LECTURE 11:

BAYESIAN PARAMETER LEARNING

Kevin Murphy

October 25, 2004

ExaMPLE: A DIRECTED MODEL

MLE FOR GENERAL BAYES NETS

e Consider the distribution defined by the DAGM:
p(x]0) = p(x1]01)p(x2]x1, 02)p(x3]x1, 03)p(x4]x2, X3, 04)

e This is exactly like learning four separate small DAGMs, each of

which consists of a node and its parents.
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e If we assume the parameters for each CPD are globally independent,
and all nodes are fully observed, then the log-likelihood function
decomposes into a sum of local terms, one per node:

logp(D|0) = logHHp X" [Xr;, 0;) ZZlogp X" |Xz;, 0;)

MLE FOR BAYES NETS WITH TABULAR CPDs

e Assume each CPD is represented as a table (multinomial) where

lef
91]]{: = P( = JlXﬂ-y = k)

e The sufficient statistics are just counts of family configurations
def .
zyk_zf —J,X%L:/f)
e The log-likelihood is
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e Using a Lagrange multiplier to enforce so Zj 0ij1 = 1 we get
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TIED PARAMETERS
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e Consider a time-invariant hidden Markov model (HMM)
— State transition matrix A(3, j) dof P(Xy = j| X1 =1),
— Discrete observation matrix B(i, ) oot P(Y; = j| Xt =1)
— State prior 7 (¢ ) = P(X1 =1).
The joint is

T T
P(Xyp,Yirl0) = P(X1|m) [ [ POXel X1, A) [ POYGIXS; B
t=2 t=1

LEARNING A MARKOV CHAIN TRANSITION MATRIX

e Define A(7,5) = P(Xy = j| Xy—1 =1).
o Ais a stochastic matrix: -, A(i, j) = 1
e Each row of A is multinomial distribution.
e So MLE is the fraction of transitions from 7 to j
Ay (i j) = #i—J ZmZtTQ (X =4, X" =)
Y=k ZmZtQ I(X{" ) =1)

o If the states X represent words, this is called a bigram language
model.

e Note that AML(z',j) = 0 if the particular 7, j pair did not occur in
the training data; this is called the sparse data problem.

e We will solve this using a prior.

LEARNING A FULLY OBSERVED HMM
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e The log-likelihood is
((6: D) = log P(X| = z{'|r)

m
T T

+Y P(Xp =" Xy = 2" |, A) + > P(Y; = y"| X = ", B)

t=2 t=1

e We can optimize each parameter (A, B, 7) separately.

DIRICHLET PRIORS

elet X € {1,..., K} have a multinomial distribution

P(x|0) = o] X pl XD gl XK
o For a set of data X1, ..., X%, the sufficient statistics are the counts

Nj = Zn[(Xn = Z)

e Consider a Dirichlet prior with hyperparameters a

1 - —1 —1
p(0la) = D(0la) = m . 9?1 I 932 .. .9}?

where Z(«) is the normalizing constant

e The Dirichlet prior is conjugate to (has the same form as) the multi-
nomial likelihood.

e The . act like pseudo (virtual) counts.



NORMALIZATION CONSTANT

e Z(«) is the normalizing constant

Z(a) = /~--/0?1_1~~-0?(K_1d91~--d9[(
I'( i}ilai)

K
[Tiz Tlev)
o ['(0) is the gamma function:

o
F(a):/ 1 tetat
0

e For integers, I'(n + 1) = n!

HIERARCHICAL BAYESIAN MODELS

DIRICHLET POSTERIOR

e () are the parameters for the likelihood p(X0)
e o are the parameters for the prior p(0|«).
e We can have hyper-hyper-parameters, etc.

e We stop when the choice of hyper’’-parameters makes no difference
to the marginal likelihood; typically make hyper-parameters con-
stants.

e Type-Il maximum likelihood (empirical Bayes) = computing point
estimates of «:

Gy = arg max p(d|
o

=t

) = arg max p(N]@)p(d@)

O

e Likelihood, prior, posterior:
s N,
P(N|6) = []0;"

1=1

1 _ o _
p(6la) = D(Bla) = —— - 67171 o521 goK!

Z(a)
T 1 a1+N O‘K+Nk
p(OIN, @) = ———— Mty
Z(a)p(Nla) ' K

= D(ay + Ny,...,ax + Ng)

e Marginal likelihood (evidence):

BETA PRIORS

e Consider a coin toss X € {h,t}.
e The Dirichlet distribution becomes the beta distribution:

pl6) = 7t =0

e If aj, = ay = 1, we have a uniform (Laplace) prior.

e The posterior mean (predicted probability of heads) is
1
PIX = Hap,ar) = [ do POX = 116)p(0)
0

ap

1
— [ db 0p(6) =
/0 p(6) p——

e Hence «, is the number of virtual heads we have seen in our prior
“database”; similarly for ay.

e The strength of the prior is measured by the equivalent sample size
ap + ag.



SEQUENTIAL BAYESIAN UPDATING

e Start with beta prior p(0|ay,, ar) = B(0; oy, ).
e Observe N trials with N, heads and V; tails. Posterior becomes
p(0|01h, ai, Nha Nt) = B(Q, op + Nh? ot + Nt) - B(9~ O‘;La 042)
e Observe another N’ trials with N,’z heads and fo tails. Posterior
becomes
I 1 oA Al o . /
p<9|04h, Oy, Nh’ Nt) = 8(97 Oéh + Nh’ Oy + Nt)
= B(0; oy, + N + Ny, oy + Ny + Nj)

e So sequentially absorbing data in any order is equivalent to batch
update.

EFFECT OF PRIOR STRENGTH

e Suppose we have a uniform prior a;L = Oz;e = 0.5, and we observe

Ny =3 Nt =T.
e Weak prior N/ = 2. Posterior prediction:
3+1 1

P(X =hloy,=1,0;=1,N, =3, Ny =T)=——— =~ ~0.33

3+1+7+1 3
e Strong prior N/ = 20. Posterior prediction:
3+ 10 13
3+10+7+10 30
e However, if we have enough data, it washes away the prior. e.g.,
N, = 300, Ny = 700. Estimates are 1300000112 and 1300000112%, both of
which are close to 0.3

~ (0.43

EFFECT OF PRIOR STRENGTH

o Let N = Nj, + N; be number of samples (observations).

e Let N/ be the number of pseudo observations (strength of prior) and
define the prior means

ap = N’a?b, o = N’aé, a;L + 04 =1
e Then posterior mean is a convex combination of the prior mean and
the MLE:

N
P(X = h|ah,at,Nh,Nt) = ah+ h

ap + N+ ar + Ny
N/Oz;L-f—Nh
N 4+ N/
! /+ N Nh
«
N+N " N+NN
Np

/
= 1 — _

where A = N'/(N + N').

PRIOR SMOOTHS PARAMETER ESTIMATES

e The MLE can change dramatically with small sample sizes.

e The MAP estimate changes much more smoothly (depending on the
strength of the prior).

e This is called regularization.

e Lower blue=MLE, red = beta(1,1), pink = beta(5,5), upper blue =
beta(10,10)

o.
PCATLTA
E 0.5
i 0.4

04

0.2

0175 10 15 20 25 30 35 40 45 50



BAYESIAN PARAMETER ESTIMATION FOR GENERAL BNS

e Defn 13.4.1: global parameter independence means
p(8) = [1; p(6;), where §; are the parameters for CPD for X;.
e If we assume global parameter independence, and have fully

observed data, then the parameter posterior decomposes into a sum
of local terms, one per node:

log p(0|D) = Zzlogp ;" |[Xx;, 0;) + log p(6;)

WHERE DO THE PRIORS COME FROM?

e We can define o k= = N'P/(X; = j|Xx, = k), where N is the

strength of our prior and P’ is some Bayes net that summarizes our
virtual database of pseudo counts.

e This is called the BDe (Bayesian-Dirichlet likelihood equivalent) prior.
o Type-1l ML = learning P’ from data.

BAYESIAN PARAMETER ESTIMATION FOR BNs
WITH TABULAR CPDs

e Defn 13.4.4: local parameter independence means

p(0;) = [1xp(0;.. 1), where 0; ; ;. = P(X; = j|Xr, = k) is the row
of the CPT corresponding to conditioning case k.

e If we assume global and local parameter independence, and have
fully observed data, then the parameter posteriors are

P(0; . 1|D) =D(cj 1+ Nit g5k + Ni i)

e Posterior for Qy 40 and Qy 1 is factorized despite v-structure on ¥,
because CPT acts like a multiplexer.

EXAMPLE OF BAYESIAN PARAMETER LEARNING

e Suppose we draw Xllfé\; ~ P(X1.37/6*) from the ICU-Alarm BN.

e Then we estimate
0 = arg max P(X"No)Pla’, N')
for different sample sizes N and prior strengths N’ (with uniform
prior O‘;jk = 1/|X;]).

e We compare answers using the Kullback-Leibler divergence

P(x]6%)
KL( (X]6%)]| P( X|9> ZP z|0%) Pl

where K L(P||Q) > 0 measures the ' dlstance of the approximation
@ from truth P.




EXAMPLE OF BAYESIAN PARAMETER LEARNING

KL Divergence

Bayes; M'=5

0
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
# instances

o If Njj = 0 in training but P(X; = j|X7 = k,0%) > 0, then
K L(P*||P) = o0, since

-
e Dirichlet smoothing helps a lot!

e Optimal prior strength = 5.

APPLICATION: LANGUAGE MODELING

A

e Assign the same Dirichlet prior am; to each row of the transition
matrix.

e So the prediction is

fii +amy;
P(ilj, D, am) = =0 — "

- — i+ (1= M) for
2t fpj + amy i+ i)fil

L [0
where )\j = Tia

e This is like adaptive deleted interpolation.

APPLICATION: LANGUAGE MODELING

e A bigram model predicts P(X; = j|X;_1 =1i,0) = 0;;.
e Often the data is sparse so N;; =0 so 0;; = 0.
e A standard hack is to use backoff smoothing or deleted interpolation:
P(Xe|X¢1) = My + (1= N) Foslers
where A is set by cross valdiation and f; and f;); are empirical fre-
quencies.

e A similar effect can be gotten using a hierarchical prior.

APPLICATION: LANGUAGE MODELING

A

e We can optimize the hyperparameters using numerical methods (e.g.,
conjugate gradient), which is faster than cross validation.

MAP

(am) = arg max P(D|am)

e We could consider more realistic priors, e.g., mixtures of Dirichlets
to account for types of words (adjectives, verbs, etc.)



CPDs FOR CONTINUOUS NODES

e So far we have considered the case where p(y|x,6) can be
represented as a multinomial (table).

e Now we consider the case where some nodes may be continuous.

X Y p(Y|X)
R" R™ regression
R" {0,1} binary classification

{0,1}" {0,1} binary classification
R" {1,..., K} | multiclass classification
{1,..., K} R" conditional density modeling

MLE FOR EXPONENTIAL FAMILY

EXPONENTIAL FAMILY

e For iid data, the log-likelihood is
(D) = log [T hla™) exp (n" (™) — A(n))
m

- (Z log h(xm)> — MA(n) + (nTZT(xm>>

m

e Take derivatives and set to zero:
ol
0A 1
= 5 = i S T
N 1
e = 37 2om T(x™)
e This amounts to moment matching.

e We can infer the canonical parameters using 7571, = ¥(fias1)

e For a numeric random variable x
p(x|n) = h(x)exp{n'T(x) — A(n)}

1 T
= Tn)h(x) exp{n T(x)}

is an exponential family distribution with
natural (canonical) parameter 1.

e Function T'(x) is a sufficient statistic.
e Function A(n) = log Z(n) is the log normalizer.
e Examples: Bernoulli, multinomial, Gaussian, Poisson, gamma,...

e A distribution p(x) has finite sufficient statistics (independent of
number of data cases) iff it is in the exponential family.

LINEAR REGRESSION




MULTIVARIATE LINEAR REGRESSION

MULTIVARIATE LINEAR REGRESSION

e Consider vector-valued input X € RF going to vector-valued
output Y € R% via regression matrix A € RF*d;

plyle) = () 2sl Fexp |~y — A0Sy - o)

e Log-likelihood
1 1 _
l= ) Zlog %] — EZ(ym - Axm)Tz l(ym — Axp)
m m
e To take derivatives wrt a matrix, we use the following identity
d(Ma+b)I'C(Ma + b))

oM
where A = M, a = —xy, and b = yj.

= (C+CTY(Ma + b)a”

1D LINEAR REGRESSION

o Log-likelihood:
1 1 -
(= 3 S8 5 Y m — A5 A

m
e Using
O(Ma+b)TC(Ma+1b)) T r
L = (C+C")(Ma+b)a
we have
ol 1 —
A = ) zm: 2% 1(ym - Axm)xgr;
= —n~! Z ymﬂ?% —A Z ;Umfli?n
m m
def

— —E_ISY)(/ - ASXX/ — O

where Sy 7 and Sy y are the sufficient statistics. Hence
-1

A - SYX/SXX/

BAYESIAN 1D LINEAR REGRESSION

e For the vector case,
_ -1
A= SYX/SXX,

where Sy 1 =>" ymxﬁ and Sy xr=>_,, xmx%;.

e In the special case of scalar outputs, let A = 67, and the design
matrix X = [z]] stacked as rows and Y = [y;,,] a column vector.

m
Then we get the normal equations

0= (xTx)"'xTy

B

L5

Y.

e For scalar (1D) output
p(ynlen, 0,0%)p(0|, 7)p(o”| e, B)

Gaussian X Gaussian x Gamma

e For vector output

P(yn|n, A, 2)p(Alp, 72)p(S| e, B)
Gaussian X matrix-Gaussian X Wishart



MLE rOrR GENERALIZED LINEAR MODELS

ONLINE LEARNING FOR CANONICAL GLIMSs

e GLIM with scale parameter ¢ and canonical parameter 1 = 07 1

T J—
p(y|z, 6, 6) = h(y, ¢) exp (%M)

o | og-likelihood
1
0= logh(yn) + p > (GTa:nyn - A(%))
n n

e Derivative of Log-likelihood
dl ) dipn,
a9 ¢Z(x” n dnn dG)
= _Z Yn — Mn Tn
¢S

L 1
— —xTy -
5 (y — )

BATCH LEARNING FOR CANONICAL GLIMS

e Derivative of Log-likelihood
a 1
a0 g;(yn_ﬂn)fﬁn
e Stochastic gradient ascent = least mean squares (LMS) algorithm:

0" = 0"+ plyn — p)zn

where pl = 00Tz, and p is a step size.

ITERATIVELY REWEIGHTED LEAST SQUARES (IRLS)

e Hessian 5
"= dgdHT 9T¢Zx” ™ Hn) = ¢Zf’3nj§;
dpin d
- _5%: dl;ng;
— —% zn: onzxZg since n, = 01 x,
1
= —gXTWX
where X = [x1] is the design matrix and
d d
W = dlag(dl;i ,d/;—j\\f])

1
Vol = —X"(y - p)

¢1
H = —5XTWJJ
0 = 0" + H'vye

= (xTwix)! [XTWtXHf + X Ty — by
_ (XTWtX)_lXTWtZt
where the adjusted response is
o= X6+ (WH ™y — i)
We iteratively reoptimize

0! = arg mein(z — X0)TW(z — X6)

This Newton-Raphson procedure will (usually) find the global optimum
starting from 6 = 0.



IRLS FOR LOGISTIC REGRESSION (SIGMOID CLASSIFIER) LOGISTIC REGRESSION: PRACTICAL ISSUES

e |t is very common to use penalized maximum likelihood.

T 1
p=o(n) = — =o(0"z) =p(y = 1]z,0 = 41|2,0) = o(yoTz) =
) () == = 00" 2) =ply = 1]z,0) ply |,0) = o(yb’ z) ap——";
d—g = u(l—p) p(6) ~ N(0,A7'1) \
(1 — py) 00) =Y logo(ynt zy) — §9T9
W = n

pn (1 — pp) o IRLS takes O(Nd?) per iteration, where N = number of training
cases and d = size of input z.

e Quasi-Newton methods, that approximate the Hessian, work faster.

e Conjugate gradient takes O(Nd) per iteration, and usually works
best in practice.

e Stochastic gradient descent can also be used if IV is large
c.f. perceptron rule:

Vol(0) = (1 — o(ynT zp))ynzn — N0



