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Probability theory is nothing but common sense reduced to calculation. — Pierre Laplace, 1812

1 Introduction
We are all familiar with the phrase “the probability that a coin will land heads is 0.5”. But what does this mean? There
are actually two different interpretations of probability. One is called the frequentist interpretation of probability.
In this view, probabilities represent long run frequencies of events. For example, the above statement means that, if
we flip the coin many times, we expect it to land heads about half the time. The other interpretation is called the
Bayesian interpretation of probability. In this view, probabilities represent measures of uncertainty or degrees of
belief [Jay03]. In the Bayesian view, the above statement means we think the coin is equally likely to land heads or
tails on the next toss.

One big advantage of the Bayesian interpretation is that it can be used to model our uncertainty about events that
do not have long term frequencies. For example, we might want to compute the probability that the polar ice cap
will melt by 2020AD. This event will happen zero or one times, but cannot happen repeatedly. Nevertheless, we
ought to be able to quantify our uncertainty about this event; based on how probable we think this event is, we will
make appropriate decisions/ take appropriate actions. We might also be interested in computing the probability of
counterfactual events, such as the probability that the ice cap would have melted in 2000AD if the Kyoto protocol
had not been ratified.

Despite the two different philosophical interpretations, the mathematics of probability theory remains the same. We
assume the reader is already familiar with the basic notions of probability and random variables, and simple descriptive
statistics, such as the mean and variance. (For an excellent introduction, see e.g., [Was04, Ric95]). However, below
we give a quick refresher. We then introduce a variety of probability distributions that will be used later.

2 Basics
2.1 Sample space and events

To formally define probability, we start with the notion of a sample space Ω, which is a set of possible outcomes.
Subsets of Ω are called events. For example, if we toss a coin twice then Ω = {HH, HT, TH, TT}. The event
that the first toss is heads is A = {HH,HT}. Another example is measuring the temperature. Here the event space
is IR = (−∞,∞). (Arguably the lower bound should be finite, but there is usually no harm in making the sample
space larger than needed.) The event that the observed temperature is larger than 10 but less than or equal to 23 is
A = (10, 23].

A function P () that assigns a real number to each event A is probability distribution if it satisfies the following
3 axioms:

1. P (A) ≥ 0 for every A

2. P (Ω) = 1

3. If A1, A2, . . . are disjoint, then

P (∪∞i=1Ai) =
∞∑

i=1

P (Ai) (1)
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Figure 1: Illustration of the binomial distribution Bi(n = 10, θ = 0.25). Source: [Bis06] Figure 2.1.

We assume the reader is familiar with the usual rules for manipulating probabilities (e.g., p(Ac) = 1 − p(A), where
Ac = Ω \A is the complement of A).

2.2 Random variables

A random variable (rv) is a mapping
X : Ω→IR (2)

that assigns a real number X(ω) to every outcome ω. For example, let X(ω) be the number of heads in sequence ω.
Then if ω = HHTHHTHHTT , then X(ω) = 6. Often we talk about random variables directly, and ignore the
underlying sample space. If X(ω) can take on a countable set of values, then X is called a discrete random variable,
otherwise it is called a continuous random variable. We shall initially focusing on discrete rv’s for simplicity.

Consider a binary random variable (rv) X with two possible states, X ∈ {0, 1}. For example, X = 1 could
represent the event that we tossed heads, and Y = 0 could represent the event that we tossed tails. Or X = 1 could
represent the fact that someone is female, and X = 0 represents male. We say that X is binary and has a Bernoulli
distribution:

p(X|θ) = Be(X|θ) = θX(1− θ)1−X (3)

where p(X = 1) = θ. The generalization of this to multiple coin tosses, where X ∈ {0, . . . , n} is the number of
heads in n trials, yields the Binomial distribution (Figure 1):

p(x|n) =
(

n
x

)
θx(1− θ)n−x = Bi(θ, n) (4)

where (
n
x

)
=

n!
(n− x)!x!

(5)

is the number of ways to choose x items from n.
This can be generalized to K-ary random variables, e.g., imagine spinning a dice N times, and let Xj be the

number of times face j showed up, for j = 1, . . . ,K = 6. We say that X has a multinomial distribution:

p(x|n, θ) =
(

n

x1 . . . xK

) K∏

j=1

θ
xj

j (6)

where θj is the probability of face j showing up. (For a fair dice, θj = 1/6.) We have
∑K

j=1 xj = n. If the sample
size is n = 1, this simplifies to

p(x|θ) = Mu(x|1, θ) =
K∏

j=1

θ
xj

j (7)
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Figure 2: An example of a joint probability distribution p(X, Y ), where Y ∈ {1, 2} and X ∈ {1, . . . , 9}. Top left shows some
samples from the joint, where the x coordinates have been jittered within each bin so that they can be seen. Top right: the marginal
p(Y ). Bottom left: the marginal p(X). Bottom right: the conditional p(X|Y = 1). Source: [Bis06] Figure 1.11.

where xj ∈ {0, 1} and only one bit is turned on. In this case, we can think of X as a K-state random variable, and
θj = p(X = j) is the probability of being in state j. We will write this as

p(X|θ) =
K∏

j=1

θ
I(X=j)
j (8)

where I(·) is the indicator function which is 1 if its argument is true and 0 otherwise.

2.3 Joint, marginal and conditional distributions

Now suppose X ∈ {1, 2} and Y ∈ {1, . . . , 9}. We can represent the joint probability distribution p(X,Y ) as a
2 × 9 table of numbers.1 If we sample from this distribution to get a dataset (xi, yi) for i = 1 : n (where n is the
sample size), we expect to get more points in the bins that have higher joint probability. See Figure 2 for an example.

The sum rule specifies how to compute a marginal distribution from a joint distribution:

p(X = i) =
K∑

j=1

p(X = i, Y = j) (9)

This amounts to summing up along the Y dimension: see Figure 2. We can also do this with more than two variables.
For example, Figure 3 illustrates computing p(x, y) =

∑
z p(x, y, z).

1We use lower-case p to denote either a probability density function (for continuous rv’s) or a probability mass function (for discrete rv’s). Also,
we follow the standard convention that random variables are denoted by upper case letters, and values of random variables are denoted by lower
case letters. However, when we start treating parameters as random variables we will use usually use lower-case greek letters for both the variable
and its value.
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Figure 3: Computing p(x, y) =
P

z p(x, y, z) by marginalizing over dimension Z. Source: Sam Roweis.

Figure 4: Computing p(x, y) = p(x)p(y), where X⊥Y . Source: Sam Roweis.

We define the conditional probability distribution as

p(X = i|Y = j) =
p(X = i, Y = j)

p(Y = j)
(10)

provided p(Y = j) > 0, where p(Y = j) =
∑

i p(X = i, Y = j) by the sum rule. The product rule specifies how
to compute a joint distribution from the product of a marginal and a conditional distribution:

p(X = i, Y = j) = p(X = i|Y = j)p(Y = j) = p(Y = j|X = i)p(X = i) (11)

The product rule can be applied multiple times to yield the chain rule of probability:

p(X1, . . . , Xd) = p(X1)p(X2|X1)p(X3|X2, X1) . . . p(Xn|X1:d−1) (12)

where we introduce the notation 1 : d− 1 to denote {1, 2, . . . , d− 1}.

2.4 Conditional independence

We can simplify the chain rule by making conditional independence assumptions. We say Z and Y are conditionally
independent given X , written as Z⊥Y |X , if and only if (iff) p(Z, Y |X) = p(Z|X)p(Y |X).

If X and Y are unconditionally or marginally independent, X⊥Y , we can write p(X,Y ) = p(X)p(Y ). Hence
we can represent the joint as an outer product of the two marginals: see Figure 4.
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Figure 5: Computing p(x, y|z) by extracting the slice from p(x, y, z) corresponding to Z = z and then renormalizing. Source:
Sam Roweis.

HIV- HIV+
Test- 97,902 5 97,907
Test+ 1,998 95 2,093

99,900 100 100,000

Table 1: Some statistics on a hypothetical HIV test.

2.5 Bayes rule

Combining the definition of conditional probability with the product and sum rules yields Bayes rule:

p(X = i|Y = j) =
p(Y = j|X = i)p(X = i)

p(Y = j)
(13)

where
p(Y = j) =

∑

i

p(Y = j|X = i)p(X = i) (14)

is just the sum over the numerator.
We can think of p(X|Y = j) as extracting the row from p(X, Y ) that corresponds to Y = j and renormalizing.

For example, Figure 2 shows p(X|Y = 1) and Figure 5 shows p(X, Y |z). However, we can also think of it as a way
of “inverting” p(Y |X) to get p(X|Y ). This is illustrated in the example below.

Let us consider an example of Bayes rule from [SAM04, p52]. Suppose a new home HIV test has 95% sensitivity
and 98% specifity, and is to be used in a population of size 100,000 with an HIV prevalence of 1/1000. We expect

1
1000 × 100, 000 = 100 people to be truly HIV positive, of whom 95% (95) will test positive. Of the 99,900 negative
individuals, we expect 2% (1998) to test positive. Thus of the 1998+5=2003 who test positive, only 95/2093 = 4.5%
are truly HIV positive. Hence over 95% of the people testing positive will not in fact have HIV! This is illustrated in
Table 1.

Let us see how this conclusion follows from Bayes’ rule. Let H1 be the hypothesis that the person is truly negative
and H0 be the hypothesis that the person is truly positive. x is the event the person tests positive. Then the model
becomes

P (H0) = 0.001, p(x|H0) = 0.95, p(x|H1) = 0.02 (15)

Hence

P (H0|x) =
p(x|H0)p(H0)

p(x)
(16)

=
0.95× 0.001

0.95× 0.001 + 0.02× 0.999
= 0.045 (17)
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Later we show how to use Bayes rule to classify items (such as email) into different groups (such as spam or
not-spam) using a naive Bayes classifier.

2.6 Functions of a random variable

Suppose X ∈ 1 : 10 has a uniform distribution, so p(X = i) = 0.1 if i ∈ 1 : 10. Consider another rv Y = g(X),
where g is some function. We can compute p(Y = y) by simply summing up the probability mass for all the x’s such
that g(x) = y. For example, if g(X) = 1 if X is even and g(X) = 0 otherwise, then

p(Y = 1) =
∑

x∈{2,4,6,8,10}
p(x) = 5/10 (18)

and p(Y = 0) = 0.5 similarly. Note that in this example, g is a many-to-one function.

3 Discrete random variables
3.1 Bernoulli distribution

Let X ∈ {0, 1} be a binary random variable (e.g., a coin toss). Suppose p(X = 1) = θ. Then

p(X|θ) = Be(X|θ) = θX(1− θ)1−X (19)

is called a Bernoulli distribution. It is easy to show that

mean = p(X = 1) = θ (20)
mode = I(θ > 0.5) (21)

var = θ(1− θ) (22)

The mode is the most probable value, and is 1 if θ > 0.5 and is 0 otherwise.

3.2 Binomial distribution

Let X be the number of heads out of n trials. It has distribution

Bin(X|n, θ) =
(

n
X

)
θX(1− θ)n−X (23)

where (
N
X

)
=

N !
(N −X)!X!

(24)

is the number of ways to choose X items from N . This is called a binomial distribution. See Figure 1 for an example.
The distribution has the following properties:

mean = nθ (25)
mode = b(n + 1)θc (26)

var = nθ(1− θ) (27)

Note that the mode cannot be found by differentiation, since this is a discrete distribution. But since the distribution
increases monotonically and then decreases monotonically, a mode does exist, and is the integer m such that

(n + 1)θ − 1 < m ≤ (n + 1)θ (28)

3.3 Multinomial distribution

The multivariate version of a binomial is called a multinomial. Suppose we have an urn with contains balls with
colors 1, 2, . . . , K. Let the probability that we draw a ball of color j be θj . Suppose we draw n balls in total. Let
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X = (X1, . . . , XK) be a random vector, where Xj is the number of balls of color j. Then X has a multinomial
distribution with parameters n, θ, written X ∼ Mu(n, θ). The pmf is

p(X|n, θ) =
(

n

x1 . . . xK

) K∏

j=1

θ
xj

j (29)

where (
n

x1 . . . xK

)
=

n!
x1!x2! · · ·xK !

(30)

and n =
∑K

k=1 xk. The distribution has the following properties:

mean = nθ (31)
cov = Σ (32)
Σii = nθi(1− θi) (33)
Σij = −nθiθj (34)

It can be shown that the marginals are binomial, i.e.,

p(Xj |n, θ) =
∑

X−j

Mu(X|n, θ) = Bin(n, θj) (35)

where the sum is over all the variables except Xj .
Often we will consider the case where n = 1, so only one Xj = 1 and the rest are 0. In this case, we can think of

X as being a categorical random variable with K states (values). If X = j, we represent it as a binary vector with
only the j’th bit on; this is called a 1-of-K encoding. In this case, the pmf becomes

p(X|θ) = Mu(X|1, θ) =
K∏

j=1

θ
I(xj=1)
j (36)

where I(x = j) = 1 if x = j and I(x = j) = 0 otherwise.

3.4 Poisson distribution

The Poisson distribution with parameter λ > 0 is defined by

P (X = k) =
λk

k!
e−λ, k = 0, 1, 2 . . . (37)

Since eλ =
∑∞

k=0(λ
k/k!), it follows that this sums to 1. See Figure 6 for some examples. The Poisson distribution

can be derived as the limit of a binomial distribution as N→∞ and p→0 such that Np = λ.

4 Continuous random variables
In the examples above, p(X = i) is the probability that X takes on value i; this probability mass function (pmf)
satisfies

∑
i p(X = i) = 1. If X is a continuous random variable, e.g., X ∈ IR or X ∈ IR+, then we use a probability

density function (pdf) which satisfifes
∫

S
p(X = x)dx = 1, where we integrate over the support S of the distribution

(the set of points with non zero probability). It is called a density because we must multiply it by an interval of size
dx to find the probability of being in that interval:

p(x)dx ≈ P (x ≤ X ≤ x + dx) (38)

See Figure 7. We require p(x) ≥ 0, but it is possible for p(x) > 1 for any given x, so long as the density integrates
to 1:

∫
S

p(x)dx = 1. The Gaussian or normal distribution is an example that you are probably already familiar with:
see Section 4.1.
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Figure 6: Some Poisson pmf’s. Made with poissonDemo.

xδx

p(x) P (x)

Figure 7: A probability density function p(x) on a continuous random variable x, together with its cumulative distribution function
P (x). Source: [Bis06] Figure 1.12.

The probability that X lies in an interval (a, b) is given by

p(a ≤ X ≤ b) =
∫ b

a

p(x)dx (39)

The probability that X lies in the interval (−∞, x) is given by

p(X ≤ x) def= P (x) =
∫ x

−∞
p(x′)dx′ (40)

P (x) is called the cumulative distributions function (cdf). Clearly p(x) = d
dxP (x).

The quantiles of a distribution are defined as follows. Let f be a pdf, and let f(α) be the point beyond which f
has probability α:

pf (x > f(α)) = α (41)

The quantity f(α) is called the α quantile of distribution f . For example, if α = 0.5, then f(α) is the median. We
can compute a 1− α confidence interval for X as follows:

P (f(1− α/2) ≤ X ≤ f(α/2)) = 1− α (42)

If we set α = 0.05, then we get a 95% confidence interval. See Figure 8 for an example.
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Figure 8: A N (0, 1) distribution with the zα/2 cutoff points shown. The central non shaded area contains 1− α of the probability
mass. If α = 0.05, then zα/2 = 1.96 ≈ 2.

Figure 9: An example of a complex 2D pdf. Source: [Bis06] Figure 2.23.

Note that we can define joint pdf’s on two or more variables. For example, Figure 9 shows a complex 2D pdf.
Given a joint p(x, y), we can define marginals and conditionals by analogy to the discrete case, just replacing sums
with integrals:

p(x) =
∫

p(x, y)dy (43)

p(x|y) =
p(x, y)∫
p(x, y)dx

(44)

Of course, evaluating these integrals may be difficult, especially in high dimensional spaces (i.e., where there are many
variables in the joint). We will consider a variety of computational techniques for efficient approximate integration
later.

4.1 Univariate Gaussian distribution

The Gaussian or normal distribution gives rise to the famous bell-shaped curve in Figure 10. For one-dimensional
variables, this is defined as

N (x|µ, σ) def=
1√

2πσ2
e−

1
2σ2 (x−µ)2 (45)

µ is the mean and σ2 is the variance. Note that sometimes we will use the precision parameter λ = 1/σ2 instead of
the variance, which we shall write as

Nλ(x|µ, λ) (46)
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Function Matlab R
density normpdf dnorm
cdf normcdf pnorm
inverse cdf (quantiles) norminv qnorm
sampling randn rnorm

Table 2: Translation between Matlab and R for common functions related to univariate gaussians.
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Figure 10: A standard normal pdf and cdf. The matlab code used to produce these plots is xs=-3:0.01:3;
plot(xs,normpdf(xs,mu,sigma)); plot(xs,normcdf(xs,mu,sigma)); , where xs =
[−3,−2.99,−2.98, . . . , 2.99, 3.0] is a vector of points at which the density is evaluated.

Since the distribution is symmetric, µ is also the mode. In other words, the distribution has these properties

mean = µ (47)
mode = µ (48)

var = σ2 (49)

See Table 2 for some useful functions in Matlab/ R for manipulating Gaussians.
If Z ∼ N (0, 1), we say Z follows a standard normal distribution. Its cumulative distribution function (cdf) is

defined as

Φ(x) =
∫ x

−∞
p(z)dz (50)

which is called the probit distribution. This has no closed form expression, but is built in to most software packages
(eg. normcdf in the matlab statistics toolbox). In particular, we can compute it in terms of the error (erf) function

Φ(x;µ, σ) = 1
2 [1 + erf(z/

√
2)] (51)

where z = (x− µ)/σ and

erf(x) def=
2√
π

∫ x

0

e−t2dt (52)

Let us see how we can use the cdf to compute how much probability mass is contained in the interval µ ± 2σ. If
X ∼ N (µ, σ2), then Z = (X − µ)/σ ∼ N (0, 1). The amount of mass contained inside the 2σ interval is given by

p(a < X < b) = p(
a− µ

σ
< Z <

b− µ

σ
) (53)

= Φ(
b− µ

σ
)− Φ(

a− µ

σ
) (54)
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Figure 11: Some Gascale(α, β) distributions. Left: we fix the scale β = 1. If α ≤ 1, the maximum is at 0, and the distribution
decays faster the smaller α gets. If α > 1, the distribution has a maximum that is not at 0, and this peak shifts to the right the
larger α gets. Right: to illustrate the effect of changing scale, we plot some pdfs for β = 1 and β = 2. We see that increasing β
“stretches” the curves, and therefore decreases the height of the peak. Figures generated by gammaDistPlot.

Since
p(Z ≤ −1.96) = normcdf(−1.96) = 0.025 (55)

we have
p(−1.96σ < X − µ < 1.96σ) = 1− 2× 0.025 = 0.95 (56)

Often we approximate this by replacing 1.96 with 2, and saying that the interval µ± 2σ contains 0.95 mass.
The α quantile is given by the value z(α) such that P (Z ≥ z(α)) = α, or P (Z ≤ z(α)) = 1− α:

z(α) = Φ−1(1− α) (57)

For example, if α = 0.025, we find

z(0.025) = norminv(1− 0.025) = 1.96 (58)

4.2 Gamma distribution

The gamma distribution is a flexible distribution for positive real valued rv’s, x > 0. It is defined in terms of two
parameters. There are two common parameterizations. This is the one used by Bishop [Bis06] (and many other
authors):

Garate(x|shape = a, rate = b) =
ba

Γ(a)
xa−1e−xb, x, a, b > 0 (59)

The second parameterization (and the one used by Matlab) is

Gascale(x|shape = α, scale = β) =
1

βαΓ(α)
xα−1e−x/β = Ga(x|α, 1/β) (60)

Note that the shape parameter controls the shape; the scale parameter merely defines the measurement scale (the
horizontal axis). The rate parameter is just inverse scale. See Figure 11 for some examples. This distribution has the
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following properties (using the rate parameterization):

mean =
a

b
(61)

mode =
a− 1

b
for a ≥ 1 (62)

var =
a

b2
(63)

4.3 Change of variables formula

Let X be an rv with pdf px(x), and let Y = g(X) for some function g. What is py(y)? This is harder to answer than
in the discrete case, because px and py are probability densities, so instead we should work with the cdf’s.

Let us consider an example, where g(X) = aX + b for a > 0. Then

PY (y) = P (Y ≤ y) (64)
= P (aX + b ≤ y) (65)

= p(X ≤ y − b

a
) (66)

= PX(
y − b

a
) (67)

Hence

pY (y) =
d

dy
PX(

y − b

a
) (68)

=
1
a
px(

y − b

a
) (69)

The case for a < 0 can be analyzed similarly.
In general, we have the following result, which is called the change of variables formula.
Theorem Let X be a continuous rv with density px(x) and let Y = g(X), where g is strictly monotonic (so

x = g−1(y) exists) and g is differentiable on some interval I . Suppose that px(x) = 0 for x 6∈ I . Then Y has the
density

py(y) = px(x)|dx

dy
| (70)

where x = g−1(y). We set py(y) = 0 if y 6= x for any x ∈ I .
Using the example above, we have

g−1(y) =
y − b

a
(71)

d

dy
g−1(y) =

1
a

(72)

py(y) =
1
|a|px(

y − b

a
) (73)

The term |dx
dy | is called the Jacobian. We use the absolute value of the derivative because we are only interested in

how the unit measure changes in magnitude. (For example, we don’t care if a > 0 or a < 0.)
We can understand this result more intuitively as follows. Observations falling in the range (x, x + δx) will get

transformed into (y, y + δy), where px(x)δx ≈ py(y)δy . Hence py(y) = px(x)|dx
dy |.

One consequence of this is that the maximum of a pdf depends on the parameterization (choice of variable).
We can extend the above analysis to joint distributions. Suppose x1, x2 have joint distribution px(x1, x2) and let

(y1, y2) = g(x1, x2), where g is an invertible transform. Then

py(y1, y2) = px(x1, x2)|Jx/y| = px(x1, x2)|J−1
y/x| (74)
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where J is the Jacobian (how much the unit volume changes), defined as

Jx/y =
∂(x1, x2)
∂(y1, y2)

def= det

(
∂x1
∂y1

∂x1
∂y2

∂x2
∂y1

∂x2
∂y2

)
(75)

where det is the determinant (since we use |J | to denote absolute value). Thus J is a scalar. More mnemonically , we
can write this as

pnew = pold|Jold/new| = pold|J−1
new/old| (76)

As an example, consider transforming a density from polar (r, θ) to Cartesian (x, y) coordinates:

(r, θ) → (x = r cos θ, y = r sin θ) (77)

Then

Jnew/old =
∂(x, y)
∂(r, θ)

(78)

= det
(

∂x
∂r

∂x
∂θ

∂y
∂r

∂y
∂θ

)
(79)

= det
(

cos θ −r sin θ
sin θ r cos θ

)
(80)

= −r sin2 θ − r cos2 θ (81)
= = −r (82)

Hence
pX,Y (x, y) = pR,Θ(r, θ)|J−1

new/old| = pR,Θ(r, θ)
1
r

(83)

To see this geometrically, notice that

pR,Θ(r, θ)drdθ = P (r ≤ R ≤ r + dr, θ ≤ Θ ≤ θ + dθ) (84)

is the area of the shaded patch in Figure 12, which is clearly rdrdθ, times the density at the center of the patch. Hence

P (r ≤ R ≤ r + dr, θ ≤ Θ ≤ θ + dθ) = pX,Y (r cos θ, r sin θ)r dr dθ (85)

Hence

pR,Θ(r, θ) = pX,Y (r cos θ, r sin θ)r (86)

4.4 Central limit theorems

There are a large number of limit theorems in statistics which describe the behavior of sums (and other functions) of
independent random variables as the number of summands tends to infinity. The details are beyond the scope of this
chapter. Here we just informally state the most famous of such theorems, the central limit theorem.

Let X1, . . . , Xn be iid with mean µ and variance σ2. Let Xn = 1
n

∑n
i=1 Xi. Then

Zn =
√

n(Xn − µ)
σ

→ N (0, 1) (87)

i.e., sums of iid rv’s converge (in distribution) to a Gaussian (normal) distribution. See Figure 13 for an example.
One reason this is useful is the following. If we have a variable that is subject to a large number of additive random

effects, then rather than modeling each factor separately, we can model their net effect, which is to add Gaussian noise
to the variable. Thus we use a Gaussian to summarize our ignorance of the true causes of the output. (The Gaussian
can also be motivated by the fact that it is the unique distribution which maximizes the entropy subject to first and
second moment constraints. We discuss this later.)
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Figure 12: Change of variables from polar to Cartesian. The area of the shaded patch is rdrdθ. Source: [Ric95] Figure 3.16.
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Figure 13: The central limit theorem in pictures. We plot a histogram of 1
M

PM
i=1 xi, where xi ∼ U(0, 1). As M→∞, the

distribution tends towards a Gaussian. Source: [Bis06] Figure 2.6.

5 Moments of a distribution
Since probability distributions can be quite complex, we often characterize them in terms of some simple scalar
quantities, which capture the basic shape of the distribution. We consider some of the most important quantities
below.

5.1 Expectation

We define the expected value of an RV X to be

µX
def= E X

def=
∑

x

xp(X = x) (88)

We replace the sum by an integral if X is continuous. By linearity of expectation, we can push E inside
∑

:

E

(∑

i

aiXi

)
=

∑

i

aiE (Xi) (89)

where the ai are constants. If X is a random vector,

X =




X1

...
Xp


 (90)

then its mean is denoted by

~µ =




µ1

...
µp


 (91)
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Note that we will often just write µ instead of ~µ. If a is a vector and A a matrix, we have the following two important
results (which follow from linearity of expectation):

E (aT X) = aT µ (92)
E (AX) = Aµ (93)

In particular, for any two random variables X ,Y , whether independent or not, we have

E [aX + bY + c] = aE X + bE Y + c (94)

Also, if X ,Y are independent,
E [XY ] = [E X][E Y ] (95)

The conditional expectation is defined as

E (X|Y = y) def=
∑

x

x p(x|y) (96)

Note that whereas E (X) is a number, E (X|Y ) is a function of Y . The important rule of iterated expectations is

E [E (Y |X)] = E (Y ) (97)

This is easy to prove:

E [E (Y |X)] =
∑

x

E (Y |X = x)p(X = x) (98)

=
∑

x

∑
y

yp(Y = y|X = x)p(X = x) (99)

=
∑

y

y

[∑
x

p(Y = y, X = x)

]
(100)

=
∑

y

yp(Y = y) (101)

= E Y (102)

5.1.1 Trace trick

We will frequently have to compute the expected value of a weighted inner product, E [xT Ax]. The way to do this is
to realise that xT Ax is a scalar, and hence xT Ax = tr(xT Ax), where tr(A) =

∑
ii Aii is the trace of a matrix. Now

using the cyclic permutation property of the trace operator

tr(ABC) = tr(CAB) = tr(BCA) (103)

we get
xT Ax = tr(xT Ax) = tr(AxxT ) (104)

This is called the trace trick. Hence

E [xT Ax] = E [tr(xT Ax)] = E [tr(AxxT )] (105)
= tr(AE [xxT ]) = tr(A(Σ + mmT )) (106)
= tr(AΣ) + mT Am (107)

where E x = m and Covx = Σ.
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5.2 Variance

The variance is a measure of spread:

σ2 def= VarX = E(X − µ)2 (108)

=
∫

(x− µ)2p(x)dx (109)

=
∫

x2p(x)dx + µ2

∫
p(x)dx− 2µ

∫
xp(x)dx (110)

= E[X2]− µ2 (111)

from which we infer the useful result E[X2] = µ2 + σ2. The standard deviation is defined as

σX
def=
√

Var X (112)

It is easy to show
Var (aX + b) = a2Var (X) (113)

where a and b are constants.
The variance of a sum is

Var [X + Y ] = Var X + Var Y + 2Cov(X,Y ) (114)

The conditional variance is defined as

Var (Y |X = x) def=
∑

y

(y − E (Y |x))2 p(y|x) (115)

The rule of iterated variance is
Var (Y ) = E Var (Y |X) + Var E (Y |X) (116)

This can be proved as follows. Let µ = E[Y |X]. Then

E Var (Y |X) + Var E (Y |X) = E
[
E(Y 2|X)− µ2

]
+ E[µ2]− [E2µ] (117)

= E(Y 2)− E[µ2] + E[µ2]− E2(µ) (118)
= E(Y 2)− (E(E[Y |X]))2 (119)
= E(Y 2)− (E2Y ) (120)
= Var Y (121)

5.3 Covariance

The covariance between two RVs X and Y is defined as

Cov(X, Y ) def= E ((X − µX)(Y − µY )) (122)
= E (XY )− E (X)E (Y ) (123)

If X is a random vector, its covariance matrix is defined to be

Var (X) = Σ def= E [(X − E X)(X − E X)′] =




Var (X1) Cov(X1, X2) · · · Cov(Xp, Xp)
Cov(X2, X1) Var (X2) · · · Cov(X2, Xp)

...
...

. . .
...

Cov(Xp, X1) Cov(Xp, X2) · · · Var (Xp)


 (124)

If a is a vector and A a matrix, we have the following two important results:

Var (aT X) = aT Σa (125)
Var (AX) = AΣAT (126)
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The conditional covariance is defined as

Cov(X,Y |Z = z) def=
∑
x,y

p(x, y|z)(x− E (x|z))(y − E (Y |z)) (127)

which is a function of Z.

5.3.1 Correlation

The correlation is defined as

ρ(X,Y ) def=
Cov(X, Y )

σXσY
(128)

We can show −1 ≤ ρ(X, Y ) ≤ 1 as follows.

0 ≤ Var (
X

σX
+

Y

σY
) (129)

= Var (
X

σX
) + Var (

Y

σY
) + 2Cov(

X

σX
,

Y

σY
) (130)

=
Var X

σX
+

Var Y

σY
+ 2Cov(

X

σX
,

Y

σY
) (131)

= 1 + 1 + 2ρ (132)

Hence ρ ≥ −1. Similarly,

0 ≤ Var (
X

σX
− Y

σY
) = 2(1− ρ) (133)

so ρ ≤ 1.
If Y = aX + b, then ρ(X,Y ) = 1 if a > 0 and ρ(X, Y ) = −1 if a < 0. Thus correlation only measures linear

relationships between RVs. If X and Y are independent, then Cov(X, Y ) = ρ = 0; however, the converse is not true,
as we see below.

The partial correlation coefficient is defined as

rXY |Z
def=

rXY − rXZrY Z√
(1− r2

XZ)(1− r2
Y Z)

(134)

and measures the linear dependence of X and Y when Z is fixed.

5.3.2 Uncorrelated does not necessarily imply independent

.
Consider two RVs X, Y ∈ {−1, 0, 1} with the following joint distribution:

p(X, Y ) =




X/Y | 0 −1 1
−1| 0.25 0 0
0| 0 0.25 0.25
1| 0.25 0 0


 (135)

The marginal distributions are clearly p(X) = p(Y ) = (0.25, 0.5, 0.25). We will first show that X and Y are
uncorrelated. We have

E (X, Y ) =
∑

x∈{−1,0,1}

∑

y∈{−1,0,1}
x y p(x, y) (136)

= −1 · 0 · 0.25 + 0 · −1 · 0.25 + 0 · 1 · 0.25 + 1 · 0 · 0.25 = 0 (137)

and

E X =
∑

x∈{−1,0,1}
xp(x) = −1 · 0.25 + 0 · 0.5 + 1 · 0.25 = 0 (138)
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Similarly E Y = 0. Hence
Cov(X,Y ) = E (X, Y )− E (X)E (Y ) = 0− 0 (139)

However, it is easy to see that X and Y are not independent: i.e., p(X, Y ) 6= p(X)p(Y ). We can simply multiply out
the two marginals, c.f., Figure 4.




0.25
0.5
0.25


(

0.25 0.5 0.25
)

=




0.0625 0.1250 0.0625
0.1250 0.2500 0.1250
0.0625 0.1250 0.0625


 (140)

5.4 Moment generating functions

The moment generating function of an rv X is M(t) = E[etX ] if the expectation is defined. In the continuous case,
this is

M(t) =
∫ ∞

−∞
etxp(x)dx (141)

The derivative is

M ′(t) =
d

dt

∫ ∞

−∞
etxp(x)dx =

∫ ∞

−∞
xetxp(x)dx (142)

Hence

M ′(0) =
∫ ∞

−∞
p(x)dx = E[X] (143)

Differentiating r times, we find
M (r)(0) = E[Xr] (144)

Let us consider the Gamma distribution as an example. The mgf is

M(t) =
∫ ∞

0

etx λα

Γ(α)
xα−1e−λxdx (145)

=
λα

Γ(α)

∫ ∞

0

xα−1ex(t−λ)dx (146)

This integral is equivalent to an unnormalized Gamma density with parameters α and λ− t, and hence is equal to the
normalizing constant ∫ ∞

0

xα−1ex(t−λ)dx =
Γ(α)

(λ− t)α
(147)

Hence

M(t) =
λα

Γ(α)
Γ(α)

(λ− t)α
=

(
λ

λ− t

)α

(148)

Differentiating we find

M ′(0) = E[X] =
α

λ
(149)

M ′′(0) = E[X2] =
α(α + 1)

λ2
(150)

Hence

Var [X] = E[X2]− (E[X])2 =
α(α + 1)

λ2
− α2

λ2
=

α

λ2
(151)
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6 Alternatives to probability theory
[This section, which is based on [RN02, sec 14.7], will not be on the exam, and is included only for background
interest.]

Various alternatives to probability theory have been explored by philosophers and some members of the AI (artifi-
cial intelligence) community. We will see that all of them are unnecessary, and many are inconsistent.

Fuzzy logic is sometimes touted as an alternative to probability theory. However, it addresses a different sort of
uncertainty. Probability theory assumes that an event either is true or is not, but we are uncertain of its state; this
is called epistemological uncertainty. Fuzzy logic assumes that an event can be true to different degrees, but we
know this degree; this is called ontological uncertainty (vagueness). For example, the statement “Nate is tall” is
not obviously true or false; one might want to say “sort of”. So we treat Tall(Nate) as a number between 0 and 1,
representing degree of membership of the fuzzy set of tall people. Possibility theory adds epistemological uncertainty
on top of ontological uncertainty.

In fuzzy logic, the truth of an atomic proposition T (A) is the degree to which A belongs to the fuzzy set A. The
rules for evaluating the fuzzy truth T of a logical sentence are

T (A ∧B) = min(T (A), T (B)) (152)
T (A ∨B) = max(T (A), T (B)) (153)

T (¬A) = 1− T (A) (154)

This is called a truth-functional system, since the truth of a sentence is a function of the truth of its parts. Un-
fortunately, this is a serious problem. For example, suppose T (Tall(Nate)) = 0.6 and T (Heavy(Nate)) = 0.4.
Then T (Tall(Nate) ∧ Heavy(Nate)) = 0.4, which seems reasonable, but we also get the result T (Tall(Nate) ∧
¬Tall(Nate)) = 0.4 which does not seem reasonable. (It violates the law of excluded middle, which says Nate is
either tall or is not.) The problem arises because truth-functional systems cannot handle the correlations between the
component propositions.

A much better approach to epistemological uncertainty is to use standard (Bayesian) probability theory, where we
model our uncertainty about the definition of the word “tall”. This can be represented as uncertainty over the members
of the set of tall people. We will see similar examples when we look at Bayesian concept learning, and in particular
the “number game”.

Dempster-Shafer theory is designed to deal with the distinction between uncertainty and ignorance. Rather than
computing the probability of a proposition, it computes the probability that the evidence supports the proposition. This
measure of belief is called a belief function, and is written Bel(X). For example, suppose you want to predict if a
coin will come up heads or tails. Since you have no evidence either way, your belief function is Bel(Heads) = 0 and
also Bel(Tails) = 0. Of course, this means you cannot decide what action to take! If an expert tells you he is 90%
sure the coin is fair, then Bel(Heads) = 0.9× 0.5 = 0.45 and likewise Bel(Tails) = 0.45; there is still a 10% gap
not accounted for by the evidence.

A much better approach to modeling this problem is to use standard (Bayesian) probability theory, and to express
your ignorance as uncertainty over the parameter, p(θ). If you have no evidence, you can use a flat or uniformative
prior, p(θ) = U(0, 1). After getting evidence from the expert, your prior gets updated so that p(θ = 0.5|D) = 0.9,
with the remaining 0.1 mass spread over all other values.

References
[Bis06] C. Bishop. Pattern recognition and machine learning. Springer, 2006.
[Jay03] E. T. Jaynes. Probability theory: the logic of science. Cambridge university press, 2003.
[Ric95] J. Rice. Mathematical statistics and data analysis. Duxbury, 1995. 2nd edition.
[RN02] S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice Hall, 2002. 2nd edition.

[SAM04] David J. Spiegelhalter, Keith R. Abrams, and Jonathan P. Myles. Bayesian Approaches to Clinical Trials
and Health-Care Evaluation. Wiley, 2004.

[Was04] L. Wasserman. All of statistics. A concise course in statistical inference. Springer, 2004.

19


