CS535c Fall 2004: Homework 2

Out Wed 22 Sep, Due Mon 27 Sep

1 I-maps for DAGs

[25 points, 3 per correct edge in the final Imap, plus 1 bonus if no errors.]
Consider the Bayes net G shown below. Draw the minimal I-map for $P(B, E, S, N, J, M)$ (i.e., marginalizing out the A variable), using the ordering B, E, S, N, J, M. You new model should have extra arcs, to compensate for the fact that A has been removed.

2 Independence in undirected Gaussian graphical models

[30 points, 10 per correct answer.]
Let x be a 4 dimensional Gaussian random variable with zero mean and covariance matrix Σ give by

$$
\Sigma=\frac{1}{45}\left(\begin{array}{cccc}
21 & -9 & 6 & -9 \\
-9 & 21 & -9 & 6 \\
6 & -9 & 21 & -9 \\
-9 & 6 & -9 & 21
\end{array}\right)
$$

For each of the following assertions, say whether it is true or false.

- $x_{1} \perp x_{3}$
- $x_{1} \perp x_{3} \mid x_{2}$
- $x_{1} \perp x_{3} \mid x_{2}, x_{4}$

3 Error correcting codes (Inference in factor graphs)

[45 points].

Consider the factor graph shown below, where circles represent binary random variables, and squares represent factors. X_{1}, X_{2}, X_{3} are message bits that we are trying estimate; X_{4} and X_{5} are odd parity check bits, i.e., they are true if an odd number of their parents are true, otherwise false. In otherwords, $X_{4}=X_{1} \oplus X_{2}$, and $X_{5}=X_{2} \oplus X_{3}$, where \oplus represents xor.

Suppose we receive noisy observations of all 5 bits; call these observations $Y_{1: 5}$. Let $F(s, i)=p\left(Y_{i} \mid X_{i}=s\right)$ be the local evidence vector at node i. Thus $F(:, i)=[1,0]$ means that X_{i} is observed to be in state $s=1, F(:, i)=[0,1]$ means that X_{i} is observed to be in state $s=2$, and $F(:, i)=[0.5,0.5]$ means that the observations about X_{i} are uninformative (uniform prior).

The joint distribution over all 5 bits is given by

$$
P\left(X_{1: 5} \mid y_{1: 5}\right)=\frac{1}{Z} g\left(X_{1}, X_{2}, X_{4}\right) \times g\left(X_{2}, X_{3}, X_{5}\right) \times \prod_{i=1}^{5} f_{i}\left(X_{i}\right)
$$

where g represents the parity check function and $f_{i}=F(:, i)$ is the local evidence. (Note that the evidence, $y_{1: 5}$, has been "compiled" into the local evidence potentials f_{i}.)

By marginalizing out the parity check bits (i.e., computing $P\left(X_{1: 3} \mid y_{1: 5}\right)$), we can decode the message. In general, there may not be a unique decoding (i.e., the posterior may have more than one mode).

Your task is to compute $P\left(X_{1: 3} \mid y_{1: 5}\right)$ and Z for the 5 different evidence scenarios below Just fill in the numbers in the table; the first column (scenario) has been done for you. Then answer the questions below. Note: You must vectorize your Matlab code; 2 point penalty for every unnecessary for loop!.

Hint: in Matlab, the parity check factor can be represented as a $2 \times 2 \times 2$ table shown below. Since Matlab indexes arrays starting with 1 , not 0 , I use state 1 to mean true (1) and state 2 to mean 0 (false). Also, note that Matlab toggles indices from left to right (Fortran memory layout, the opposite of C). Hence

```
% xorTbl (x1,x2,x3)=P(x3|x1,x2)
% x1 x2 P (x3=1) P (x3=2)
% 1 1 0 0 1
% 0
% 1 0
% 0}0000
xorTbl = reshape([[0 1 1 1 0 1 0 0 0 1], [2 2 2 2]);
```

Other commands you might find useful: ind2sub, repmat, warning off MATLAB: divideByZero.

1. (5 points). Draw the Markov network corresponding to the factor graph above
2. (0 points). In scenario 1, the local evidence is as follows, where $F(1, i)=p\left(y_{i} \mid X_{i}=1\right)$ (true) and $F(2, i)=$ $p\left(y_{i} \mid X_{i}=2\right)$ (false).
```
F = [0.5 0.5 0.5 0 0;
    0.5 0.5 0.5 1 1];
```

In other words, all the message bits are uncertain, but both parity checks are perfectly observed to be in state 2 (false). The value of Z and the distribution $P\left(X_{1: 3} \mid y_{1: 3}\right)$ is shown in column 1 of the table. Please list your answers in the same order!

X_{1}	X_{2}	X_{3}	S 1	S 2	S 3	S 4	S 5
1	1	1	0.5000	$?$	$?$	$?$	$?$
0	1	1	0.0000	$?$	$?$	$?$	$?$
1	0	1	0.0000	$?$	$?$	$?$	$?$
0	0	1	0.0000	$?$	$?$	$?$	$?$
1	1	0	0.0000	$?$	$?$	$?$	$?$
0	1	0	0.0000	$?$	$?$	$?$	$?$
1	0	0	0.0000	$?$	$?$	$?$	$?$
0	0	0	0.5000	$?$	$?$	$?$	$?$
Z			0.25	$?$	$?$	$?$	$?$

3. (4 points). What are the 2 most probable decode codewords in scenario 1 ? i.e., Compute $x_{1: 3}=\arg \max P\left(X_{1: 3} \mid y_{1: 5}\right)$. Explain why there are 2 modes in this distribution.
4. (9 points). In scenario 2 , the local evidence is as follows:
```
F = [0.9 0.5 0.5 0 0;
    0.1 0.5 0.5 1 1];
```

In other words, bit 1 is likely to be in state 1 , bits 2 and 3 are uncertain; all parities are in state 2 . Fill in column 2.
5. (9 points). In scenario 3, the local evidence is as follows:

```
F = [0.9 0.9 0.9 0 0;
    0.1 0.1 0.1 1 1];
```

In other words, bits 1-3 are likely to be in state 1 ; all parities are in state 2 . Fill in column 3 .
6. (9 points). In scenario 4, the local evidence is as follows:

```
F = [0.9 0.9 0 0 0;
    0.1 0.1 1 1 1];
```

In other words, bits $1-2$ are likely to be in state 1 , bit 3 is definitely in state 2 ; all parities are in state 2 . Fill in column 4.
7. (9 points). In scenario 5 , the local evidence is as follows:

```
F = [0.9 1 0 0 0;
    0.1 0 1 1 1];
```

In other words, bit 1 is likely in state 1 , bit 2 is definitely in state 1 , bit 3 is definitely in state 2 ; and all parities are in state 2 . Fill in column 5 . Explain your answer.

