LECTURE 10:

PARAMETER LEARNING FOR BAYES NETS
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PARAMETER LEARNING

e Assume (G is known and fixed and is a DAG.

e Goal: estimate 6 from a dataset of M independent, identically dis-
tributed (iid) training cases D = (!, ... zM).

e In general, each training case 2™ = (z7",...,2%}) is a vector of
values, one per node. (Think of a database with M rows and N
columns.)

e We assume complete observability, i.e., every entry in the database
is known (no missing values, no hidden variables).

e Initially we consider learning parameters for a single node.

e Then we consider how to learn parameters for a whole network.

LEARNING GRAPHICAL MODELS

e Inference means computing P(X;|0, G)
e Structure learning/ model selection = inferring G from data.

e Parameter learning/ estimation = inferring 6 from data.

P(C=F) P(C=T)
05 05

:
C [ASAHAST C |PR=p PR=)

Flos os y clos o

Tloe WetGrass T |o2

S R|P(W=F) PW=T,
FF[10 00

TF|o1 o9
FT|o01 09
T T| 001 099

BAYESIAN PARAMETER ESTIMATION

e Bayesians treat the unknown parameters ¢ as a random variable,
which can be estimated using Bayes rule:

p(D[f)p(9)
p(D)
e This crucial equation can be written in words:

p(0|D) =

likelihood x prior

osterior =
P marginal likelihood

e For iid data, the likelihood is

p(D6) = [ [ pleml6)

e The prior p(f) encodes our prior knowledge about the domain.



PLATES

e For iid (exchangeable) data, the likelihood is
p(D|0) = Hp zm|0)

e We can represent this as a Bayes net with M nodes.

e “Plates” provide a more compact representation for repetitive
structure, and are very common in Bayesian models.
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FREQUENTIST PARAMETER ESTIMATION

PLATES

e Two people with different priors p(6) will end up with different
estimates p(0|D).

e Frequentists dislike this “subjectivity”.

e Frequentists think of the parameter as a fixed, unknown constant,

not a random variable.

e Hence they have to come up with different estimators (ways of
computing 0 from data), instead of using Bayes' rule.

e These estimators have different properties, such as being
“unbiased”, “minimum variance”, etc.

e A very popular estimator is the maximum likelihood estimator,
which is simple and has good statistical properties.

e “Plates” provide a compact representation for repetitive structure.

e The rules of plates are simple: repeat every structure in a box a
number of times given by the integer in the corner of the box
(e.g. N), updating the plate index variable (e.g. n) as you go.

e Duplicate every arrow going into the plate and every arrow leaving
the plate by connecting the arrows to each copy of the structure.

e Plates are closely related to probabilistic relational models, and
object oriented Bayes nets, which are forms of “syntactic sugar” for
parameter tying (sharing).
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MAXIMUM LIKELIHOOD ESTIMATION

e The log-likelihood is monotonically related to the likelihood:

0(0; D) =logp(D|0) = Zlogp z'0)

o |dea of maximum likelihood estimation (I\/ILE): pick the setting of
parameters most likely to have generated the data we saw:

0)1 = argmaxy ((0; D)
e Often the MLE overfits the training data, so it is common to
maximize a penalized log-likelihood instead:
Orrap = argmaxg ((6;D) — c(6)
e This is equivalent to picking the mode of P(0|D), where
c(8) = —logp(h), since
logp(0|D) = logp(D|0) + log p(#) + ¢



INTEGRATE OUT OR OPTIMIZE?

° éMAP is not Bayesian (even though it uses a prior) since it is a
point estimate.

e Consider predicting the future. A Bayesian will integrate out all

uncertainty:
0

p<XHeW|X) — /p(xnew,9|X>d9
= /p(X11ew|9,X)p(¢9|X)d9

X /p(X11ew|9)p(X|9)p(0)d9 ‘

X

e A frequentist will typically use a “plug-in" estimator such as

ML/MAP:
p(Xnew|X) = p<XneW|é)> = arg mQaXp(XW)

ExaMPLE MLE: BERNOULLI TRIALS

Xnew

FREQUENTIST VS BAYESIAN

e We observe M iid coin flips: D=H,H, T H,. ..
e Model: p(H) =6 p(T)=(1-10)
o Likelihood:
0(0: D) = log p(D|6) = log [[ %" (1 — 6)' "
m

= 10g92xm +log(1 — 0) Z(l —x")

m

= log O Ny + log(1 — 8) N

e Take derivatives and set to zero:
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e This is a “theological” war.
e Advantages of Bayesian approach:

— Mathematically elegant.

— Works well when amount of data is much less than number of
parameters (e.g., one-shot learning).

— Easy to do incremental (sequential) learning.

— Can be used for model selection (max likelihood will always pick
the most complex model).

e Advantages of frequentist approach:
— Mathematically/ computationally simpler.

e As |D| — oo, the two approaches become the same:

p(0|D) — 5(0,0x1)

SUFFICIENT STATISTICS

e The counts Ny = > 2™ and Ny = > (1 — 2') are sufficient
statistics of the data D.

e In general, T'(X) is a sufficient statistic for X if
T(z') = T(x?) = L(0;2") = L(0: 2?)



EXAMPLE: MULTINOMIAL

LAGRANGE MULTIPLIERS

e We observe M iid die rolls (K-sided): D=3,1,K,2,...
e Model: p(k) =6, > .0p=1
e Likelihood (for binary indicators [x" = kJ):

0(6; D) = log p(D|f) = ZlogH@X "=kl

—ZZ logek—ZNklong

k

e We need to maximize this subject to the constraint Zk 0. =1, so
we use a Lagrange multiplier.

EXAMPLE: UNIVARIATE NORMAL

e Constrained cost function:

[ = ZNklogek-i-)\ 1_29/{
k k

o Take derivatives wrt 6;.:
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p = A,

>N =M=X> 6=\
k k
A Nk
ek,ML:M

. ék,ML if the fraction of times k occurs.

EXAMPLE: UNIVARIATE NORMAL

e We observe M iid real samples: D=1.18,-.25,.78,. ..
o Model: p(z) = (2702) /2 exp{—(z — p)%/202}
e Log likelihood:

((6;D) = log p(D|9)

M,y L@ =)
= —710g(27r0 ) — 5272

e Take derivatives and set to zero:

a—ﬁ = (1/0%) 3 (@m — )
% = _%ﬂL#Zm(fL’m—m
= L = (/M) Y2, 2m

oty = (1/M)S 2 (@m — pir)?
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EXPONENTIAL FAMILY

e For a numeric random variable x
p(x|n) = h(x)exp{n'T(x) — A(n)}

1 T
= Tn)h(X) exp{n T(x)}

is an exponential family distribution with
natural (canonical) parameter 1.

e Function T'(x) is a sufficient statistic.
e Function A(n) = log Z(n) is the log normalizer.
e Examples: Bernoulli, multinomial, Gaussian, Poisson, gamma,...

e A distribution p(x) has finite sufficient statistics (independent of
number of data cases) iff it is in the exponential family.

MOMENTS

MULTIVARIATE GAUSSIAN DISTRIBUTION

e We can easily compute moments of any exponential family
distribution by taking the derivatives of the log normalizer A(n).

e The qth derivative gives the qth centred moment.

M = mean
dn
2
d A(n) = variance

d772

e When the sufficient statistic is a vector, partial derivatives need to
be considered.

e For a continuous vector random variable:
_ 1 _
plali ) = 2n5 V2 exp { 3o = TS x|

e Exponential family with:

n=[S""p; —1/2571
T(z) = [x; xx']
Aln) =log[S]/2+ p'= /2

h(z) = (2m) =4/

e Note: a d-dimensional Gaussian is a d+d2-parameter distribution
with a d-+d%-component vector of sufficient statistics
(but because of symmetry and positivity, parameters are
constrained)

MOMENTS

dA d 1 d
o d—nllogdz(ﬁ) = %d—nZ(n)

- o / h(x) exp{nT(x)}dz

_ JT(x)h(x) exp{nT'(x)}

Z(n)

= ET(X)
d?A
e = VarT(X)



MOMENT VS CANONICAL PARAMETERS

e The moment parameter p can be derived from the natural (canonical)
parameter

dA def
— = ET(X) =
an (X) = p
e Now A(n) is convex since
d°A
= VarT(X)>0
di?

e Hence we can invert the relationship and infer the canonical param-
eter from the moment parameter:
dgf

b(p)

MLE FOR GENERAL BAYES NETS

MLE FOR EXPONENTIAL FAMILY

e If we assume the parameters for each CPD are globally
independent, then the log-likelihood function decomposes into a

sum of local terms, one per node:
Zzlogp x;" [Xn;, 0;)

log p(D|0) = IOgHHp X ’X7T17

e For iid data, the log-likelihood is
D) = log [ e exo ("' T@™) ~ AW))

- (Z log h(xm)> — MA(n) + (nTZT(xm>>

m

e Take derivatives and set to zero:
8€ 0A
:Zm (m)_Magn)ZO
8A
L = 17 Em (X )
e This amounts to moment matching.

e We can infer the canonical parameters using 7571, = ¥(fias1)

ExaMPLE: A DIRECTED MODEL

e Consider the distribution defined by the DAGM:
p(x]0) = p(x1]01)p(x2[x1, 02)p(x3]x1, 03)p(x4]x2, X3, 04)

e This is exactly like learning four separate small DAGMs, each of
which consists of a node and its parents.

X, X, X,

X> X3
X



MLE FOR BAYES NETS WITH TABULAR CPDs TIED PARAMETERS

e Assume each CPD is represented as a table (multinomial) where
O E P(Xi = §|Xr, =}

e The sufficient statistics are just counts of family configurations
def .
zyk = E I(X;" =, X;Z} =k)

e The log-likelihood is

\V
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e Consider a time-invariant hidden Markov model (HMM)

— State transition matrix A(3, j) dd P(Xy = j| X1 =1),

17k ¢
£= 1ogH l_gefjk — Discrete observation matrix B(i, ) dd P(Y; = j| Xt =1)
m 1]
~ State prior 7()) & P(X; = i
mijk The joint is

e Using a Lagrange multiplier to enforce so Zj 0ij1 = 1 we get

T T
N, P(X17,Y1.710) = P(Xy|m) [ P(Xel Xo—1, A) T POVEIXs; B)
t=1

13
0 _ ) t=2
Z]k ZJ/ N /
LEARNING A FULLY OBSERVED HMM LEARNING A MARKOV CHAIN TRANSITION MATRIX
71 o Define A(i, j) = P(X; = j| X4_1 = 4).
E E « E
e A is a stochastic matrix: ) ; A(7,7) =1
0@@9 ¢ matrb 25401, 7) =
\ e Each row of A is multinomial distribution.
e So MLE is the fraction of transitions from 7 to j
e The log-likelihood is AML(Z 5= Wi ] Zm SEL X =i, X[ = j)
. _ __.m
€(9,D)—%:1ng(Xl—x1 ) p#i—k oy S X =i
T T o If the states X represent words, this is called a bigram language
+ Z PXi=a"|Xp_1=a{" |, A) + Z P(Y; = y"| Xy = x}", B) model.
t=2 t=1 e Note that AML(z',j) = 0 if the particular 7, j pair did not occur in
e We can optimize each parameter (A, B, 7) separately. the training data; this is called the sparse data problem.

e We will solve this later using a prior.



CPDs FOR CONTINUOUS NODES

e So far we have considered the case where p(y|x,6) can be
represented as a multinomial (table).

e Now we consider the case where some nodes may be continuous.

X Y p(Y|X)
R" R™ regression
R" {0,1} binary classification

{0,1}" {0,1}
R"  {1,...,K}
1,...,K} R"

binary classification
multiclass classification
conditional density modeling

LEARNING A CONDITIONAL (GAUSSIAN

e Consider an HMM with discrete states Xy but continuous
observations y; € R":

Py Xy = 1) = N (ye; i, Si)

e The MLE is the sample mean and sample variance of observations
associated with each state (use X} labels to partition the data):

m .
Zm,t:X{”zi Yt _ Zm Zg;l ](Xtm = Z)ytm
m T
2 mtYi Dom 2t—1 Yi"

e Note that the MLE for ¥; for states ¢ with small numbers of
observations is YJ; — ool.

(i) =

e We will solve this later using a prior.



