Lecture 10:

Parameter Learning for Bayes nets

Kevin Murphy

October 20, 2004

LEARNING GRAPHICAL MODELS

- Inference means computing $P\left(X_{i} \mid \theta, G\right)$
- Structure learning/ model selection $=$ inferring G from data.
- Parameter learning/ estimation $=$ inferring θ from data.

PARAMETER LEARNING

- Assume G is known and fixed and is a DAG.
- Goal: estimate θ from a dataset of M independent, identically distributed (iid) training cases $D=\left(x^{1}, \ldots, x^{M}\right)$.
- In general, each training case $x^{m}=\left(x_{1}^{m}, \ldots, x_{N}^{m}\right)$ is a vector of values, one per node. (Think of a database with M rows and N columns.)
- We assume complete observability, i.e., every entry in the database is known (no missing values, no hidden variables).
- Initially we consider learning parameters for a single node.
- Then we consider how to learn parameters for a whole network.

BAYESIAN PARAMETER ESTIMATION

- Bayesians treat the unknown parameters θ as a random variable, which can be estimated using Bayes rule:

$$
p(\theta \mid \mathcal{D})=\frac{p(\mathcal{D} \mid \theta) p(\theta)}{p(\mathcal{D})}
$$

- This crucial equation can be written in words:

$$
\text { posterior }=\frac{\text { likelihood } \times \text { prior }}{\text { marginal likelihood }}
$$

- For iid data, the likelihood is

$$
p(D \mid \theta)=\prod_{m} p\left(x_{m} \mid \theta\right)
$$

- The prior $p(\theta)$ encodes our prior knowledge about the domain.

Plates

- For iid (exchangeable) data, the likelihood is

$$
p(D \mid \theta)=\prod_{m} p\left(x_{m} \mid \theta\right)
$$

m

- We can represent this as a Bayes net with M nodes.
- "Plates" provide a more compact representation for repetitive structure, and are very common in Bayesian models.

(a)

(b)

PLATES

- "Plates" provide a compact representation for repetitive structure.
- The rules of plates are simple: repeat every structure in a box a number of times given by the integer in the corner of the box (e.g. N), updating the plate index variable (e.g. n) as you go.
- Duplicate every arrow going into the plate and every arrow leaving the plate by connecting the arrows to each copy of the structure.
- Plates are closely related to probabilistic relational models, and object oriented Bayes nets, which are forms of "syntactic sugar" for parameter tying (sharing).

- Two people with different priors $p(\theta)$ will end up with different estimates $p(\theta \mid D)$.
- Frequentists dislike this "subjectivity".
- Frequentists think of the parameter as a fixed, unknown constant, not a random variable.
- Hence they have to come up with different estimators (ways of computing θ from data), instead of using Bayes' rule.
- These estimators have different properties, such as being "unbiased", "minimum variance", etc.
- A very popular estimator is the maximum likelihood estimator, which is simple and has good statistical properties.

Maximum LIkelihood estimation

- The log-likelihood is monotonically related to the likelihood:

$$
\ell(\theta ; D)=\log p(D \mid \theta)=\sum_{m} \log p\left(x^{m} \mid \theta\right)
$$

- Idea of maximum likelihood estimation (MLE): pick the setting of parameters most likely to have generated the data we saw:

$$
\hat{\theta}_{M L}=\operatorname{argmax}_{\theta} \ell(\theta ; \mathcal{D})
$$

- Often the MLE overfits the training data, so it is common to maximize a penalized log-likelihood instead:

$$
\hat{\theta}_{M A P}=\operatorname{argmax}_{\theta} \ell(\theta ; \mathcal{D})-c(\theta)
$$

- This is equivalent to picking the mode of $P(\theta \mid D)$, where $c(\theta)=-\log p(\theta)$, since

$$
\log p(\theta \mid D)=\log p(D \mid \theta)+\log p(\theta)+c
$$

Integrate out or Optimize?

- $\hat{\theta}_{M A P}$ is not Bayesian (even though it uses a prior) since it is a point estimate.
- Consider predicting the future. A Bayesian will integrate out all uncertainty:

$$
\begin{aligned}
p\left(\mathbf{x}_{\text {new }} \mid \mathbf{X}\right) & =\int p\left(\mathbf{x}_{\text {new }}, \theta \mid \mathbf{X}\right) d \theta \\
& =\int p\left(\mathbf{x}_{\text {new }} \mid \theta, \mathbf{X}\right) p(\theta \mid \mathbf{X}) d \theta \\
& \propto \int p\left(\mathbf{x}_{\text {new }} \mid \theta\right) p(\mathbf{X} \mid \theta) p(\theta) d \theta
\end{aligned}
$$

- A frequentist will typically use a "plug-in" estimator such as ML/MAP:

$$
p\left(\mathbf{x}_{\text {new }} \mid \mathbf{X}\right)=p\left(\mathbf{x}_{\text {new }} \mid \hat{\theta}\right), \quad \hat{\theta}=\arg \max _{\theta} p(\mathbf{X} \mid \theta)
$$

Frequentist vs Bayesian

- This is a "theological" war.
- Advantages of Bayesian approach:
- Mathematically elegant.
- Works well when amount of data is much less than number of parameters (e.g., one-shot learning).
- Easy to do incremental (sequential) learning.
- Can be used for model selection (max likelihood will always pick the most complex model).
- Advantages of frequentist approach:
- Mathematically/ computationally simpler.
- As $|D| \rightarrow \infty$, the two approaches become the same:

$$
p(\theta \mid D) \rightarrow \delta\left(\theta, \hat{\theta}_{M L}\right)
$$

- We observe M iid coin flips: $\mathcal{D}=\mathrm{H}, \mathrm{H}, \mathrm{T}, \mathrm{H}, \ldots$
- Model: $p(H)=\theta \quad p(T)=(1-\theta)$
- Likelihood:

$$
\begin{aligned}
\ell(\theta ; \mathcal{D}) & =\log p(\mathcal{D} \mid \theta)=\log \prod_{m} \theta^{\mathbf{x}^{m}}(1-\theta)^{1-\mathbf{x}^{m}} \\
& =\log \theta \sum_{m} \mathbf{x}^{m}+\log (1-\theta) \sum_{m}\left(1-\mathbf{x}^{m}\right) \\
& =\log \theta N_{\mathrm{H}}+\log (1-\theta) N_{\mathrm{T}}
\end{aligned}
$$

- Take derivatives and set to zero:

$$
\begin{aligned}
\frac{\partial \ell}{\partial \theta} & =\frac{N_{\mathrm{H}}}{\theta}-\frac{N_{\mathrm{T}}}{1-\theta} \\
\Rightarrow \theta_{\mathrm{ML}}^{*} & =\frac{N_{\mathrm{H}}}{N_{\mathrm{H}}+N_{\mathrm{T}}}
\end{aligned}
$$

SuFficient statistics

- The counts $N_{H}=\sum_{m} x^{m}$ and $N_{T}=\sum_{m}\left(1-x^{m}\right)$ are sufficient statistics of the data D.
- In general, $T(X)$ is a sufficient statistic for X if

$$
T\left(x^{1}\right)=T\left(x^{2}\right) \Rightarrow L\left(\theta ; x^{1}\right)=L\left(\theta ; x^{2}\right)
$$

Example: Multinomial

- We observe M iid die rolls (K-sided): $\mathcal{D}=3,1, \mathrm{~K}, 2, \ldots$
- Model: $p(k)=\theta_{k} \quad \sum_{k} \theta_{k}=1$
- Likelihood (for binary indicators $\left[\mathbf{x}^{m}=k\right]$):

$$
\begin{aligned}
\ell(\theta ; \mathcal{D}) & =\log p(\mathcal{D} \mid \theta)=\sum_{m} \log \prod_{k} \theta_{1}^{\left[\mathbf{x}^{m}=k\right]} \\
& =\sum_{m} \sum_{k}\left[\mathbf{x}^{m}=k\right] \log \theta_{k}=\sum_{k} N_{k} \log \theta_{k}
\end{aligned}
$$

- We need to maximize this subject to the constraint $\sum_{k} \theta_{k}=1$, so we use a Lagrange multiplier.
- Constrained cost function:

$$
\tilde{l}=\sum_{k} N_{k} \log \theta_{k}+\lambda\left(1-\sum_{k} \theta_{k}\right)
$$

- Take derivatives wrt θ_{k} :

$$
\begin{aligned}
\frac{\partial \tilde{l}}{\partial \theta_{k}} & =\frac{N_{k}}{\theta_{k}}-\lambda=0 \\
N_{k} & =\lambda \theta_{k} \\
\sum_{k} N_{k} & =M=\lambda \sum_{k} \theta_{k}=\lambda \\
\hat{\theta}_{k, M L} & =\frac{N_{k}}{M}
\end{aligned}
$$

- $\hat{\theta}_{k, M L}$ if the fraction of times k occurs.

Example: Univariate Normal

- We observe M iid real samples: $\mathcal{D}=1.18,-.25, .78, \ldots$
- Model: $p(x)=\left(2 \pi \sigma^{2}\right)^{-1 / 2} \exp \left\{-(x-\mu)^{2} / 2 \sigma^{2}\right\}$
- Log likelihood:

$$
\begin{aligned}
\ell(\theta ; \mathcal{D}) & =\log p(\mathcal{D} \mid \theta) \\
& =-\frac{M}{2} \log \left(2 \pi \sigma^{2}\right)-\frac{1}{2} \sum_{m} \frac{\left(x^{m}-\mu\right)^{2}}{\sigma^{2}}
\end{aligned}
$$

- Take derivatives and set to zero:

$$
\begin{aligned}
\frac{\partial \ell}{\partial \mu} & =\left(1 / \sigma^{2}\right) \sum_{m}\left(x_{m}-\mu\right) \\
\frac{\partial \ell}{\partial \sigma^{2}} & =-\frac{M}{2 \sigma^{2}}+\frac{1}{2 \sigma^{4}} \sum_{m}\left(x_{m}-\mu\right)^{2} \\
\Rightarrow \mu_{\mathrm{ML}} & =(1 / M) \sum_{m} x_{m} \\
\sigma_{\mathrm{ML}}^{2} & =(1 / M) \sum_{m}\left(x_{m}-\mu_{\mathrm{ML}}\right)^{2}
\end{aligned}
$$

Exponential Family

- For a numeric random variable \mathbf{x}

$$
\begin{aligned}
p(\mathbf{x} \mid \eta) & =h(\mathbf{x}) \exp \left\{\eta^{\top} T(\mathbf{x})-A(\eta)\right\} \\
& =\frac{1}{Z(\eta)} h(\mathbf{x}) \exp \left\{\eta^{\top} T(\mathbf{x})\right\}
\end{aligned}
$$

is an exponential family distribution with
natural (canonical) parameter η.

- Function $T(\mathbf{x})$ is a sufficient statistic.
- Function $A(\eta)=\log Z(\eta)$ is the log normalizer.
- Examples: Bernoulli, multinomial, Gaussian, Poisson, gamma,...
- A distribution $p(x)$ has finite sufficient statistics (independent of number of data cases) iff it is in the exponential family.

Multivariate Gaussian Distribution

- For a continuous vector random variable:

$$
p(x \mid \mu, \Sigma)=|2 \pi \Sigma|^{-1 / 2} \exp \left\{-\frac{1}{2}(\mathbf{x}-\mu)^{\top} \Sigma^{-1}(\mathbf{x}-\mu)\right\}
$$

- Exponential family with:

$$
\begin{aligned}
\eta & =\left[\Sigma^{-1} \mu ;-1 / 2 \Sigma^{-1}\right] \\
T(x) & =\left[\mathbf{x} ; \mathbf{x x}^{\top}\right] \\
A(\eta) & =\log |\Sigma| / 2+\mu^{\top} \Sigma^{-1} \mu / 2 \\
h(x) & =(2 \pi)^{-d / 2}
\end{aligned}
$$

- Note: a d-dimensional Gaussian is a $d+d^{2}$-parameter distribution with a $d+d^{2}$-component vector of sufficient statistics (but because of symmetry and positivity, parameters are constrained)

Moments

- We can easily compute moments of any exponential family distribution by taking the derivatives of the log normalizer $A(\eta)$.
- The $q^{t h}$ derivative gives the $q^{t h}$ centred moment.

$$
\begin{aligned}
\frac{d A(\eta)}{d \eta} & =\text { mean } \\
\frac{d^{2} A(\eta)}{d \eta^{2}} & =\text { variance }
\end{aligned}
$$

- When the sufficient statistic is a vector, partial derivatives need to be considered.

Moments

$$
\begin{aligned}
\frac{d A}{d \eta} & =\frac{d}{d \eta} \log Z(\eta)=\frac{1}{Z(\eta)} \frac{d}{d \eta} Z(\eta) \\
& =\frac{1}{Z(\eta)} \frac{d}{d \eta} \int h(\mathbf{x}) \exp \{\eta T(\mathbf{x})\} d x \\
& =\frac{\int T(\mathbf{x}) h(\mathbf{x}) \exp \{\eta T(\mathbf{x})\}}{Z(\eta)} \\
& =E T(X) \\
\frac{d^{2} A}{d \eta^{2}} & =\operatorname{Var} T(X)
\end{aligned}
$$

Moment vs canonical parameters

- The moment parameter μ can be derived from the natural (canonical) parameter

$$
\frac{d A}{d \eta}=E T(X) \stackrel{\text { def }}{=} \mu
$$

- Now $A(\eta)$ is convex since

$$
\frac{d^{2} A}{d \eta^{2}}=\operatorname{Var} T(X)>0
$$

- Hence we can invert the relationship and infer the canonical parameter from the moment parameter:

$$
\eta \stackrel{\text { def }}{=} \psi(\mu)
$$

MLE for Exponential Family

- For iid data, the log-likelihood is

$$
\begin{aligned}
\ell(\eta ; \mathcal{D}) & =\log \prod_{m} h\left(x^{m}\right) \exp \left(\eta^{T} T\left(x^{m}\right)-A(\eta)\right) \\
& =\left(\sum_{m} \log h\left(\mathbf{x}^{m}\right)\right)-M A(\eta)+\left(\eta^{\top} \sum_{m} T\left(\mathbf{x}^{m}\right)\right)
\end{aligned}
$$

- Take derivatives and set to zero:

$$
\begin{aligned}
\frac{\partial \ell}{\partial \eta} & =\sum_{m} T\left(\mathbf{x}^{m}\right)-M \frac{\partial A(\eta)}{\partial \eta}=0 \\
\Rightarrow \frac{\partial A(\eta)}{\partial \eta} & =\frac{1}{M} \sum_{m} T\left(\mathbf{x}^{m}\right) \\
\hat{\mu}_{\mathrm{ML}} & =\frac{1}{M} \sum_{m} T\left(\mathbf{x}^{m}\right)
\end{aligned}
$$

- This amounts to moment matching.
- We can infer the canonical parameters using $\hat{\eta}_{M L}=\psi\left(\hat{\mu}_{M L}\right)$

MLE for general Bayes nets

- If we assume the parameters for each CPD are globally independent, then the log-likelihood function decomposes into a sum of local terms, one per node:

$$
\log p(\mathcal{D} \mid \theta)=\log \prod_{m} \prod_{i} p\left(\mathbf{x}_{i}^{m} \mid \mathbf{x}_{\pi_{i}}, \theta_{i}\right)=\sum_{i} \sum_{m} \log p\left(\mathbf{x}_{i}^{m} \mid \mathbf{x}_{\pi_{i}}, \theta_{i}\right)
$$

Example: A Directed Model

- Consider the distribution defined by the DAGM:

$$
p(\mathbf{x} \mid \theta)=p\left(\mathbf{x}_{1} \mid \theta_{1}\right) p\left(\mathbf{x}_{2} \mid \mathbf{x}_{1}, \theta_{2}\right) p\left(\mathbf{x}_{3} \mid \mathbf{x}_{1}, \theta_{3}\right) p\left(\mathbf{x}_{4} \mid \mathbf{x}_{2}, \mathbf{x}_{3}, \theta_{4}\right)
$$

- This is exactly like learning four separate small DAGMs, each of which consists of a node and its parents.

MLE for Bayes nets with tabular CPDs

- Assume each CPD is represented as a table (multinomial) where

$$
\theta_{i j k} \stackrel{\text { def }}{=} P\left(X_{i}=j \mid X_{\pi_{i}}=k\right)
$$

- The sufficient statistics are just counts of family configurations

$$
N_{i j k} \stackrel{\text { def }}{=} \sum_{m} I\left(X_{i}^{m}=j, X_{\pi_{i}}^{m}=k\right)
$$

- The log-likelihood is

$$
\begin{aligned}
\ell & =\log \prod_{m} \prod_{i j k} \theta_{i j k}^{N_{i j k}} \\
& =\sum_{m} \sum_{i j k} N_{i j k} \log \theta_{i j k}
\end{aligned}
$$

- Using a Lagrange multiplier to enforce so $\sum_{j} \theta_{i j k}=1$ we get

$$
\hat{\theta}_{i j k}^{M L}=\frac{N_{i j k}}{\sum_{j^{\prime}} N_{i j^{\prime} k}}
$$

Tied parameters

- Consider a time-invariant hidden Markov model (HMM)
- State transition matrix $A(i, j) \stackrel{\text { def }}{=} P\left(X_{t}=j \mid X_{t-1}=i\right)$,
- Discrete observation matrix $B(i, j) \stackrel{\text { def }}{=} P\left(Y_{t}=j \mid X_{t}=i\right)$
- State prior $\pi(i) \stackrel{\text { def }}{=} P\left(X_{1}=i\right)$.

The joint is

$$
P\left(X_{1: T}, Y_{1: T} \mid \theta\right)=P\left(X_{1} \mid \pi\right) \prod_{t=2}^{T} P\left(X_{t} \mid X_{t-1}, A\right) \prod_{t=1}^{T} P\left(Y_{t} \mid X_{t} ; B\right)
$$

Learning a fully observed HMM

- The log-likelihood is

$$
\begin{aligned}
& \ell(\theta ; D)=\sum_{m} \log P\left(X_{1}=x_{1}^{m} \mid \pi\right) \\
& \quad+\sum_{t=2}^{T} P\left(X_{t}=x_{t}^{m} \mid X_{t-1}=x_{t-1}^{m}, A\right)+\sum_{t=1}^{T} P\left(Y_{t}=y_{t}^{m} \mid X_{t}=x_{t}^{m}, B\right)
\end{aligned}
$$

- We can optimize each parameter (A, B, π) separately.
- Define $A(i, j)=P\left(X_{t}=j \mid X_{t-1}=i\right)$.
- A is a stochastic matrix: $\sum_{j} A(i, j)=1$
- Each row of A is multinomial distribution.
- So MLE is the fraction of transitions from i to j

$$
\hat{A}_{M L}(i, j)=\frac{\# i \rightarrow j}{\sum_{k} \# i \rightarrow k}=\frac{\sum_{m} \sum_{t=2}^{T} I\left(X_{t-1}^{m}=i, X_{t}^{m}=j\right)}{\sum_{m} \sum_{t=2}^{T} I\left(X_{t-1}^{m}=i\right)}
$$

- If the states X_{t} represent words, this is called a bigram language model.
- Note that $\hat{A}_{M L}(i, j)=0$ if the particular i, j pair did not occur in the training data; this is called the sparse data problem.
- We will solve this later using a prior.

CPDs FOR CONTINUOUS NODES

- So far we have considered the case where $p(y \mid x, \theta)$ can be represented as a multinomial (table).
- Now we consider the case where some nodes may be continuous.

X	Y	$p(Y \mid X)$
\mathbb{R}^{n}	\mathbb{R}^{m}	regression
\mathbb{R}^{n}	$\{0,1\}$	binary classification
$\{0,1\}^{n}$	$\{0,1\}$	binary classification
\mathbb{R}^{n}	$\{1, \ldots, K\}$	multiclass classification
$\{1, \ldots, K\}$	\mathbb{R}^{n}	conditional density modeling

Learning a conditional Gaussian

- Consider an HMM with discrete states X_{t} but continuous observations $y_{t} \in \mathbb{R}^{n}$:

$$
p\left(y_{t} \mid X_{t}=i\right)=\mathcal{N}\left(y_{t} ; \mu_{i}, \Sigma_{i}\right)
$$

- The MLE is the sample mean and sample variance of observations associated with each state (use X_{t} labels to partition the data):

$$
\hat{\mu}_{M L}(i)=\frac{\sum_{m, t: X_{t}^{m}=i} y_{t}^{m}}{\sum_{m, t} y_{t}^{m}}=\frac{\sum_{m} \sum_{t=1}^{T} I\left(X_{t}^{m}=i\right) y_{t}^{m}}{\sum_{m} \sum_{t=1}^{T} y_{t}^{m}}
$$

- Note that the MLE for Σ_{i} for states i with small numbers of observations is $\Sigma_{i} \rightarrow \infty I$.
- We will solve this later using a prior.

