Probabilistic graphical models CS 535c (Topics in AI)
 Stat 521a (Topics in multivariate analysis)
 LECTURE 1

Kevin Murphy

Monday 13 September, 2004

Administrivia

- Lectures: MW 9.30-10.50, CISR 304
- Regular homeworks: 40% of grade
- Simple theory exercises.
- Simple Matlab exercises.
- Final project: 60\% of grade
- Apply PGMs to your research area (e.g., vision, language, bioinformatics)
- Add new features to my software package for PGMs
- Theoretical work
- No exams

ADMNINISTRIVIA

- Please send email to majordomo@cs.ubc.ca with the contents subscribe cpsc535c to get on the class mailing list.
- URL www.cs.ubc.ca/~murphyk/Teaching/CS532c_Fall04/index.html
- Class on Wed 15th starts at 10am!
- No textbook, but some draft chapters may be handed out in class.
- Introduction to Probabilistic Graphical Models, Michael Jordan
- Bayesian networks and Beyond, Daphne Koller and Nir Friedman

PROBABILISTIC GRAPHICAL MODELS

- Combination of graph theory and probability theory.
- Informally,
- Graph structure specifies which parts of system are directly dependent.
- Local functions at each node specify how parts interact.
- More formally,
- Graph encodes conditional independence assumptions.
- Local functions at each node are factors in the joint probability distribution.
- Bayesian networks $=$ PGMs based on directed acyclic graphs.
- Markov networks (Markov random fields) = PGM with undirected graph.

Applications of PGMs

- Machine learning
- Statistics
- Speech recognition
- Natural language processing
- Computer vision
- Error-control codes
- Bio-informatics
- Medical diagnosis
- etc.

BAYESIAN NETWORKS

 (AKA BELIEF NETWORK, DIRECTED GRAPHICAL MODEL)- Nodes are random variables.
- Informally, edges represent "causation" (no directed cycles allowed graph is a DAG).
- Formally, local Markov property says: node is conditionally independent of its non-descendants given its parents.

Chain rule for Bayesian networks

$$
\begin{aligned}
P\left(X_{1: N}\right) & =P\left(X_{1}\right) P\left(X_{2} \mid X_{1}\right) P\left(X_{3} \mid X_{1}, X_{2}\right) \ldots \\
& =\prod_{i=1}^{N} P\left(X_{i} \mid X_{1: i-1}\right) \\
& =\prod_{i=1}^{N} P\left(X_{i} \mid X_{\pi_{i}}\right)
\end{aligned}
$$

Water sprinkler Bayes net

$$
\begin{aligned}
P(C, S, R, W) & =P(C) P(S \mid C) P(R \mid S, C) P(W \mid S, R, C) \text { chain rule } \\
& =P(C) P(S \mid C) P(R \mid S, C) P(W \mid S, R, C) \text { since } S \perp R \mid C \\
& =P(C) P(S \mid C) P(R \mid S, C) P(W \mid S, R, C) \text { since } W \perp C \mid S, I \\
& =P(C) P(S \mid C) P(R \mid C) P(W \mid S, R)
\end{aligned}
$$

Conditional Probability Distributions (CPDs)

- Associated with every node is a probability distribution over its values given its parents values.
- If the variables are discrete, these distributions can be represented as tables (CPTs).

Bayes nets provide compact representation of joint

 PROBABILITY DISTRIBUTIONS- For N binary nodes, need $2^{N}-1$ parameters to specify $P\left(X_{1}, \ldots, X_{N}\right)$.
- For BN, need $O\left(N 2^{K}\right)$ parameters, where $K=$ max. number of parents (fan-in) per node.
- e.g., $2^{4}-1=31$ vs $2+4+4+8=18$ parameters.

ALARM NETWORK

Intensive Care Unit monitoring

BAyES NET FOR GENETIC PEDIGREE ANALYSIS

- $G_{i} \in\{a, b, o\} \times\{a, b, o\}=$ genotype (allele) of person i
- $B_{i} \in\{a, b, o, a b\}=$ phenotype (blood type) of person i

Bayes net for genetic pedigree analysis - CPDs

- Mendels laws define $P\left(G \mid G_{p}, G_{m}\right)$
- Phenotypic expression specifies $P(B \mid G)$:

G	$P(B=a)$	$P(B=b)$	$P(B=o)$	$P(B=a b)$
a a	1	0	0	0
a b	0	0	0	1
a o	1	0	0	0
b a	0	0	0	1
b b	0	1	0	0
b o	0	1	0	1
o a	1	0	0	0
o b	0	1	0	0
o o	0	0	1	0

Inference (State estimation)

- Inference $=$ estimating hidden quantities from observed.
- Causal reasoning/ prediction (from causes to effects): how likely is it that clouds cause the grass to be wet? $P(w=1 \mid c=1)$

Inference (State estimation)

- Inference $=$ estimating hidden quantities from observed.
- Diagnostic reasoning (from effects to causes): the grass is wet; was it caused by the sprinkler or rain?

$$
P(S=1 \mid w=1) \text { vs } P(R=1 \mid w=1)
$$

- Most Probable Explanation:
$\arg \max _{s, r} P(S=s, R=r \mid w=1)$

Explaining away

- Explaining away (inter-causal reasoning)
- $P(S=1 \mid w=1, r=1)<P(S=1 \mid w=1)$

- Coins 1, 2 marginally independent, become dependent when observe their sum.

NAIVE INFERENCE

- We can compute any query we want by marginalizing the joint,e.g,

$$
\begin{aligned}
& P(s=1 \mid w=1)=\frac{P(s=1, w=1)}{P(w=1)} \\
& =\frac{\sum_{c, r} P(s=1, w=1, R=r, C=c)}{\sum_{c, r, s} P(S=s, w=1, R=r, C=c)} \\
& =\frac{\sum_{c, r} P(C=c) P(S=1 \mid C=c) P(R=r \mid C=c) P(W=1 \mid S=s, R=r}{\sum_{c, r, s} P(S=s, w=1, R=r, C=c)}
\end{aligned}
$$

- Takes $O\left(2^{N}\right)$ time
- Homework 1, question 3
- Example: medical diagnosis
- Given list of observed findings (evidence), such as
$-e_{1}:$ sex $=$ male
$-e_{2}$: abdomen pain $=$ high
$-e_{3}$: shortness of breath $=$ false
- Infer most likely cause:

$$
c^{*}=\arg \max _{c} P\left(c \mid e_{1: N}\right)
$$

APPROACH 1: LEARN DISCRIMINATIVE CLASSIFIER

- We can try to fit a function to approximate $P\left(c \mid e_{1: N}\right)$ using labeled training data (a set of $\left(c, e_{1: N}\right)$ pairs).
- This is the standard approach in supervised machine learning.
- Possible functional forms:
- Support vector machine (SVM)
- Neural network
- Decision tree
- Boosted decision tree
- See classes by Nando de Freitas:
- CPSC 340, Fall 2004 - undergrad machine learning
- CPSC 540, Spring 2005 - grad machine learning

Approach 2: Build generative model and use Bayes' RULE TO INVERT

- We can build a causal model of how diseases cause symptoms, and use Bayes' rule to invert:

$$
P\left(c \mid e_{1: N}\right)=\frac{P\left(e_{1: N} \mid c\right) P(c)}{P(e)}=\frac{P\left(e_{1: N} \mid c\right) P(c)}{\sum_{c^{\prime}} P\left(e_{1: N} \mid c^{\prime}\right) P\left(c^{\prime}\right)}
$$

- In words

$$
\text { posterior }=\frac{\text { class-conditional likelihood } \times \text { prior }}{\text { marginal likelihood }}
$$

Naive Bayes classifier

- Simplest generative model: assume effects are conditionally independent given the cause: $E_{i} \perp E_{j} \mid C$

$$
P\left(E_{1: N} \mid C\right)=\prod_{i=1}^{N} P\left(E_{i} \mid C\right)
$$

- Hence $P\left(c \mid e_{1: N}\right) \propto P\left(e_{1: N} \mid c\right) P(c)=\prod_{i=1}^{N} P\left(e_{i} \mid c\right) P(c)$

Naive Bayes classifier

- This model is extremely widely used (e.g., for document classification, spam filtering, etc) even when observations are not independent.

$$
P\left(c \mid e_{1: N}\right) \propto P\left(e_{1: N} \mid c\right) P(c)=\prod_{i=1}^{N} P\left(e_{i} \mid c\right) P(c)
$$

$P\left(C=\right.$ cancer $\mid E_{1}=$ spots, $E_{2}=$ vomiting, $E_{3}=$ fever $) \propto$ P (spots |cancer) P (vomiting \mid cancer $) \mathrm{P}($ fever \mid cancer $) \mathrm{P}(\mathrm{C}=$ cancer $)$

QMR-DT Bayes net

(Quick medical reference, DEcision theoretic)

DECISION THEORY

- Decision theory $=$ probability theory + utility theory.
- Decision (influence) diagrams $=$ Bayes nets + action (decision) nodes + utility (value) nodes.
- See David Poole's class, CS 522

POMDPs

- POMDP = Partially observed Markov decision process
- Special case of influence diagram (infinite horizon)

- HMM $=$ POMDP - action - utility
- Inference goal:
- Online state estimation: $P\left(X_{t} \mid y_{1: t}\right)$
- Viterbi decoding (most probable explanation): arg $\max _{x_{1: t}} P\left(x_{1: t} \mid y_{1: t}\right)$

Domain

Part-of-speech tagging Noun/ verb/ etc
Gene finding
Sequence alignment

Hidden state X
Words

Intron/ exon/ non-coding DNA
Insert/ delete/ match Amino acids
Observation Y
Spectogram
Words

Biosequence analysis using HMMs

- Structure learning (model selection): where does the graph come from?
- Parameter learning (parameter estimation): where do the numbers come from?

PARAMETER LEARNING

- Assume we have iid training cases where each node is fully observed: $D=\left\{c^{i}, s^{i}, r^{i}, w^{i}\right\}$.
- Bayesian approach
- Treat parameters as random variables.
- Compute posterior distribution: $P(\phi \mid D)$ (inference).
- Frequentist approach
- Treat parameters as unknown constants.
- Find best estimate, e.g., penalized maximum likelihood (optimization):

$$
\phi^{*}=\arg \max _{\phi} \log P(D \mid \phi)-\lambda C(\phi)
$$

STRUCTURE LEARNING

- Assume we have iid training cases where each node is fully observed:
$D=\left\{c^{i}, s^{i}, r^{i}, w^{i}\right\}$.
- Bayesian approach
- Treat graph as random variable.
- Compute posterior distribution: $P(G \mid D)$
- Frequentist approach
- Treat graph as unknown constant.
- Find best estimate, e.g., maxmimum penalized likelihood:

$$
G^{*}=\arg \max _{G} \log P(D \mid G)-\lambda C(G)
$$

Outline of class

- Representation
- Undirected graphical models
- Markov properties of graphs
- Inference
- Models with discrete hidden nodes
* Exact (e.g., forwards backwards for HMMs)
* Approximate (e.g., loopy belief propagation)
- Models with continuous hidden nodes
* Exact (e.g., Kalman filtering)
* Approximate (e.g., sampling)
- Learning
- Parameters (e.g., EM)
- Structure (e.g., structural EM, causality)

Review: Representation

- Graphical models encode conditional independence assumptions.
- Bayesian networks are based on DAGs.

$$
P(C, S, R, W)=P(C) P(S \mid C) P(R \mid C) P(W \mid S, R)
$$

Review: Inference (state estimation)

- Inference $=$ estimating hidden quantities from observed.

- Naive method takes $O\left(2^{N}\right)$ time

Review: Learning

- Structure learning (model selection): where does the graph come from?
- Parameter learning (parameter estimation): where do the numbers come from?

Outline

- Conditional independence properties of DAGs

Local Markov property

- Node is conditionally independent of its non-descendants given its parents.

$$
\begin{aligned}
P\left(X_{1: N}\right) & =P\left(X_{1}\right) P\left(X_{2} \mid X_{1}\right) P\left(X_{3} \mid X_{1}, X_{2}\right) \ldots \\
& =\prod_{i=1}^{N} P\left(X_{i} \mid X_{1: i-1}\right) \\
& =\prod_{i=1}^{N} P\left(X_{i} \mid X_{\pi_{i}}\right)
\end{aligned}
$$

Topological ordering

- If we get the ordering wrong, the graph will be more complicated, because the parents may not include the relevant variables to "screen off" the child from its irrelevant ancestors.

(a)

(b)

Local Markov property version 2

- A Node is conditionally independent of all others given its Markov blanket.
- The markov blanket is the parents, children, and childrens' parents.

Global Markov properties of DAGs

- By chaining together local independencies, we can infer more global independencies.
- Defn: $X_{1}-X_{2} \cdots-X_{n}$ is an active path in a DAG G given evidence E if

1. Whenever we have a v-structure, $X_{i-1} \rightarrow X_{i} \leftarrow X_{i+1}$, then X_{i} or one of its descendants is in E; and
2. no other node along the path is in E

- Defn: X is d-separated (directed-separated) from Y given E if there is no active path from any $x \in X$ to any $y \in Y$ given E.
- Theorem: $\mathbf{x}_{A} \perp \mathbf{x}_{B} \mid \mathbf{x}_{C}$ if every variable in A is d-separated from every variable in B conditioned on all the variables in C.

Chain

- Q: When we condition on y, are x and z independent?

$$
\mathrm{P}(\mathbf{x}, \mathbf{y}, \mathbf{z})=\mathrm{P}(\mathbf{x}) \mathrm{P}(\mathbf{y} \mid \mathbf{x}) \mathrm{P}(\mathbf{z} \mid \mathbf{y})
$$

which implies

$$
\begin{aligned}
P(\mathbf{x}, \mathbf{z} \mid \mathbf{y}) & =\frac{\mathrm{P}(\mathbf{x}) \mathrm{P}(\mathbf{y} \mid \mathbf{x}) \mathrm{P}(\mathbf{z} \mid \mathbf{y})}{\mathrm{P}(\mathbf{y})} \\
& =\frac{\mathrm{P}(\mathbf{x}, \mathbf{y}) \mathrm{P}(\mathbf{z} \mid \mathbf{y})}{\mathrm{P}(\mathbf{y})} \\
& =\mathrm{P}(\mathbf{x} \mid \mathbf{y}) \mathrm{P}(\mathbf{z} \mid \mathbf{y})
\end{aligned}
$$

and therefore $\mathbf{x} \perp \mathbf{z} \mid \mathbf{y}$

- Think of \mathbf{x} as the past, \mathbf{y} as the present and \mathbf{z} as the future.

Common Cause

\mathbf{y} is the common cause of the two independent effects \mathbf{x} and \mathbf{z}

- Q : When we condition on y , are x and z independent?

$$
\mathrm{P}(\mathbf{x}, \mathbf{y}, \mathbf{z})=\mathrm{P}(\mathbf{y}) \mathrm{P}(\mathbf{x} \mid \mathbf{y}) \mathrm{P}(\mathbf{z} \mid \mathbf{y})
$$

which implies

$$
\begin{aligned}
P(\mathbf{x}, \mathbf{z} \mid \mathbf{y}) & =\frac{\mathrm{P}(\mathbf{x}, \mathbf{y}, \mathbf{z})}{\mathrm{P}(\mathbf{y})} \\
& =\frac{\mathrm{P}(\mathbf{y}) \mathrm{P}(\mathbf{x} \mid \mathbf{y}) \mathrm{P}(\mathbf{z} \mid \mathbf{y})}{\mathrm{P}(\mathbf{y})} \\
& =\mathrm{P}(\mathbf{x} \mid \mathbf{y}) \mathrm{P}(\mathbf{z} \mid \mathbf{y})
\end{aligned}
$$

and therefore $\mathbf{x} \perp \mathbf{z} \mid \mathbf{y}$

Explaining Away

- Q: When we condition ơn y , are x and z independent?

$$
\mathrm{P}(\mathbf{x}, \mathbf{y}, \mathbf{z})=\mathrm{P}(\mathbf{x}) \mathrm{P}(\mathbf{z}) \mathrm{P}(\mathbf{y} \mid \mathbf{x}, \mathbf{z})
$$

- \mathbf{x} and \mathbf{z} are marginally independent, but given \mathbf{y} they are conditionally dependent.
- This important effect is called explaining away (Berkson's paradox.)
- For example, flip two coins independently; let $\mathbf{x}=\mathrm{coin} 1, \mathbf{z}=\mathrm{coin} 2$. Let $\mathbf{y}=1$ if the coins come up the same and $\mathbf{y}=0$ if different.
- \mathbf{x} and \mathbf{z} are independent, but if I tell you \mathbf{y}, they become coupled!
- y is at the bottom of a v -structure, and so the path from x to z is active given y (information flows through).

Bayes Ball Algorithm

- To check if $\mathbf{x}_{A} \perp \mathbf{x}_{B} \mid \mathbf{x}_{C}$ we need to check if every variable in A is d-separated from every variable in B conditioned on all vars in C.
- In other words, given that all the nodes in \mathbf{x}_{C} are clamped, when we wiggle nodes \mathbf{x}_{A} can we change any of the node \mathbf{x}_{B} ?
- The Bayes-Ball Algorithm is a such a d-separation test. We shade all nodes \mathbf{x}_{C}, place balls at each node in $\mathbf{x}_{A}\left(\operatorname{or} \mathbf{x}_{B}\right)$, let them bounce around according to some rules, and then ask if any of the balls reach any of the nodes in $\mathbf{x}_{B}\left(\operatorname{or} \mathbf{x}_{A}\right)$.

So we need to know what happens when a ball arrives at a node \mathbf{Y} on its way from \mathbf{X} to \mathbf{Z}.

Bayes-Ball Rules

- The three cases we considered tell us rules:

(a)

(a)

(a)

(b)

(b)

(b)

Bayes-Ball Boundary Rules

- We also need the boundary conditions:

(a)

(b)

(a)

(b)
- Here's a trick for the explaining away case: If \mathbf{y} or any of its descendants is shaded, the ball passes through.

(a)

(b)
- Notice balls can travel opposite to edge directions.

Examples of Bayes-Ball Algorithm

$$
\mathbf{x}_{1} \perp \mathbf{x}_{6} \mid\left\{\mathbf{x}_{2}, \mathbf{x}_{3}\right\} \quad ?
$$

Examples of Bayes-Ball Algorithm

$$
\mathbf{x}_{2} \perp \mathbf{x}_{3} \mid\left\{\mathbf{x}_{1}, \mathbf{x}_{6}\right\} \quad ?
$$

Notice: balls can travel opposite to edge directions.

I-EQUIVALENCE

- Defn: Let $I(G)$ be the set of conditional independencies encoded by DAG G (for any parameterization of the CPDs):

$$
I(G)=\{(X \perp Y \mid Z): Z \text { d-separates } \mathrm{X} \text { from } \mathrm{Y}\}
$$

- Defn: G_{1} and G_{2} are l-equivalent if $I\left(G_{1}\right)=I\left(G_{2}\right)$
- e.g., $X \rightarrow Y$ is l-equivalent to $X \leftarrow Y$
- Thm: If G_{1} and G_{2} have the same undirected skeleton and the same set of v -structures, then they are l-equivalent.

I-EQUIVALENCE

- If G_{1} is l-equivalent to G_{2}, they do not necessarily have the same skeleton and v -structures
- e.g., $I\left(G_{1}\right)=I\left(G_{2}\right)=\emptyset$:

- Corollary: We can only identify graph structure up to l-equivalence, i.e., we cannot always tell the direction of all the arrows from observational data.
- We will return to this issue when we discuss structure learning and causality.

