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LEARNING GRAPHICAL MODELS

e Inference means computing P(X;|0, G)
e Structure learning/ model selection = inferring G from data.

e Parameter learning/ estimation = inferring 6 from data.
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PARAMETER LEARNING

e Assume (7 is known and fixed and is a DAG.

e Goal: estimate 6 from a dataset of M independent, identically dis-
tributed (jid) training cases D = (z!, ... zM).

e In general, each training case z"" = (z7",...,2';) is a vector of
values, one per node. (Think of a database with M rows and N
columns.)

e \We assume complete observability, i.e., every entry in the database
is known (no missing values, no hidden variables).

e Initially we consider learning parameters for a single node.

e Then we consider how to learn parameters for a whole network.



BAYESIAN PARAMETER ESTIMATION

e Bayesians treat the unknown parameters 6 as a random variable,
which can be estimated using Bayes rule:

_p(DIO)p(9)

e This crucial equation can be written in words:

likelihood X prior

osterior = : TENT
P marginal likelihood

e For iid data, the likelihood is
p(D|0) = Hp T |0)

e The prior p(f) encodes our prior knowledge about the domain.



PLATES

e For iid (exchangeable) data, the likelihood is
p(D|0) = Hp T |0)

e \We can represent this as a Bayes net with M nodes.

e "Plates” provide a more compact representation for repetitive
structure, and are very common in Bayesian models.
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PLATES

e "Plates” provide a compact representation for repetitive structure.

e The rules of plates are simple: repeat every structure in a box a
number of times given by the integer in the corner of the box
(e.g. N), updating the plate index variable (e.g. n) as you go.

e Duplicate every arrow going into the plate and every arrow leaving
the plate by connecting the arrows to each copy of the structure.

e Plates are closely related to probabilistic relational models, and
object oriented Bayes nets, which are forms of “syntactic sugar” for
parameter tying (sharing).
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FREQUENTIST PARAMETER ESTIMATION

e Two people with different priors p(#) will end up with different
estimates p(6|D).

e Frequentists dislike this “subjectivity” .

e Frequentists think of the parameter as a fixed, unknown constant,
not a random variable.

e Hence they have to come up with different estimators (ways of
computing # from data), instead of using Bayes' rule.

e These estimators have different properties, such as being
“unbiased”, “minimum variance”, etc.

e A very popular estimator is the maximum likelihood estimator,
which is simple and has good statistical properties.



MAXIMUM LIKELIHOOD ESTIMATION

e T he log-likelihood is monotonically related to the likelihood:

((0; D) =logp(D|0) = Zlogp (z"]6)

e ldea of maximum likelihood estimation (I\/ILE): pick the setting of
parameters most likely to have generated the data we saw:

A1 = argmaxg £(0; D)

e Often the MLE overfits the training data, so it is common to
maximize a penalized log-likelihood instead:
Oasap = argmaxg £(0; D) — ¢(6)
e This is equivalent to picking the mode of P(6|D), where
c(f) = —logp(0), since
log p(0|D) = log p(D|0) + log p(0) + ¢



INTEGRATE OUT OR OPTIMIZE?

e 037 4p is not Bayesian (even though it uses a prior) since it is a
point estimate.

e Consider predicting the future. A Bayesian will integrate out all
uncertainty:

0
pxien|X) = [ Dl 61X o
—/p<XneW"9>X)p(@’X)de
X /p(XnewW)p(X!@)p(e)dQ ‘
X Xnew

e A frequentist will typically use a “plug-in" estimator such as

ML/MAP:
P(Xnew|X) = p(XneW’é)v ) = arg meaxp(X’@)



FREQUENTIST VS BAYESIAN

e This is a "theological” war.
e Advantages of Bayesian approach:

— Mathematically elegant.

— Works well when amount of data is much less than number of
parameters (e.g., one-shot learning).

— Easy to do incremental (sequential) learning.

— Can be used for model selection (max likelihood will always pick
the most complex model).

e Advantages of frequentist approach:
— Mathematically/ computationally simpler.

e As |D| — o0, the two approaches become the same:

p(0]D) — (0,051



ExamMPLE MLE: BERNOULLI TRIALS

e We observe M iid coin flips: D=H,H, T H,...
e Model: p(H)=6 p(T)=(1-20)
e Likelihood:
((0: D) = logp(D|0) = logHHX (1—

=logf» x" +log(1 —9)2(1 —x™)

m m
= log O Ni + log(1 — ) N
e [ake derivatives and set to zero:
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SUFFICIENT STATISTICS

e The counts Ngg = > 2" and Np = >_ (1 — 2') are sufficient
statistics of the data D.

e In general, T'(X) is a sufficient statistic for X if
T(z') = T(z?) = L(6; ') = L(6; z°)



EXAMPLE: MULTINOMIAL

e We observe M iid die rolls (K-sided): D=3,1,K,2,...
e Model: p(k) =60, > .0, =1
e Likelihood (for binary indicators [x"* = kJ):

((0; D) =logp(D|O) = ZlogH@X Bl
—ZZ 10g9k—ZNk10g9k

k

e We need to maximize this subject to the constraint Zk 0. =1, so
we use a Lagrange multiplier.



LAGRANGE MULTIPLIERS

e Constrained cost function:

[ =) Nplogp+A 1= 6
k k

e Take derivatives wrt 0.

ol Ny
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) ék,ML if the fraction of times £ occurs.



EXAMPLE: UNIVARIATE NORMAL
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EXAMPLE: UNIVARIATE NORMAL

e We observe M iid real samples: D=1.18,-.25,.78,. ..
e Model: p(z) = (2m0?)~ Y2 exp{—(z — p)?/20?%}
e Log likelihood:

((6; D) = log p(D|0)

M 0 I (@™ —p)
= —Tlog(%m ) — 5 %:

0-2
e [ake derivatives and set to zero:
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EXPONENTIAL FAMILY

e For a numeric random variable x

p(x|n) = h(i() exp{n' T(x) — A(n)}
= %h(x) exp{n' T(x)}

is an exponential family distribution with
natural (canonical) parameter 7).

e Function T'(x) is a sufficient statistic.
e Function A(n) =log Z(n) is the log normalizer.
e Examples: Bernoulli, multinomial, Gaussian, Poisson, gamma,...

e A distribution p(x) has finite sufficient statistics (independent of
number of data cases) iff it is in the exponential family.



MULTIVARIATE (GAUSSIAN DISTRIBUTION

e For a continuous vector random variable:

plalu, T) = 205~V exp {—%(»« )T m}

e Exponential family with:

n=[S""u; —1/287
T(x) = [x; xx']
A(n) =log|S|/2+ 'S /2

h(z) = (2m) "4

e Note: a d-dimensional Gaussian is a d+d%-parameter distribution
with a d-+d?-component vector of sufficient statistics
(but because of symmetry and positivity, parameters are
constrained)



MOMENTS

e We can easily compute moments of any exponential family
distribution by taking the derivatives of the log normalizer A(n).

e [he qth derivative gives the qth centred moment.

—dA(U — mean
dn

2A

d (277 — variance
dn

e When the sufficient statistic is a vector, partial derivatives need to
be considered.



MOMENTS

dA 1 d
- d—nllo dZ(U) = Z(n)anm)
i / h(ox) exp{nT ()} da
_ JT(x)h(x) exp{nT(x)}
Z(n)
— ET(X)
d*A

d—772 = V&TT(X)



MOMENT VS CANONICAL PARAMETERS

e The moment parameter 1 can be derived from the natural (canonical)
parameter

dA det
— = ET(X) =
i (X) = n
e Now A(7) is convex since
d°A
— = VarT(X) > 0
dn?

e Hence we can invert the relationship and infer the canonical param-
eter from the moment parameter:

def

n = Y(u)



MLE FOR EXPONENTIAL FAMILY

e For iid data, the log-likelihood is

(n; D) = loth Jexp (" T(x™) — A(n))
- (Z log h(xm>> — MA(n) + (nTZT(Xm)>

e [ake derivatives and set to zero:

e [ his amounts to moment matching.

e We can infer the canonical parameters using 7377 = ¥(fipsr,)



MLE FOR GENERAL BAYES NETS

e If we assume the parameters for each CPD are globally
independent, then the log-likelihood function decomposes into a
sum of local terms, one per node:

log p(D|6) = 1OgHHp X} %, 0;) = Y Y log p(x]"|xn;, 0;)
om




ExaAMPLE: A DIRECTED MODEL

e Consider the distribution defined by the DAGM:
p(x]0) = p(x1]61)p(x2|x1, 02)p(x3]x1, 03)p(x4|x2, X3, 04)

e This is exactly like learning four separate small DAGMs, each of

which consists of a node and its parents.
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MLE FOR BAYES NETS WITH TABULAR CPDs

e Assume each CPD is represented as a table (multinomial) where

def |
Oij = P(X;=j|Xr, = k)

e T he sufficient statistics are just counts of family configurations
det
zyk — E :[ — k)

e The log-likelihood is

¢=1logIT]] ew;g‘f

m a5k
= D> Nijilogtij,
m ik
e Using a Lagrange multiplier to enforce so Z] ijk =1 we get
Nijk

oM
Z]k Z]/N /




TIED PARAMETERS
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e Consider a time-invariant hidden Markov model (HMM)

_ State transition matrix A(4, 7) < P(X; = j|X,_1 = 9),
— Discrete observation matrix B(z, j) A P(Y: = j| Xy =1)
— State prior 7(i) & P(X; = i),
The joint is

T T

P(X1.7, Yierl0) = P(X1|m) | | (Xl Xe—1, A) | | P(ViI X4 B)
t=2 t=1



LEARNING A FULLY OBSERVED HMM

e The log-likelihood is
0(6; D) =" log P(X) = a{"|m)
m

T T
+3 P(Xy=a"| X1 = a1, A) + Y P(Y; = y}"|X; = 2", B)
t=2 t=1

e We can optimize each parameter (A, B, m) separately.



LEARNING A MARKOV CHAIN TRANSITION MATRIX

e Define A(i,5) = P(Xy = j| X1 =1).
e Ais a stochastic matrix: »_; A(i, j) =1
e Each row of A is multinomial distribution.
e So MLE is the fraction of transitions from 7 to j
: : 1
Al f) = _ Zom 2 MAE =6 A =)
ik S S IX = i)

o If the states X} represent words, this is called a bigram language
model.

o Note that A7 (i, 7) = 0 if the particular i, j pair did not occur in
the training data; this is called the sparse data problem.

e We will solve this later using a prior.



CPDs FOR CONTINUOUS NODES

e So far we have considered the case where p(y|x, 8) can be
represented as a multinomial (table).

e Now we consider the case where some nodes may be continuous.

X Y p(Y|X)
R" R regression
R" {0,1} binary classification
{0,1}" {0,1} binary classification
R" {1,..., K}| multiclass classification
{1,..., K} R" conditional density modeling



LEARNING A CONDITIONAL (FAUSSIAN

e Consider an HMM with discrete states X; but continuous
observations y; € R":

P(ye| Xt = 1) = N (yg; pi 2i)

e The MLE is the sample mean and sample variance of observations
associated with each state (use X; labels to partition the data):

- 2omtXp=i Y¢S S I(XP =)y
HUATIA\Y) — —
Zmat y%n Zm ngrzl ?/?tn

e Note that the MLE for >2; for states ¢ with small numbers of
observations is >.; — ool.

e We will solve this later using a prior.



