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Learning graphical models

• Inference means computing P (Xi|θ,G)

• Structure learning/ model selection = inferring G from data.

• Parameter learning/ estimation = inferring θ from data.
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Parameter learning

• Assume G is known and fixed and is a DAG.

• Goal: estimate θ from a dataset of M independent, identically dis-
tributed (iid) training cases D = (x1, . . . , xM ).

• In general, each training case xm = (xm1 , . . . , x
m
N ) is a vector of

values, one per node. (Think of a database with M rows and N
columns.)

•We assume complete observability, i.e., every entry in the database
is known (no missing values, no hidden variables).

• Initially we consider learning parameters for a single node.

• Then we consider how to learn parameters for a whole network.



Bayesian parameter estimation

• Bayesians treat the unknown parameters θ as a random variable,
which can be estimated using Bayes rule:

p(θ|D) =
p(D|θ)p(θ)

p(D)

• This crucial equation can be written in words:

posterior =
likelihood × prior

marginal likelihood

• For iid data, the likelihood is

p(D|θ) =
∏

m

p(xm|θ)

• The prior p(θ) encodes our prior knowledge about the domain.



Plates

• For iid (exchangeable) data, the likelihood is

p(D|θ) =
∏

m

p(xm|θ)

•We can represent this as a Bayes net with M nodes.

• “Plates” provide a more compact representation for repetitive
structure, and are very common in Bayesian models.
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Plates

• “Plates” provide a compact representation for repetitive structure.

• The rules of plates are simple: repeat every structure in a box a
number of times given by the integer in the corner of the box
(e.g. N), updating the plate index variable (e.g. n) as you go.

•Duplicate every arrow going into the plate and every arrow leaving
the plate by connecting the arrows to each copy of the structure.

• Plates are closely related to probabilistic relational models, and
object oriented Bayes nets, which are forms of “syntactic sugar” for
parameter tying (sharing).
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Frequentist parameter estimation

• Two people with different priors p(θ) will end up with different
estimates p(θ|D).

• Frequentists dislike this “subjectivity”.

• Frequentists think of the parameter as a fixed, unknown constant,
not a random variable.

• Hence they have to come up with different estimators (ways of
computing θ from data), instead of using Bayes’ rule.

• These estimators have different properties, such as being
“unbiased”, “minimum variance”, etc.

• A very popular estimator is the maximum likelihood estimator,
which is simple and has good statistical properties.



Maximum likelihood estimation

• The log-likelihood is monotonically related to the likelihood:

`(θ;D) = log p(D|θ) =
∑

m

log p(xm|θ)

• Idea of maximum likelihood estimation (MLE): pick the setting of
parameters most likely to have generated the data we saw:

θ̂ML = argmaxθ `(θ;D)

•Often the MLE overfits the training data, so it is common to
maximize a penalized log-likelihood instead:

θ̂MAP = argmaxθ `(θ;D) − c(θ)

• This is equivalent to picking the mode of P (θ|D), where
c(θ) = − log p(θ), since

log p(θ|D) = log p(D|θ) + log p(θ) + c



Integrate out or Optimize?

• θ̂MAP is not Bayesian (even though it uses a prior) since it is a
point estimate.

• Consider predicting the future. A Bayesian will integrate out all
uncertainty:

p(xnew|X) =

∫

p(xnew, θ|X)dθ

=

∫

p(xnew|θ,X)p(θ|X)dθ

∝

∫

p(xnew|θ)p(X|θ)p(θ)dθ
X

θ

Xnew

• A frequentist will typically use a “plug-in” estimator such as
ML/MAP:

p(xnew|X) = p(xnew|θ̂), θ̂ = arg max
θ
p(X|θ)



Frequentist vs Bayesian

• This is a “theological” war.

• Advantages of Bayesian approach:

– Mathematically elegant.

– Works well when amount of data is much less than number of
parameters (e.g., one-shot learning).

– Easy to do incremental (sequential) learning.

– Can be used for model selection (max likelihood will always pick
the most complex model).

• Advantages of frequentist approach:

– Mathematically/ computationally simpler.

• As |D| → ∞, the two approaches become the same:

p(θ|D) → δ(θ, θ̂ML)



Example MLE: Bernoulli Trials

•We observe M iid coin flips: D=H,H,T,H,. . .

•Model: p(H) = θ p(T ) = (1 − θ)

• Likelihood:

`(θ;D) = log p(D|θ) = log
∏

m

θx
m

(1 − θ)1−x
m

= log θ
∑

m

x
m + log(1 − θ)

∑

m

(1 − x
m)

= log θNH + log(1 − θ)NT

• Take derivatives and set to zero:
∂`

∂θ
=
NH

θ
−

NT

1 − θ

⇒ θ∗ML =
NH

NH +NT



Sufficient statistics

• The counts NH =
∑

m x
m and NT =

∑

m(1 − xm) are sufficient
statistics of the data D.

• In general, T (X) is a sufficient statistic for X if

T (x1) = T (x2) ⇒ L(θ;x1) = L(θ;x2)



Example: Multinomial

•We observe M iid die rolls (K-sided): D=3,1,K,2,. . .

•Model: p(k) = θk
∑

k θk = 1

• Likelihood (for binary indicators [xm = k]):

`(θ;D) = log p(D|θ) =
∑

m

log
∏

k

θ
[xm=k]
1

=
∑

m

∑

k

[xm = k] log θk =
∑

k

Nk log θk

•We need to maximize this subject to the constraint
∑

k θk = 1, so
we use a Lagrange multiplier.



Lagrange multipliers

• Constrained cost function:

l̃ =
∑

k

Nk log θk + λ



1 −
∑

k

θk





• Take derivatives wrt θk:

∂l̃

∂θk
=
Nk
θk

− λ = 0

Nk = λθk
∑

k

Nk = M = λ
∑

k

θk = λ

θ̂k,ML =
Nk
M

• θ̂k,ML if the fraction of times k occurs.



Example: Univariate Normal
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Example: Univariate Normal

•We observe M iid real samples: D=1.18,-.25,.78,. . .

•Model: p(x) = (2πσ2)−1/2 exp{−(x− µ)2/2σ2}

• Log likelihood:

`(θ;D) = log p(D|θ)

= −
M

2
log(2πσ2) −

1

2

∑

m

(xm − µ)2

σ2

• Take derivatives and set to zero:
∂`
∂µ = (1/σ2)

∑

m(xm − µ)

∂`
∂σ2 = −M

2σ2 + 1
2σ4

∑

m(xm − µ)2

⇒ µML = (1/M )
∑

m xm

σ2
ML = (1/M )

∑

m(xm − µML)2



Exponential Family

• For a numeric random variable x

p(x|η) = h(x) exp{η>T (x) − A(η)}

=
1

Z(η)
h(x) exp{η>T (x)}

is an exponential family distribution with
natural (canonical) parameter η.

• Function T (x) is a sufficient statistic.

• Function A(η) = logZ(η) is the log normalizer.

• Examples: Bernoulli, multinomial, Gaussian, Poisson, gamma,...

• A distribution p(x) has finite sufficient statistics (independent of
number of data cases) iff it is in the exponential family.



Multivariate Gaussian Distribution

• For a continuous vector random variable:

p(x|µ,Σ) = |2πΣ|−1/2 exp

{

−
1

2
(x − µ)>Σ−1(x − µ)

}

• Exponential family with:

η = [Σ−1µ ; −1/2Σ−1]

T (x) = [x ; xx
>]

A(η) = log |Σ|/2 + µ>Σ−1µ/2

h(x) = (2π)−d/2

• Note: a d-dimensional Gaussian is a d+d2-parameter distribution
with a d+d2-component vector of sufficient statistics
(but because of symmetry and positivity, parameters are
constrained)



Moments

•We can easily compute moments of any exponential family
distribution by taking the derivatives of the log normalizer A(η).

• The qth derivative gives the qth centred moment.

dA(η)

dη
= mean

d2A(η)

dη2
= variance

· · ·

•When the sufficient statistic is a vector, partial derivatives need to
be considered.



Moments

dA

dη
=

d

dη
logZ(η) =

1

Z(η)

d

dη
Z(η)

=
1

Z(η)

d

dη

∫

h(x) exp{ηT (x)}dx

=

∫

T (x)h(x) exp{ηT (x)}

Z(η)
= ET (X)

d2A

dη2
= V arT (X)



Moment vs canonical parameters

• The moment parameter µ can be derived from the natural (canonical)
parameter

dA

dη
= ET (X)

def
= µ

• Now A(η) is convex since

d2A

dη2
= V arT (X) > 0

• Hence we can invert the relationship and infer the canonical param-
eter from the moment parameter:

η
def
= ψ(µ)



MLE for Exponential Family

• For iid data, the log-likelihood is

`(η;D) = log
∏

m

h(xm) exp
(

ηTT (xm) − A(η)
)

=

(

∑

m

log h(xm)

)

−MA(η) +

(

η>
∑

m

T (xm)

)

• Take derivatives and set to zero:
∂`
∂η =

∑

m T (xm) −M
∂A(η)
∂η = 0

⇒
∂A(η)
∂η = 1

M

∑

m T (xm)

µ̂ML = 1
M

∑

m T (xm)

• This amounts to moment matching.

•We can infer the canonical parameters using η̂ML = ψ(µ̂ML)



MLE for general Bayes nets

• If we assume the parameters for each CPD are globally
independent, then the log-likelihood function decomposes into a
sum of local terms, one per node:

log p(D|θ) = log
∏

m

∏

i

p(xmi |xπi, θi) =
∑

i

∑

m

log p(xmi |xπi, θi)
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Example: A Directed Model

• Consider the distribution defined by the DAGM:

p(x|θ) = p(x1|θ1)p(x2|x1, θ2)p(x3|x1, θ3)p(x4|x2,x3, θ4)

• This is exactly like learning four separate small DAGMs, each of
which consists of a node and its parents.
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MLE for Bayes nets with tabular CPDs

• Assume each CPD is represented as a table (multinomial) where

θijk
def
= P (Xi = j|Xπi = k)

• The sufficient statistics are just counts of family configurations

Nijk
def
=
∑

m

I(Xm
i = j,Xm

πi = k)

• The log-likelihood is

` = log
∏

m

∏

ijk

θ
Nijk
ijk

=
∑

m

∑

ijk

Nijk log θijk

• Using a Lagrange multiplier to enforce so
∑

j θijk = 1 we get

θ̂ML
ijk =

Nijk
∑

j′Nij′k



Tied parameters
pi

Y4Y1

Q1

Y2

Q2 . . .

B

Y3

Q4Q3

A

• Consider a time-invariant hidden Markov model (HMM)

– State transition matrix A(i, j)
def
= P (Xt = j|Xt−1 = i),

– Discrete observation matrix B(i, j)
def
= P (Yt = j|Xt = i)

– State prior π(i)
def
= P (X1 = i).

The joint is

P (X1:T , Y1:T |θ) = P (X1|π)

T
∏

t=2

P (Xt|Xt−1, A)

T
∏

t=1

P (Yt|Xt;B)



Learning a fully observed HMM
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• The log-likelihood is

`(θ;D) =
∑

m

logP (X1 = xm1 |π)

+

T
∑

t=2

P (Xt = xmt |Xt−1 = xmt−1, A) +

T
∑

t=1

P (Yt = ymt |Xt = xmt , B)

•We can optimize each parameter (A,B, π) separately.



Learning a Markov chain transition matrix

•Define A(i, j) = P (Xt = j|Xt−1 = i).

•A is a stochastic matrix:
∑

j A(i, j) = 1

• Each row of A is multinomial distribution.

• So MLE is the fraction of transitions from i to j

ÂML(i, j) =
#i→ j

∑

k #i→ k
=

∑

m
∑T
t=2 I(X

m
t−1 = i,Xm

t = j)
∑

m
∑T
t=2 I(X

m
t−1 = i)

• If the states Xt represent words, this is called a bigram language
model.

• Note that ÂML(i, j) = 0 if the particular i, j pair did not occur in
the training data; this is called the sparse data problem.

•We will solve this later using a prior.



CPDs for continuous nodes

• So far we have considered the case where p(y|x, θ) can be
represented as a multinomial (table).

• Now we consider the case where some nodes may be continuous.

X Y p(Y |X)
IRn IRm regression
IRn {0, 1} binary classification

{0, 1}n {0, 1} binary classification
IRn {1, . . . ,K} multiclass classification

{1, . . . ,K} IRn conditional density modeling



Learning a conditional Gaussian

• Consider an HMM with discrete states Xt but continuous
observations yt ∈ IRn:

p(yt|Xt = i) = N (yt;µi,Σi)

• The MLE is the sample mean and sample variance of observations
associated with each state (use Xt labels to partition the data):

µ̂ML(i) =

∑

m,t:Xm
t =i ymt

∑

m,t y
m
t

=

∑

m
∑T
t=1 I(X

m
t = i)ymt

∑

m
∑T
t=1 y

m
t

• Note that the MLE for Σi for states i with small numbers of
observations is Σi → ∞I.

•We will solve this later using a prior.


