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Administrivia

• Lectures: MW 9.30-10.50, CISR 304

• Regular homeworks: 40% of grade

– Simple theory exercises.

– Simple Matlab exercises.

• Final project: 60% of grade

– Apply PGMs to your research area (e.g., vision, language,
bioinformatics)

– Add new features to my software package for PGMs

– Theoretical work

• No exams



Admninistrivia

• Please send email to majordomo@cs.ubc.ca with the contents
subscribe cpsc535c to get on the class mailing list.

• URL
www.cs.ubc.ca/∼murphyk/Teaching/CS532c Fall04/index.html

•Class on Wed 15th starts at 10am!

• No textbook, but some draft chapters may be handed out in class.

– Introduction to Probabilistic Graphical Models , Michael Jordan

– Bayesian networks and Beyond, Daphne Koller and Nir Friedman



Probabilistic graphical models

• Combination of graph theory and probability theory.

• Informally,

– Graph structure specifies which parts of system are directly
dependent.

– Local functions at each node specify how parts interact.

•More formally,

– Graph encodes conditional independence assumptions.

– Local functions at each node are factors in the joint probability
distribution.

• Bayesian networks = PGMs based on directed acyclic graphs.

•Markov networks (Markov random fields) = PGM with undirected
graph.



Applications of PGMs

•Machine learning

• Statistics

• Speech recognition

• Natural language processing

• Computer vision

• Error-control codes

• Bio-informatics

•Medical diagnosis

• etc.



Bayesian networks
(aka belief network, directed graphical model)

• Nodes are random variables.

• Informally, edges represent “causation” (no directed cycles allowed -
graph is a DAG).

• Formally, local Markov property says: node is conditionally indepen-
dent of its non-descendants given its parents.
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Chain rule for Bayesian networks
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P (X1:N ) = P (X1)P (X2|X1)P (X3|X1, X2) . . .

=

N∏

i=1

P (Xi|X1:i−1)

=

N∏

i=1

P (Xi|Xπi
)



Water sprinkler Bayes net

Cloudy

Sprinkler Rain

WetGrass

P (C, S,R,W ) = P (C)P (S|C)P (R|S,C)P (W |S,R,C) chain rule

= P (C)P (S|C)P (R|��S,C)P (W |S,R,C) since S ⊥ R|C

= P (C)P (S|C)P (R|��S,C)P (W |S,R, �
��C) since W ⊥ C|S,R

= P (C)P (S|C)P (R|C)P (W |S,R)



Conditional Probability Distributions (CPDs)

• Associated with every node is a probability distribution over its values
given its parents values.

• If the variables are discrete, these distributions can be represented as
tables (CPTs).

C P(S=F) P(S=T) P(R=F) P(R=T)

Cloudy

Sprinkler Rain

WetGrass

F  F 1.0        0.0

T  F

F  T

T   T

0.1         0.9

0.1         0.9

0.01      0.99

S  R  P(W=F)  P(W=T)

P(C=F)  P(C=T)

0.5         0.5

F 0.5 0.5

T 0.9          0.1

C

F

T 0.2           0.8

0.8           0.2



Bayes nets provide compact representation of joint
probability distributions

• For N binary nodes, need 2N−1 parameters to specify P (X1, . . . , XN ).

• For BN, need O(N2K) parameters, where K = max. number of
parents (fan-in) per node.

• e.g., 24 − 1 = 31 vs 2 + 4 + 4 + 8 = 18 parameters.

C P(S=F) P(S=T) P(R=F) P(R=T)

Cloudy

Sprinkler Rain

WetGrass

F  F 1.0        0.0

T  F

F  T

T   T

0.1         0.9

0.1         0.9

0.01      0.99

S  R  P(W=F)  P(W=T)

P(C=F)  P(C=T)

0.5         0.5

F 0.5 0.5

T 0.9          0.1

C

F

T 0.2           0.8

0.8           0.2



Alarm network



Intensive Care Unit monitoring



Bayes net for genetic pedigree analysis

•Gi ∈ {a, b, o} × {a, b, o} = genotype (allele) of person i

•Bi ∈ {a, b, o, ab} = phenotype (blood type) of person i

Homer

Bart

Marge

Lisa Maggie

Harry Jackie

Selma



Bayes net for genetic pedigree analysis - CPDs

GHomer

GBart

GMarge

GLisa GMaggie

GHarry GBetty

GPeggy

BHarry BBetty

BPeggyBHomer BMarge

BBart BLisa BMaggie

•Mendels laws define P (G|Gp, Gm)

• Phenotypic expression specifies P (B|G):
G P (B = a) P (B = b) P (B = o) P (B = ab)
a a 1 0 0 0

a b 0 0 0 1

a o 1 0 0 0

b a 0 0 0 1

b b 0 1 0 0

b o 0 1 0 1

o a 1 0 0 0

o b 0 1 0 0

o o 0 0 1 0



Inference (state estimation)

• Inference = estimating hidden quantities from observed.

• Causal reasoning/ prediction (from causes to effects): how likely is
it that clouds cause the grass to be wet? P (w = 1|c = 1)

Sprinkler

?

Cloudy

Rain

WetGrass



Inference (state estimation)

• Inference = estimating hidden quantities from observed.

•Diagnostic reasoning (from effects to causes): the grass is wet; was
it caused by the sprinkler or rain?
P (S = 1|w = 1) vs P (R = 1|w = 1)

•Most Probable Explanation:
arg maxs,r P (S = s,R = r|w = 1)

Sprinkler?

Cloudy

Rain

WetGrass

Sprinkler ?

Cloudy

Rain

WetGrass



Explaining away

• Explaining away (inter-causal reasoning)

• P (S = 1|w = 1, r = 1) < P (S = 1|w = 1)

Sprinkler?

Cloudy

Rain

WetGrass

• Coins 1, 2 marginally independent, become dependent when observe
their sum.

Coin1 Coin2

C1+C2



Naive inference

•We can compute any query we want by marginalizing the joint,e.g,

P (s = 1|w = 1) =
P (s = 1, w = 1)

P (w = 1)

=

∑
c,r P (s = 1, w = 1, R = r, C = c)

∑
c,r,s P (S = s, w = 1, R = r, C = c)

=

∑
c,r P (C = c)P (S = 1|C = c)P (R = r|C = c)P (W = 1|S = s,R = r

∑
c,r,s P (S = s, w = 1, R = r, C = c)

Sprinkler?

Cloudy

Rain

WetGrass

• Takes O(2N) time

• Homework 1, question 3



Simple inference: classification

• Example: medical diagnosis

• Given list of observed findings (evidence), such as

– e1: sex = male

– e2: abdomen pain = high

– e3: shortness of breath = false

• Infer most likely cause:

c∗ = arg max
c

P (c|e1:N )



Approach 1: learn discriminative classifier

•We can try to fit a function to approximate P (c|e1:N ) using labeled
training data (a set of (c, e1:N ) pairs).

• This is the standard approach in supervised machine learning.

• Possible functional forms:

– Support vector machine (SVM)

– Neural network

– Decision tree

– Boosted decision tree

• See classes by Nando de Freitas:

– CPSC 340, Fall 2004 - undergrad machine learning

– CPSC 540, Spring 2005 - grad machine learning



Approach 2: build generative model and use Bayes’
rule to invert

•We can build a causal model of how diseases cause symptoms, and
use Bayes’ rule to invert:

P (c|e1:N ) =
P (e1:N |c)P (c)

P (e)
=

P (e1:N |c)P (c)∑
c′ P (e1:N |c

′)P (c′)

• In words

posterior =
class-conditional likelihood× prior

marginal likelihood



Naive Bayes classifier

• Simplest generative model: assume effects are conditionally
independent given the cause: Ei ⊥ Ej|C

P (E1:N |C) =

N∏

i=1

P (Ei|C)

• Hence P (c|e1:N ) ∝ P (e1:N |c)P (c) =
∏N

i=1 P (ei|c)P (c)

C

E1 EN



Naive Bayes classifier

C

E1 EN

• This model is extremely widely used (e.g., for document classifica-
tion, spam filtering, etc) even when observations are not independent.

P (c|e1:N ) ∝ P (e1:N |c)P (c) =

N∏

i=1

P (ei|c)P (c)

P (C = cancer|E1 = spots, E2 = vomiting, E3 = fever) ∝

P(spots |cancer) P(vomiting|cancer) P(fever|cancer) P(C=cancer)



QMR-DT Bayes net
(Quick medical reference, decision theoretic)

Symptoms4075

Diseases570

heart
disease

flu botulism

WBC countsex=F
pain
abdomen



Decision theory

•Decision theory = probability theory + utility theory.

•Decision (influence) diagrams = Bayes nets + action (decision)
nodes + utility (value) nodes.

• See David Poole’s class, CS 522

Tachypnea

Dyspnea

Heart
Failure

Age

Tachycardia

Failure
To Thrive

Intercostal
Recession

Hepato-
megaly

Pulmonary
Crepitations

Cardiomegaly

Treatment
Intermediate

Result

Late
Result

Paraplegia

Aortic
Aneurysm

Paradoxical
Hypertension

Postcoarctectomy
Syndrome

Sex

CVA

Aortic
Dissection

Myocardial
Infarction

U



POMDPs

• POMDP = Partially observed Markov decision process

• Special case of influence diagram (infinite horizon)

Xt–1

At–1

Rt–1

At

Rt

At+2

Rt+2

At+1

Rt+1

At–2

Et–1

Xt+1

Et+1

Xt+2

Et+2

Xt+3

Et+3

Ut+3Xt

Et



Hidden Markov Model (HMM)
. . .X X X

Y Y Y

1 2 3 4

1 3 4

X

2Y

• HMM = POMDP - action - utility

• Inference goal:

– Online state estimation: P (Xt|y1:t)

– Viterbi decoding (most probable explanation): arg maxx1:t P (x1:t|y1:t)

Domain Hidden state X Observation Y

Speech Words Spectogram
Part-of-speech tagging Noun/ verb/ etc Words
Gene finding Intron/ exon/ non-coding DNA
Sequence alignment Insert/ delete/ match Amino acids



Biosequence analysis using HMMs



Learning

• Structure learning (model selection):
where does the graph come from?

• Parameter learning (parameter estimation):
where do the numbers come from?

C P(S=F) P(S=T)
P(R=F) P(R=T)φs

φc

φ
r

φw

F 0.5 0.5

T 0.9          0.1

C

F

T 0.2           0.8

0.8           0.2

F  F 1.0        0.0

T  F

F  T

T   T

0.1         0.9

0.1         0.9

0.01      0.99

S  R  P(W=F)  P(W=T)

P(C=F)  P(C=T)

0.5         0.5

Cloudy

Sprinkler Rain

WetGrass



Parameter learning

• Assume we have iid training cases where each node is fully observed:
D = {ci, si, ri, wi}.

• Bayesian approach

– Treat parameters as random variables.

– Compute posterior distribution: P (φ|D) (inference).

• Frequentist approach

– Treat parameters as unknown constants.

– Find best estimate, e.g., penalized maximum likelihood (optimiza-
tion):

φ∗ = arg max
φ

log P (D|φ)− λC(φ)



Structure learning

• Assume we have iid training cases where each node is fully observed:
D = {ci, si, ri, wi}.

• Bayesian approach

– Treat graph as random variable.

– Compute posterior distribution: P (G|D)

• Frequentist approach

– Treat graph as unknown constant.

– Find best estimate, e.g., maxmimum penalized likelihood:

G∗ = arg max
G

log P (D|G)− λC(G)



Outline of class

• Representation

– Undirected graphical models

– Markov properties of graphs

• Inference

– Models with discrete hidden nodes

∗ Exact (e.g., forwards backwards for HMMs)

∗ Approximate (e.g., loopy belief propagation)

– Models with continuous hidden nodes

∗ Exact (e.g., Kalman filtering)

∗ Approximate (e.g., sampling)

• Learning

– Parameters (e.g., EM)

– Structure (e.g., structural EM, causality)



Review: Representation

• Graphical models encode conditional independence assumptions.

• Bayesian networks are based on DAGs.

Cloudy

Sprinkler Rain

WetGrass

P (C, S,R,W ) = P (C)P (S|C)P (R|C)P (W |S,R)



Review: Inference (state estimation)

• Inference = estimating hidden quantities from observed.

Sprinkler

?

Cloudy

Rain

WetGrass

Sprinkler?

Cloudy

Rain

WetGrass

Sprinkler?

Cloudy

Rain

WetGrass

• Naive method takes O(2N ) time



Review: Learning

• Structure learning (model selection):
where does the graph come from?

• Parameter learning (parameter estimation):
where do the numbers come from?

C P(S=F) P(S=T)
P(R=F) P(R=T)φs

φc

φ
r

φw

F 0.5 0.5

T 0.9          0.1

C

F

T 0.2           0.8

0.8           0.2

F  F 1.0        0.0

T  F

F  T

T   T

0.1         0.9

0.1         0.9

0.01      0.99

S  R  P(W=F)  P(W=T)

P(C=F)  P(C=T)

0.5         0.5

Cloudy

Sprinkler Rain

WetGrass



Outline

• Conditional independence properties of DAGs



Local Markov property

• Node is conditionally independent of its non-descendants given its
parents.
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P (X1:N ) = P (X1)P (X2|X1)P (X3|X1, X2) . . .

=

N∏

i=1

P (Xi|X1:i−1)

=

N∏

i=1

P (Xi|Xπi
)



Topological ordering

• If we get the ordering wrong, the graph will be more complicated,
because the parents may not include the relevant variables to “screen
off” the child from its irrelevant ancestors.

.001

P(B)

.002

P(E)

Alarm

Earthquake

MaryCallsJohnCalls

Burglary

A P(J)

t

f

.90

.05

A P(M)

t

f

.70

.01

B

t

t

f

f

E

t

f

t

f

P(A)

.95

.29

.001

.94

JohnCalls

MaryCalls

Alarm

Burglary

Earthquake

MaryCalls

Alarm

Earthquake

Burglary

JohnCalls

(a) (b)



Local Markov property version 2

• A Node is conditionally independent of all others given its Markov
blanket.

• The markov blanket is the parents, children, and childrens’ parents.
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Global Markov properties of DAGs

• By chaining together local independencies, we can infer more global
independencies.

•Defn: X1 −X2 · · · −Xn is an active path in a DAG G given
evidence E if

1. Whenever we have a v-structure, Xi−1→ Xi← Xi+1, then Xi

or one of its descendants is in E; and

2. no other node along the path is in E

•Defn: X is d-separated (directed-separated) from Y given E if
there is no active path from any x ∈ X to any y ∈ Y given E.

• Theorem: xA ⊥ xB|xC if every variable in A is d-separated from
every variable in B conditioned on all the variables in C.



Chain

X Y Z X Y Z

•Q: When we condition on y, are x and z independent?

P(x,y, z) = P(x)P(y|x)P(z|y)

which implies

P(x, z|y) =
P(x)P(y|x)P(z|y)

P(y)

=
P(x,y)P(z|y)

P(y)

= P(x|y)P(z|y)

and therefore x ⊥ z|y

• Think of x as the past, y as the present and z as the future.



Common Cause

X

Y

Z X

Y

Z

y is the common cause
of the two independent
effects x and z

•Q: When we condition on y, are x and z independent?

P(x,y, z) = P(y)P(x|y)P(z|y)

which implies

P(x, z|y) =
P(x,y, z)

P(y)

=
P(y)P(x|y)P(z|y)

P(y)

= P(x|y)P(z|y)

and therefore x ⊥ z|y



Explaining Away
X

Y

Z X Z

•Q: When we condition on y, are x and z independent?

P(x,y, z) = P(x)P(z)P(y|x, z)

• x and z are marginally independent, but given y they are
conditionally dependent.

• This important effect is called explaining away (Berkson’s paradox.)

• For example, flip two coins independently; let x=coin1,z=coin2.
Let y=1 if the coins come up the same and y=0 if different.

• x and z are independent, but if I tell you y, they become coupled!

• y is at the bottom of a v-structure, and so the path from x to z is
active given y (information flows through).



Bayes Ball Algorithm

• To check if xA ⊥ xB|xC we need to check if every variable in A is
d-separated from every variable in B conditioned on all vars in C.

• In other words, given that all the nodes in xC are clamped, when
we wiggle nodes xA can we change any of the node xB?

• The Bayes-Ball Algorithm is a such a d-separation test.
We shade all nodes xC , place balls at each node in xA (or xB), let
them bounce around according to some rules, and then ask if any
of the balls reach any of the nodes in xB (or xA).

X

Y

Z

W

V

So we need to know what happens
when a ball arrives at a node Y

on its way from X to Z.



Bayes-Ball Rules

• The three cases we considered tell us rules:
X Y Z X Y Z

(a) (b)

(a)

X

Y

Z X

Y

Z

(b)

(a)

X

Y

Z

(b)

X

Y

Z



Bayes-Ball Boundary Rules

•We also need the boundary conditions:

(a) (b)

X Y X Y

(a) (b)

X Y X Y

• Here’s a trick for the explaining away case:
If y or any of its descendants is shaded,
the ball passes through.

(a)

X

Y

Z

(b)

X

Y

Z

• Notice balls can travel opposite to edge directions.



Examples of Bayes-Ball Algorithm

x1 ⊥ x6|{x2,x3} ?

1X

2X

3X

X 4

X 5

X6



Examples of Bayes-Ball Algorithm

x2 ⊥ x3|{x1,x6} ?

1X

2X

3X

X 4

X 5

X6

Notice: balls can travel opposite to edge directions.



I-equivalence

•Defn: Let I(G) be the set of conditional independencies encoded
by DAG G (for any parameterization of the CPDs):

I(G) = {(X ⊥ Y |Z) : Z d-separates X from Y}

•Defn: G1 and G2 are I-equivalent if I(G1) = I(G2)

• e.g., X → Y is I-equivalent to X ← Y

• Thm: If G1 and G2 have the same undirected skeleton and the
same set of v-structures, then they are I-equivalent.

v

w

x

y

z v

w

x

y

z



I-equivalence

• If G1 is I-equivalent to G2, they do not necessarily have the same
skeleton and v-structures

• e.g., I(G1) = I(G2) = ∅:

X1 X2

X3

X1 X2

X3

• Corollary: We can only identify graph structure up to I-equivalence,
i.e., we cannot always tell the direction of all the arrows from
observational data.

•We will return to this issue when we discuss structure learning and
causality.


