterior probability on each data point under all models, because it is almost zero. Instead keep an "active list" which you update every once in a while.

- Generalized (Incomplete) EM: It might be hard to find the ML parameters in the M -step, even given the completed data. We can still make progress by doing an M-step that improves the likelihood a bit (e.g. gradient step).

A Report Card for EM

- Some good things about EM:
- no learning rate (step-size) parameter
- automatically enforces parameter constraints
- very fast for low dimensions
- each iteration guaranteed to improve likelihood
- Some bad things about EM:
- can get stuck in local minima
- can be slower than conjugate gradient (especially near convergence)
- requires expensive inference step
- is a maximum likelihood/MAP method

