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1 Bayesian vs frequentist statistics
In Bayesian statistics, probability is interpreted as representing thedegree of beliefin a proposition, such as “the mean
of X is 0.44”, or “the polar ice cap will melt in 2020”, or “the polar ice cap would have melted in 2000 if we had
not...”, etc. Thus we see it can be applied to reasoning aboutone time events (ice cap melting), counterfactual events
(ice cap would have melted), as well as more “traditional” statistical questions, such as computing distributions over
random variables.Bayes ruleprovides the mechanism by whichprior beliefs are converted intoposterior beliefs
when new data arrives. (Bayes rule is sometimes called the rule of inverse probability.) For example, to estimate a
parameterθ from dataD, one can writep(θ|D) ∝ p(θ)p(D|θ), wherep(θ) is the prior andp(D|θ) is thelikelihood.
Decision theorycan be used to decide how to convert beliefs into actions. Forexample, if we want to summarize
our belief state with a single number (called apoint estimate), we often use theposterior meanor posterior mode,
depending on our loss function. There are various compelling arguments (see e.g., [Jay03]) that Bayesian statistics is
the only consistent way to reason under uncertainty.

In frequentist statistics (also calledclassical statisticsor orthodox statistics), probability is interpreted as rep-
resenting long run frequencies of repeatable events. Thus it cannot be used to reason about one time events or coun-
terfactual events. One can talk about the probability of data having a certain value,p(D|θ) (this is the likelihood
function), since one can imagine repeating the experiment and observing different data. But one cannot talk about the
probability of a parameter having a certain value,p(θ|D), since parameters are assumed to be fixed (but unknown)
constants, which do not have probability distributions associated with them. However, one can use decision theory to
designestimators, which are functions that map directly from the data to pointestimates of the parameters,θ̂ = f(D).
These are designed to work well over repeated trials. Uncertainty estimates in frequentist statistics are based on the
sampling distribution of the estimator, i.e., how much variation there will be in the estimate when different data is
used. This is not necessarily the same as uncertainty aboutθ given the actual data you have observed. An estimator
is said to have goodfrequentist properties it it works well in the long run (i.e., over repeated trials);however, such
estimators are not necessarily optimal for any given problem.

The Bayesian approach is often criticized because the interpretation of probability in terms of beliefs seemssubjec-
tive. In particular, the dependence on the prior (which can differ from one person to the next) is seen as “unscientific”.
However, all statistical modeling depends on prior assumptions (e.g., the form of the model); Bayesians just make
such assumptions explicit. As I. J. Good said (quoted in [Ber85]), “The subjectivist states his judgements, whereas the
objectivist sweeps them under the carpet by calling assumptions knowledge, and he basks in the glorious objectivity
of science.”

As you can see, there has been much heated debate between frequentists and Bayesians. However, these days there
is a growing consensus that both approaches are useful. For example, the method ofempirical Bayesis an approach
which sets the prior based on the data. Although not strictlyBayesian, such approaches work well in practice, and
have provably good frequentist properties. We will see examples of this in later chapters.

In this chapter, we will avoid philosophical arguments, andpresent a brief overview of the Bayesian approach to
statistics. As we will see, it is intuitive and conceptuallyelegant. More importantly, the Bayesian approach allows usto
model complex probabilistic dependencies amongst the parameters, usinghierarchical Bayesian models. This is not
possible using point estimation/ optimization methods, such as maximum likelihood, since probabilistic information
can only “flow” between random variables, not between constants. (This remark will become clearer later.)
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The main disadvantage of Bayesian methods is their computational expense. Some frequentist methods, such as
(penalized) maximum likelihood estimation, can be thoughtof as simply computationally cheap approximations to full
Bayesian inference. We will discuss some other simple techniques at the end, but the topic of approximate Bayesian
inference is beyond the scope of this chapter.

2 Conjugate analysis
Bayes rule tells us how to combine the priorp(θ) and the likelihoodp(D|θ) to get the posteriorp(θ|D):

p(θ|D) =
p(θ)p(D|θ)

p(D)
. (1)

where the normalizing constant is

p(D) =

∫

p(θ)p(D|θ)dθ (2)

This is often computationally difficult to compute. However, when the prior has a certain nice mathematical form, we
can work out the answer in closed form. In particular, we say aprior is conjugateto a likelihood if, when multiplied
together, the posterior has the same functional form as the prior. (The prior is called anatural conjugate prior if it
has the same functional form as the likelihood.) If the prioris conjugate, then the model isclosed under Bayesian
updating, which lets us easily perform sequential (recursive) updating. Below we will see some examples that should
make these concepts clearer.

2.1 The beta-binomial model

Let us start out introduction to Bayesian statistics by looking at a simple example: analysing coin tosses. Suppose we
toss a coinN times, and observex ∈ {0, 1, . . . , n} heads. The probability of this happening is given by thebinomial
distribution:

p(x|θ) = Bin(x|θ, n) =

(

n
x

)

θx(1 − θ)n−x (3)

whereθ is the probability of heads. This is called thelikelihood of the datax given unknown parameterθ.
A closely related distribution is theBernoulli distribution, which is a special case of the binomial whenn = 1 (so

x ∈ {0, 1}).
p(x|θ) = Ber(x|θ) = θx(1 − θ)1−x = θI(x=1)(1 − θ)I(x=0) (4)

Suppose we toss the coinn times; letD = (x1, . . . , xn) represent the sequence of heads/ tails. The likelihood of
generating this data sequence (assuming independent coin tosses) is

p(D|θ) =

n
∏

i=1

θI(xi=1)(1 − θ)I(xi=0) = θN1(1 − θ)N0 (5)

whereN1 =
∑

i I(xi = 1) is the number of heads andN0 =
∑

i I(xi = 0) is the number of tails. Thus the
difference between the binomial likelihood (which is suitable for modelingcount data,x ∈ {0, . . . , n}) and the

bernoulli likelihood (which is suitable for modelingbinary data,xi ∈ {0, 1}) is just the

(

n
x

)

term. Since this is a

constant with respect toθ, we can drop it from the likelihood function. Thus most of thefollowing analysis applies to
both situations, although we shall focus on the Bernoulli case, since we will often be interested in modeling sequences
of bits (binary data).

2.1.1 Problems with the MLE

In frequentist statistics, one estimatesθ by constructing estimators, such as themaximum likelihood estimate(MLE),
which in this case is just the empirical fraction of heads:

θ̂ =
N1

N1 + N0
=

N1

N
(6)
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One problem with the MLE is that it canoverfit when the sample size is small. For example, suppose we have
seen 3 tails out of 3 trials. Then the MLE estimates that the probability of heads is zero:

θ̂ =
0

0 + 3
= 0 (7)

In this context, this problem is called thesparse dataproblem: if we fail to see something in the training set, we
predict that it can never happen in the future, which seems a little extreme. To consider another example, suppose
we have seen3 white swans and 0 black swans; can we infer all swans are white? No! On visiting Australia, we
may encounter a black swan. This is called theblack swan paradox, and is an example of the famousproblem of
induction in philosophy. Below we will see how a Bayesian approach solves this problem.

2.1.2 Prior

Since the Binomial likelihood has the form

p(D|θ) ∝ [θN1(1 − θ)N0 ] (8)

we see that the natural conjugate prior has the form of abeta distribution

p(θ|α1, α0) = Beta(θ|α1, α0) =
1

B(α1, α0)
θα1−1(1 − θ)α0−1 (9)

whereB(α1, α0) is thebeta function, defined as

B(a, b) =
Γ(a)Γ(b)

Γ(a + b)
(10)

and the gamma function is defined as

Γ(x) =

∫ ∞

0

ux−1e−udu (11)

Note thatΓ(x + 1) = xΓ(x) andΓ(1) = 1. Also, for integers,Γ(x + 1) = x!. Note also thatΓ(1
2 ) =

√
π. The

normalization constant1/B(α0, α1) ensures
∫ 1

0

Beta(x|α1, α0)dx = 1 (12)

α1, α0 are calledhyperparameters, since they are parameters of the prior; we will discuss these in more detail
below. This prior is suitable since it defines a density on the[0, 1] interval, andθ ∈ [0, 1].

If x ∼ Beta(α1, α0), then we have the following properties

mean =
α1

α1 + α0
(13)

mode =
α1 − 1

α1 + α0 − 2
, α0 + α1 > 2 (14)

Var =
α1α0

(α1 + α0)2(α1 + α0 + 1)
, α0 + α1 > 1 (15)

See Figure 1 for plots of some beta distributions. Notice that the mode of the distribution is not unique unlessα0+α1 >
1. For example, ifα0 = α1 = 1, we get the uniform distribution, and ifα0 andα1 are both less than 1, we get a
bimodal distribution with “spikes” at 0 and 1. We requireα0 > 0 andα1 > to ensure the distribution is integrable
(i.e., to ensureB(α1, α0) exists.

To set the hyper parameters of the beta distribution, suppose your prior is that the probability of heads should be
aboutp, and you believe this prior with strength equivalent to about N samples. Then you just solve the following
equations forα1, α0:

p =
α1

α1 + α0
(16)

N = α1 + α0 (17)
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Figure 1: Some betaBe(a, b) distributions. This figure was produced bybetaDistPlot .

So we find the very intuitive result that we setα1 to the expected number of heads,α1 = Np, andα0 to the expected
number of tails,α0 = N − Np. In other words, we can interpret the hyper-parameters of the prior in terms ofvirtual
data or fictitious data.

2.1.3 Posterior

Multiplying prior and likelihood yields the posterior:

p(θ|D) ∝ p(D|θ)p(θ) (18)

= [θN1(1 − θ)N0 ][θα1−1(1 − θ)α0−1] (19)

= θN1+α1−1(1 − θ)N0+α0−1 (20)

∝ Beta(θ|N1 + α1, N0 + α0) (21)

We see that the hyper-parameters play a role analogous toN1 andN0, so they can be thought of as “virtual” heads/tails;
they are often calledpseudo counts. α = α1 + α0 is called theeffective sample size(strength) of the prior, and plays
a role analogous toN = N1 + N0. The posterior is another Beta distribution with updated parameters. For example,
suppose we start withBeta(θ|α1 = 2, α0 = 2) and observex = 1, so N1 = 1, N0 = 0; then the posterior is
Beta(θ|α1 = 3, α0 = 2). So the mean shifts fromE[θ] = 2/4 to E[θ|D] = 3/5. We can plot the prior and posterior,
as in Figure 2. We can continue to sequentially update the distribution (converting prior into posterior) as more data
streams in; this is useful foronline learning and for processing large datasets, since we don’t need to store the original
data.

Let us re-write the hyper-parameters of the prior in such a way that the posterior mean becomes a convex combi-
nation of the prior mean and the MLE. LetN = N1 +N0 be number of samples (observations). LetN ′ be the number
of pseudo observations (strength of prior) and define the prior means as fractions ofN ′:

α1 = N ′α′
1, α0 = N ′α′

2, (22)

where

0 < α′
1, α

′
0 < 1 (23)

α′
1 + α′

0 = 1 (24)
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Figure 2: Updating a Beta(α1, α0) prior with a Bernoulli likelihood with sufficient statisticsN1 = 2,N0 = 1 to yield a Beta(α1 +
N1, α0 + N0) posterior. (The distributions have been normalized to sum to one for plotting purposes, to make the vertical scale of
the likelihood and prior comparable.) Left:α1 = α0 = 2. The posterior mean is shifted slightly leftwards away fromthe MLE
of 2/3 towards the prior mean of2/2. The posterior is also narrower than the prior. Right:α1 = α0 = 0.1. The posterior mean
is strongly shifted to the right, since the prior encodes ourbelief that the coin is biased towards heads or tails. Figuremade by
betaDistPlot2 .

Thus our new prior is
p(θ) = Beta(N ′α′

1, N
′α′

0) = Beta(α1, α0) (25)

whereN ′ is the strength of our prior, andα′
1 andα′

0 are fractions. Then posterior mean is aconvex combinationof
the prior mean and the MLE

E[θ|α1, α0, N1, N0] =
α1 + N1

α1 + N1 + α0 + N0
(26)

=
N ′α′

1 + N1

N + N ′
(27)

=
N ′

N + N ′
α′

1 +
N

N + N ′

N1

N
(28)

= wα′
1 + (1 − w)

N1

N
(29)

wherew = N ′/(N + N ′) is the number of virtual samples relative to the total numberof samples (total plus actual).

2.1.4 Posterior predictive distribution

Ultimately the only way we can be sure our beliefs are valid isif they help us predict the future well. We can compute
such predictions by integrating out the parameters of the model (after all, parametric models are just a tool we use to
predict observables). For a single Bernoulli trial, we have

p(X = 1|D) =

∫ 1

0

p(X = 1|θ)p(θ|D)dθ (30)

=

∫ 1

0

θ Beta(θ|α′
1, α

′
0)dθ = E[θ] =

α′
1

α′
0 + α′

1

(31)

whereα′
1 = α1 + N1 andα′

0 = α0 + N0 are the parameters of the posterior.1 With a uniform priorα1 = α0 = 1, we
getLaplace’s rule of succession

p(X = 1|N1, N0) =
N1 + 1

N1 + N0 + 2
(32)

1We are redefiningα′

1
andα′

0
from their previous role as rescaled parameters of the prior.
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This avoids the sparse data problem we encountered earlier.
If we have a large sample size, the posterior will converge toa point centered on the MLE:

p(θ|D)→δ(θ − θ̂mle) (33)

In this case, the posterior predictive distribution can be gotten by simply using aplug-in estimate

p(X |D) =

∫

p(X |θ)p(θ|D)dθ ≈
∫

p(X |θ)δ(θ − θ̂)dθ = p(X |θ̂) (34)

In the case of the Beta-Bernoulli model, if we plug in the posterior mean estimate,̂θ = E[θ|D], we get the same result
as the exact posterior predictive density:

p(X = 1|N1, N0) = p(X = 1|θ̂mean) =
α′

1

α′
0 + α′

1

(35)

2.1.5 Marginal likelihood

Themarginal likelihood is the expected value of the likelihood, where the expectations are with respect to the prior:

p(D)
def
=

∫

p(θ)p(D|θ)dθ (36)

It is calledmarginal likelihood because we are marginalizing outθ. In Section 6.1, we will see that the marginal
likelihood forms the basis ofBayesian model selection.

Let us know discuss how to computep(D). Since we knowp(θ|D) = Beta(θ|α′
1, α

′
0), whereα′

1 = α1 + N1 and
α′

0 = α0 + N0, we know the normalization constant of the posterior. Hence

p(θ|D) =
p(θ)p(D|θ)

p(D)
(37)

=
1

p(D)

[

1

B(α1, α0)
θα1−1(1 − θ)α0−1

]

[

θN1(1 − θ)N0
]

(38)

=
1

p(D)

1

B(α1, α0)

[

θα1−1(1 − θ)α0−1θN1(1 − θ)N0
]

(39)

=
1

B(α′
1, α

′
0)

[θα′

1−1(1 − θ)α′

0−1] (40)

Matching up the constant terms gives

1

p(D)

1

B(α1, α0)
=

1

B(α′
1, α

′
0)

(41)

so

p(D) =
B(α′

1, α
′
0)

B(α1, α0)
(42)

(The Beta-Binomial model has an extra factor in front.)

2.2 The Dirichlet-multinomial model

Let Xn ∼ Mult(θ, 1) haveK possible values. (The generalization to multiple trials,Xn ∼ Mult(θ, Mn), is straight-
forward.) The analysis of the multinomial distribution is very similar to the Binomial case, so we summarize it here
without proof.

2.2.1 Likelihood

p(D|~θ) =
K
∏

j=1

θ
Nj

j (43)
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Figure 3: Some Dirichlet distributions in 3D, defined over the 3D simplex. (Such points satisfy0 ≤ xk ≤ 1 and
P

3

k=1
xk = 1.) If

we put a lot of prior mass on one of the components, we select out one of the vertices. Figure produced bydirichletPlot3d .

2.2.2 Prior

The Beta generalized toK states is called theDirichlet distribution:

p(θ|~α) = Dir(θ|~α) =
1

Z(~α)
· θα1−1

1 · θα2−1
2 · · · θαK−1

K I(
∑

k

θk = 1) (44)

ZDir(~α) =

∏K
i=1 Γ(αi)

Γ(
∑K

i=1 αi)
(45)

Here the termI(
∑

k θk = 1) just ensures the probabilities sum to one, i.e., they lie on thesimplex. See Figure 3 for
some examples of Dirichlet distributions.

If x ∼ Dir(x|α1, . . . , αK), then we have these properties

E[xk] =
αk

α
(46)

mode[xk] =
αk − 1

α − K
(47)

Var [xk] =
αk(α − αk)

α2(α + 1)
(48)

whereα =
∑

k αk.

2.2.3 Posterior

p(θ|D, ~α) = Dir(α1 + N1, . . . , αK + NK) = Dir(α′
1, . . . , α

′
K) (49)

2.2.4 Posterior predictive

For a single new sample of aK-ary variable, we have

p(X = j|D) =
αj + Nj

N +
∑

k αk
(50)

2.2.5 Marginal likelihood

p(D) =
ZDir( ~N + ~α)

ZDir(~α)
=

Γ(
∑

k αk)

Γ(M +
∑

k αk)

∏

k

Γ(Nk + αk)

Γ(αk)
(51)
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2.3 Normal-normal model

Now let us consider Bayesian estimation of the mean of a univariate Gaussian, whose variance is assumed to be known.
(If the variance is also unknown, we can use the normal-gammaprior: see Section 2.4.)

2.3.1 Likelihood

Let D = (x1, . . . , xn) be the data. The likelihood is

p(D|µ, σ2) =

n
∏

i=1

p(xi|µ, σ2) = (2πσ2)−n/2 exp

{

− 1

2σ2

n
∑

i=1

(xi − µ)2

}

(52)

Let us define the empirical mean and variance

x =
1

n

n
∑

i=1

xi (53)

s2 =
1

n

n
∑

i=1

(xi − x)2 (54)

We can rewrite the term in the exponent as follows
∑

i

(xi − µ)2 =
∑

i

[(xi − x) − (µ − x)]2 (55)

=
∑

i

(xi − x)2 +
∑

i

(x − µ)2 − 2
∑

i

(xi − x)(µ − x) (56)

= ns2 + n(x − µ)2 (57)

since

∑

i

(xi − x)(µ − x) = (µ − x)

(

(
∑

i

xi) − nx

)

= (µ − x)(nx − nx) = 0 (58)

Hence

p(D|µ, σ2) =
1

(2π)n/2

1

σn
exp

(

− 1

2σ2

[

ns2 + n(x − µ)2
]

)

(59)

∝
(

1

σ2

)n/2

exp
(

− n

2σ2
(x − µ)2

)

exp

(

−ns2

2σ2

)

(60)

If σ2 is a constant, we can write this as

p(D|µ) ∝ exp
(

− n

2σ2
(x − µ)2

)

∝ N (x|µ,
σ2

n
) (61)

since we are free to drop constant factors in the definition ofthe likelihood. Thusn observations with varianceσ2 and
meanx is equivalent to 1 observationx1 = x with varianceσ2/n.

2.3.2 Prior

Since the likelihood has the form

p(D|µ) ∝ exp
(

− n

2σ2
(x − µ)2

)

∝ N (x|µ,
σ2

n
) (62)

thenatural conjugate prior has the form

p(µ) ∝ exp

(

− 1

2σ2
0

(µ − µ0)
2

)

∝ N (µ|µ0, σ
2
0) (63)

(Do not confuseσ2
0 , which is the variance of the prior, withσ2, which is the variance of the observation noise.) (A

natural conjugate prior is one that has the same form as the likelihood.)

8



2.3.3 Posterior

Hence the posterior is given by

p(µ|D) ∝ p(D|µ, σ)p(µ|µ0, σ
2
0) (64)

∝ exp

[

− 1

2σ2

∑

i

(xi − µ)2

]

× exp

[

− 1

2σ2
0

(µ − µ0)
2

]

(65)

= exp

[

−1

2σ2

∑

i

(x2
i + µ2 − 2xiµ) +

−1

2σ2
0

(µ2 + µ2
0 − 2µ0µ)

]

(66)

Since the product of two Gaussians is a Gaussian, we will rewrite this in the form

p(µ|D) ∝ exp

[

−µ2

2

(

1

σ2
0

+
n

σ2

)

+ µ

(

µ0

σ2
0

+

∑

i xi

σ2

)

−
(

µ2
0

2σ2
0

+

∑

i x2
i

2σ2

)]

(67)

def
= exp

[

− 1

2σ2
n

(µ2 − 2µµn + µ2
n)

]

= exp

[

− 1

2σ2
n

(µ − µn)2
]

(68)

Matching coefficients ofµ2, we findσ2
n is given by

−µ2

2σ2
n

=
−µ2

2

(

1

σ2
0

+
n

σ2

)

(69)

1

σ2
n

=
1

σ2
0

+
n

σ2
(70)

σ2
n =

σ2σ2
0

nσ2
0 + σ2

=
1

n
σ2 + 1

σ2
0

(71)

Matching coefficients ofµ we get

−2µµn

−2σ2
n

= µ

(∑n
i=1 xi

σ2
+

µ0

σ2
0

)

(72)

µn

σ2
n

=

∑n
i=1 xi

σ2
+

µ0

σ2
0

(73)

=
σ2

0nx + σ2µ0

σ2σ2
0

(74)

Hence

µn =
σ2

nσ2
0 + σ2

µ0 +
nσ2

0

nσ2
0 + σ2

x = σ2
n

(

µ0

σ2
0

+
nx

σ2

)

(75)

This operation of matching first and second powers ofµ is calledcompleting the square.
Another way to understand these results is if we work with theprecisionof a Gaussian, which is 1/variance (high

precision means low variance, low precision means high variance). Let

λ = 1/σ2 (76)

λ0 = 1/σ2
0 (77)

λn = 1/σ2
n (78)

Then we can rewrite the posterior as

p(µ|D, λ) = N (µ|µn, λ−1
n ) (79)

λn = λ0 + nλ (80)

µn =
xnλ + µ0λ0

λn
= wµML + (1 − w)µ0 (81)
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Figure 4: Sequentially updating a Gaussian mean starting with a priorcentered onµ0 = 0. The true parameters areµ∗ = 0.8
(unknown),(σ2)∗ = 0.1 (known). Notice how the data quickly overwhelms the prior, and how the posterior becomes narrower.
Source: Figure 2.12 [Bis06].

wherenx =
∑n

i=1 xi andw = nλ
λn

. The precision of the posteriorλn is the precision of the priorλ0 plus one
contribution of data precisionλ for each observed data point. Also, we see the mean of the posterior is a convex
combination of the prior and the MLE, with weights proportional to the relative precisions.

To gain further insight into these equations, consider the effect of sequentially updating our estimate ofµ (see
Figure 4). After observing one data pointx (son = 1), we have the following posterior mean

µ1 =
σ2

σ2 + σ2
0

µ0 +
σ2

0

σ2 + σ2
0

x (82)

= µ0 + (x − µ0)
σ2

0

σ2 + σ2
0

(83)

= x − (x − µ0)
σ2

σ2 + σ2
0

(84)

The first equation is a convex combination of the prior and MLE. The second equation is the prior mean ajusted
towards the datax. The third equation is the datax adjusted towads the prior mean; this is calledshrinkage. These
are all equivalent ways of expressing the tradeoff between likelihood and prior. See Figure 5 for an example.

2.3.4 Posterior predictive

The posterior predictive is given by

p(x|D) =

∫

p(x|µ)p(µ|D)dµ (85)

=

∫

N (x|µ, σ2)N (µ|µn, σ2
n)dµ (86)

= N (x|µn, σ2
n + σ2) (87)
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Figure 5: Bayesian estimation of the meanµ of a Gaussian from one sample,x = 3, n = 1. We assumeσ2 = 1, so the likelihood
is p(x|µ) = N (3|µ, 1). (Left) Strong priorp(µ) = N (µ|0, 1). The posterior isp(µ|D) = N (µ|1.5, 0.5). The posterior mean is
half way between the MLE (x = 3) and the prior mean (µ0 = 0), since the prior variance and observation variance are equal. Note
the posterior is narrower than the prior. (Right) Weak (broad) prior p(µ) = N (µ|0, 10). Posterior isp(µ|D) = N (µ|2.72, 0.91).
The posterior is very similar to the (normalized) likelihood. Figure produced bygaussBayesDemo .

This follows from general properties of the Gaussian distribution (see Equation 2.115 of [Bis06]). An alternative proof
is to note that

x = µ + ε (88)

µ ∼ N (µn, σ2
n) (89)

ε ∼ N (0, σ2) (90)

whereε is a noise term independent ofµ. SinceE[X1 + X2] = E[X1] + E[X2] and Var[X1 + X2] = Var [X1] +
Var [X2] if X1, X2 are independent, we have

X ∼ N (µn, σ2
n + σ2) (91)

since we assume that the residual error is conditionally independent of the parameter. Thus the predictive variance is
the uncertainty due to the observation noiseσ2 plus the uncertainty due to the parameters,σ2

n.

2.3.5 Marginal likelihood

Writing m = µ0 andτ2 = σ2
0 for the hyper-parameters, we can derive the marginal likelihood as follows:

` = p(D|m, σ2, τ2) =

∫

[

n
∏

i=1

N (xi|µ, σ2)]N (µ|m, τ2)dµ (92)

=
σ

(
√

2πσ)n
√

nτ2 + σ2
exp

(

−
∑

i x2
i

2σ2
− m2

2τ2

)

exp

(

τ2n2x2

σ2 + σ2m2

τ2 + 2nxm

2(nτ2 + σ2)

)

(93)

The proof can be found in the appendix of [DMP+06].

2.4 Normal-Gamma model

In this section, we consider the case where the mean and precision are both unknown. We just state the results without
proofs. Derivations may be found in [Mur07]. First we introduce two useful distributions.

2.4.1 Gamma distribution

The gamma distribution is a flexible distribution for positive real valued rv’s,x > 0. It is defined in terms of two
parameters. There are two common parameterizations. This is the one used by Bishop [Bis06] (and many other

11
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Figure 6: SomeGa(a, b) distributions. Ifa < 1, the peak is at 0. As we increaseb, we squeeze everything leftwards and upwards.
Figures generated bygammaDistPlot2 .

authors):

Ga(x|shape =a, rate =b) =
ba

Γ(a)
xa−1e−xb, x, a, b > 0 (94)

The second parameterization (and the one used by Matlab’sgampdf ) is

Ga(x|shape =α, scale =β) =
1

βαΓ(α)
xα−1e−x/β (95)

Note that the shape parameter controls the shape; the scale parameter merely defines the measurement scale (the
horizontal axis). The rate parameter is just the inverse of the scale. See Figure 6 for some examples. This distribution
has the following properties (using the rate parameterization):

mean =
a

b
(96)

mode =
a − 1

b
for a ≥ 1 (97)

var =
a

b2
(98)

2.4.2 Studentt distribution

The generalized t-distribution is given as

tν(x|µ, σ2) = c

[

1 +
1

ν
(
x − µ

σ
)2
]−( ν+1

2
)

(99)

c =
Γ(ν/2 + 1/2)

Γ(ν/2)

1√
νπσ

(100)

wherec is the normalization consant.µ is the mean,ν > 0 is thedegrees of freedom, andσ2 > 0 is the scale. (Note
that theν parameter is written as a subscript.)

The distribution has the following properties:

mean = µ, ν > 1 (101)

mode = µ (102)

var =
νσ2

(ν − 2)
, ν > 2 (103)

12
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Figure 7: Student t-distributionsTν(µ, σ2) for µ = 0. The effect ofσ is just to scale the horizontal axis. Asν→∞, the distribution
approaches a Gaussian. SeestudentTplot .

Note: if x ∼ tν(µ, σ2), then
x − µ

σ
∼ tν (104)

which corresponds to a standard t-distribution withµ = 0, σ2 = 1 (Matlab’stpdf ):

tν(x) =
Γ((ν + 1)/2)√

νπΓ(ν/2)
(1 + x2/ν)−(ν+1)/2 (105)

In Figure 7, we plot the density for different parameter values. T-distributions are like Gaussian distributions with
heavy tails. Hence they are more robust to outliers (see Figure 8). Asν → ∞, the T approaches a Gaussian.

If ν = 1, this is called aCauchy distribution . This is an interesting distribution since ifX ∼ Cauchy, thenE[X ]
does not exist, since the corresponding integral diverges.Essentially this is because the tails are so heavy that samples
from the distribution can get very far from the centerµ.

(a)
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Figure 8: Fitting a Gaussian and a Student distribution to some data (left) and to some data with outliers (right). The Student
distribution (red) is much less affected by outliers than the Gaussian (green). Source: [Bis06] Figure 2.16.
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It can be shown that the t-distribution is like an infinite sumof Gaussians, where each Gaussian has a different
variance [Arc05, p111]:

tν(x|µ, λ−1) =

∫ ∞

0

N (x|µ, (uλ)−1)Ga(u|shape=
ν

2
, rate=

ν

2
)du (106)

(See exercise 2.46 of [Bis06].)

2.5 Likelihood

The likelihood can be written in this form

p(D|µ, λ) =
1

(2π)n/2
λn/2 exp

(

−λ

2

n
∑

i=1

(xi − µ)2

)

(107)

=
1

(2π)n/2
λn/2 exp

(

−λ

2

[

n(µ − x)2 +
n
∑

i=1

(xi − x)2

])

(108)

2.6 Prior

The conjugate prior is thenormal-Gamma:

NG(µ, λ|µ0, κ0, α0, β0)
def
= N (µ|µ0, (κ0λ)−1)Ga(λ|α0, rate= β0) (109)

=
1

ZNG(µ0, κ0, α0, β0)
λ

1
2 exp(−κ0λ

2
(µ − µ0)

2)λα0−1e−λβ0 (110)

=
1

ZNG
λα0−

1
2 exp

(

−λ

2

[

κ0(µ − µ0)
2 + 2β0

]

)

(111)

ZNG(µ0, κ0, α0, β0) =
Γ(α0)

βα0

0

(

2π

κ0

)

1
2

(112)

See Figure 9 for some plots. Hereµ0 is what we thinkµ is andκ0 is how much we believe this; andβ0 is what we
think σ2 = λ−1 is, andα0 is how much we believe this.

2.7 Posterior

The posterior is

p(µ, λ|D) = NG(µ, λ|µn, κn, αn, βn) (113)

µn =
κ0µ0 + nx

κ0 + n
(114)

κn = κ0 + n (115)

αn = α0 + n/2 (116)

βn = β0 + 1
2

n
∑

i=1

(xi − x)2 +
κ0n(x − µ0)

2

2(κ0 + n)
(117)

We see that the posterior sum of squares,βn, combines the prior sum of squares,β0, the sample sum of squares,
∑

i(xi − x)2, and a term due to the discrepancy between the prior mean and sample mean. As can be seen from
Figure 9, the range of probable values forµ andσ2 can be quite large even after for moderaten. Keep this picture in
mind whenever someones claims to have “fit a Gaussian” to their data.

The posterior marginals are

p(λ|D) = Ga(λ|αn, βn) (118)

p(µ|D) = T2αn
(µ|µn,

βn

αnκn
) (119)
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2.8 Marginal likelihood

p(D) =
Zn

Z0
(2π)−n/2 (120)

=
Γ(αn)

Γ(α0)

βα0

0

βαn
n

(
κ0

κn
)
1
2 (2π)−n/2 (121)

2.9 Posterior predictive

p(x|D) = t2αn
(x|µn,

βn(κn + 1)

αnκn
) (122)

3 Priors
Picking priors is one of the more controversial aspects of Bayesian statistics, because it is seen as “subjective”. But
data analysis is never performed in a vacuum. Even babies arenot born as “tabula rasa”. So we always have some
kind of prior knowledge. Below we examine various issues concerning priors.

3.1 Mixture of conjugate priors

Suppose our prior beliefs about a coin are that it is biased, but either to have heads with probability near 1/3 or 2/3.
We can model this using amixture prior :

p(θ) =

K
∑

k=1

αkpk(θ) (123)

which is a convex combination ofK priorspk. The termsαk are calledmixing weights, and satisfy0 ≤ αk ≤ 1, and
∑K

k=1 αk = 1. In the coin example, we may havep1(θ) = Be(θ|10, 20), p2(θ) = Be(θ|20, 10), andα1 = α2 = 0.5.
We now show that the posterior is also a convex combination ofthe individual posteriors:

p(θ|x) =
p(x|θ)p(θ)

p(x)
(124)

=
p(x|θ)∑k αkpk(θ)

∫

p(x|θ)∑k αkpk(θ)dθ
(125)

=

∑

k αkpk(x, θ)
∑

k αk

∫

pk(x, θ)dθ
(126)

=

∑

k αkpk(θ|x)pk(x)
∑

k αkpk(x)
(127)

=
∑

k

α′
kpk(θ|x) (128)

where

α′
k ∝ αkpk(x) = αk

∫

pk(x|θ)pk(θ)dθ (129)

So if the individual priors are conjugate, the posterior will be easy to analyse.

3.2 Improper priors

A distribution that does not integrate to 1 is calledimproper . If the prior is improper, the posterior will be proper,
provided

∫

p(θ)p(D|θ)dθ < ∞ (130)

Typically when we have enough data (sometimes just a single point), the posterior will be proper even if the prior is
not. We will see examples of improper priors below.
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3.3 Jeffreys prior

Jeffreys designed a general technique for creating a certain kind of non-informative or referenceprior. This can
be used to performobjective Bayesian analysis. The key observation is that ifp(φ) non-informative, then any re-
parameterization of the prior, such asθ = h(φ), should also be non-informative. Now, by the change of variables
formula,

pθ(θ) = pφ(φ)|dφ

dθ
| (131)

so the prior will in general change.2

Let us pick

pφ(φ) ∝ (I(φ))
1
2 (132)

where

I(φ) = −E

(

d2 log p(X |φ)

dφ2

)

= −E

(

[

d log p(X |φ)

dφ

]2
)

(133)

is theFisher information . Now

∂ log p(x|θ)
∂θ

=
∂ log p(x|φ)

∂φ

dφ

dθ
(134)

Squareing and taking expectations overx, we have

I(θ) = −E

(

[

d log p(X |θ)
dθ

]2
)

(135)

= I(φ)

(

dφ

dθ

)2

(136)

so we find the transformed prior is

pθ(θ) = pφ(φ)|dφ

dθ
| (137)

= (I(φ))
1
2 |dφ

dθ
| (138)

∝ (I(θ))
1
2 (139)

In the multivariate case, we use
p(θ) ∝

√

det I(θ) (140)

where

I(θ) = −E[
∂2 log p(x|θ)

∂θj∂θk
] (141)

is theFisher information matrix .

3.3.1 Jeffreys prior for the Binomial distribution

In the case of a Binomial distribution, the log-likelihood is

log p(x|θ) = x log θ + (N − x) log(1 − θ) + const (142)

so the Fisher information (usingE[x|θ] = Nθ) is

I(θ) =
N

θ(1 − θ)
(143)

2Note that the fact that we need to use to the change of variables formula when we reparameterize the prior implies that MAP estimates are
dependent on the parameterization. MLEs are invariant to the parameterization, since the likelihoodp(D|θ) is a function, not a density, so the
change of variable rule does not apply.
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Hence Jeffrey’s prior is

p(θ) ∝ θ−
1
2 (1 − θ)−

1
2 =

1
√

θ(1 − θ)
∝ Beta(1

2 , 1
2 ) (144)

One might think that, sinceBeta(1, 1) (called theLaplace prior ) is a uniform distribution, that this would be an
uniformative prior. But the posterior mean in this case is

E[θ|D] =
N1 + 1

N1 + N0 + 2
(145)

whereas the MLE is N1

N1+N0
. Clearly by decreasing the magnitude of the pseudo counts, we can lessen the impact of

the prior. By the above argument, the most non-informative prior is

lim
c→0

Beta(c, c) (146)

which is a mixture of two equal point masses at 0 and 1 (see [ZL04] for a proof). This is also called theHaldane
prior . (For a Gaussian, the maximum variance distribution is flattest (as we will see later), but for a Beta (because of
its compact support in 0:1), the maximum variance distribution is this mixture of spikes.)

Note that the Haldane prior is animproper prior , in the sense that
∫

Be(θ|0, 0)dθ = ∞. However, as long as we
see at least one head and at least one tail, the posterior willbe proper (integrate to 1).

So we see that there are several possible natural candidatesfor non-informative prior in the case of the Binomial/
Bernoulli distribution:Be(0, 0), Be(1

2 , 1
2 ) or Be(1, 1). Below we will see that for other kinds of parameters, such as

location and scale, there is a unique definition of non-informative.

3.3.2 Jeffreys prior for a location parameter

Consider estimating the mean of a Gaussian. The log likelihood (forN = 1)

L(µ) = log p(x|µ) = − 1
2 (x − µ)2/v + const (147)

wherev = σ2 is the known variance. So

∂L

∂µ
=

x − µ

v
(148)

∂2L

∂µ2
= −1/v (149)

I(µ) = 1/v (150)

so the Jeffrey’s prior isp(µ) ∝ 1/
√

v = const. We can approximate this with a conjugate priorN (µ|µ0, σ
2
0) by letting

σ0 → ∞, corresponding to a “flat” prior.
In general, if a density has the formp(x|µ) = f(x − µ) thenµ is called alocation parameter. If the density

satisfiesp(x̂|µ̂) = f(x̂ − µ̂), wherex̂ = x + c andµ̂ = µ + c, then it is calledtranslation invariant . We would like
our prior for the Gaussian mean to be translation invariant,so our results don’t depend on the units of measurement
that we use, so we require

∫ B

A

p(µ)dµ =

∫ B−c

A−c

p(µ)dµ =

∫ B

A

p(µ − c)dµ (151)

Hencep(µ − c) = p(µ) sop(µ) = const. Note that this is an improper prior.

3.3.3 Jeffreys prior for a scale parameter

The log-likelihood (usingv = σ2) is

L = − 1
2 log v − 1

2 (x − µ)2/v + const (152)

So

∂2L

∂v2
= 1

2v−2 − (x − µ)2/v3 (153)
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SinceE[(x − µ)2] = v, we have

I(v) = − 1
2v−2 + v/v3 = 1

2v−2 (154)

so the Jeffreys prior isp(v) ∝ 1/v.
In general, if a density has the formp(x|σ) = 1

σ f(x/σ) whereσ > 0, thenσ is called ascale parameter. If the
density satisfies

p(x̂|σ̂) =
1

σ̂
f(

x̂

σ̂
) (155)

wherex̂ = cx andσ̂ = cσ, then it is calledscale invariant. We would like our prior forσ2 to be scale invariant , so
we require

∫ B

A

p(σ)dσ =

∫ B/c

A/c

p(σ)dσ =

∫ B

A

p(
σ

c
)
1

c
dσ (156)

Hencep(σ) = p(σ
c )1

c so p(σ) ∝ 1/σ will work, since then we have1σ = c
σ

1
c . Note that this is equivalent to

p(log σ) ∝ 1, since

p(log σ) = p(σ)
dσ

d log σ
= (1/σ)σ = 1 (157)

So the reference prior for the variance will bep(σ2) ∝ σ−2. For the precision, the Jeffrey’s prior is

p(λ) ∝ λ−1 (158)

which can be approximated usingGa(λ|0, 0) (but see [Gel06] for discussion).

3.3.4 Reference prior for the NG model

The reference prior isp(µ, σ2) ∝ (σ2)−1 which can be modeled byκ0 = 0, a0 = −1/2, b0 = 0, since then we get

p(µ, λ) ∝ λ−1 (159)

With the reference prior, the posterior is

µn = x (160)

κn = n (161)

αn = (n − 1)/2 (162)

βn = 1
2

n
∑

i=1

(xi − x)2 (163)

The posterior marginals are

p(λ|D) = Ga(λ|n − 1

2
,

∑

i(xi − x)2

2
) (164)

p(µ|D) = tn−1(µ|x,

∑

i(xi − x)2

n(n − 1)
) (165)

which are very closely related to the sampling distributionof the MLE. The posterior predictive is

p(x|D) = tn−1

(

x,
(1 + n)

∑

i(xi − x)2

n(n − 1)

)

(166)

4 Summaries of the posterior
The posteriorp(θ|D) contains all the information we need for summarizing our beliefs and for making optimal deci-
sions. However, oftenθ is high dimensional, so representing and computingp(θ|D) can be difficult. It is common to
summarize the full posterior using various measures. This can be formalized using Bayesian decision theory. However,
for now we just informally summarize some standard summaries.
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Figure 10: A N (0, 1) distribution with thezα/2 = Φ−1(α/2) cutoff points shown, whereΦ is the cdf of the Gaussian. The central
non shaded area contains1 − α of the probability mass. Ifα = 0.05, thenzα/2 = 1.96 ≈ 2.

4.1 Point estimates

The most common summaries are point estimates at the mean, mode or median:

θ̂mean = E[θ|D] (167)

θ̂MAP = argmax
θ

p(θ|D) (168)

θ̂median = t : p(θ > t|D) = 0.5 (169)

For simple distributions, these can be computed in closed form.

4.2 Bayesian credible intervals

It is common to specify a measure of uncertainty in addition to a point estimate. Aα credible interval is a (contiguous)
regionC of parameter space such thatp(θ ∈ C|D) = α. Often we useα = 0.95 centered on the posterior mean (see
Figure 10). This is also called acentral interval . We can find the rangeC using the cumulative distribution function
of p(θ|D): if θ has cdfF , thenP (θ ≤ α) = F−1(α) is called theα quantile or critical value of distributionF . To
find interval(`, u) such thatP (l ≤ θ ≤ u|D) ≥ α we usè = F−1(α/2) andu = F−1(1 − α/2). For example, if
p(θ) = Be(1, 1) and we observeS = 47 heads out ofN = 100 trials, then the posterior isp(θ|D) = Be(a, b), where
a = 47 + 1 andb = 100 − 47 + 1; a 95% posterior credible interval can be computed in Matlabas follows:

% betaCredibleInt
S = 47; N = 100; a = S+1; b = (N-S)+1; alpha = 0.05;
l = betainv(alpha/2, a, b);
u = betainv(1-alpha/2, a, b);
CI = [l,u] % 0.3749 0.5673

An alternative summary to the central interval is to return a95% high posterior density (HPD) region; this is
defined as the smallest region which contains 95% of the posterior mass, which is more probable than any points
outside the region. If the posterior is multimodal, the HPD may not be the same as a central posterior region: see
Figure 11. However, summarizing multimodal posteriors is always difficult.

4.3 Posterior sampling

In many cases, the posterior over the quantity of interest cannot be computed in closed form. In general, we may want
to compute the expected value of various features of the posterior

E[f(θ)|D] =

∫

f(θ)p(θ|D) (170)
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Figure 11: Central vs high posterior density intervals. Based on [GCSR04] Figure 2.2.

We can approximate such quantities usingMonte Carlo integration:

E[f(θ)|D] =

∫

f(θ)p(θ|D) ≈ 1

S

S
∑

s=1

f(θs) (171)

whereθs ∼ p(θ|D) is a sample from the posterior.
For example, suppose we toss two independent coins a bunch oftimes, so the posterior is

p(θ1, θ2|D) = Be(θ1|a1, b1)Be(θ2|a2, b2) (172)

for some values ofa1, b1, a2, b2. Suppose we want to know if coin 2 is more likely to produce heads than coin 1. This
is simply

P (θ2 > θ1|D) =

∫ 1

0

∫ 1

0

I(θ2 > θ1)p(θ1|D)p(θ2|D)dθ1dθ2 (173)

=

∫ 1

0

[

∫ θ2

0

p(θ1|D)dθ1

]

p(θ2|D)dθ2 (174)

Thusf(θ) = I(θ2 > θ1). We can approximate this as follows

P (θ2 > θ1) ≈ 1

S

S
∑

s=1

I(θs
2 > θs

1) (175)

In Matlab, this becomes

% betaMCdemo
S = 1000;
p1 = betarnd(a1,b1,S,1);
p2 = betarnd(a2,b2,S,1);
dif = (p2-p1);
mean(dif > 0)

In general,Monte Carlo integration means approximating integrals of the form

E[h(X)] = I =

∫

h(x)p(x)dx (176)

using

Î =
1

S

S
∑

s=1

h(xs) (177)
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This can be shown to converge to the true integral asS→∞. Thestandard error of the estimate is

se
def
=

√

σ̂2

S
(178)

σ̂2 =
1

S − 1

S
∑

s=1

(h(xs) − Î)2 (179)

So a1 − α confidence interval ofI is Î ± zα/2ŝ, wherezq is theq’th quantile of a standardN (0, 1) variable. If we
want to approximate the probability of a binary event,q = P (X ∈ A), for some setA, we can use

q̂ ≈ 1

S

S
∑

s=1

I(xs ∈ A) (180)

with standard error
√

q̂(1 − q̂)

S
(181)

4.4 Posterior predictive checks

The most fundamental way to check model fit is to sample data from its posterior,D′ ∼ p(x|D), and plot it. In cases
where the data is high dimensional, and is hard to visualize,one must devise one dimensionaltest statistics, T (D′),
and compare them to the test statistic on the actual data,T (D). These statistics should measure features of interest
(since it will not, in general, be possible to capture every aspect of the data). If there is a large difference between the
distribution ofT (D′) across differentD′ and the value ofT (D), it suggests the model is not a good one and/or the
posterior has not been well estimated. We illustrate this below.

4.4.1 Worked example: Newcomb’s speed of light data

Here we consider an example from [GCSR04]. In 1882, Newcomb measured the speed of light using a certain method
and obtained the distribution in Figure 12. There are clearly two outliers in the left tails, suggesting that the distribution
is not Gaussian. Let us none the less fit a Gaussian to it, usinga noninformative prior. We can test our fit by sampling
from the posterior:

x ∼ p(x|D) = tνn
(x|µn,

(1 + κn)σ2
n

κn
) (182)

Let D′
s be thes’th dataset of sizen = 66 generated in this way. The histogram ofD′

s for s = 1 : 20 is shown in
Figure 13. It is clear that the model is not capable of generating the large negative examples that were seen in the real
data. (We are assuming these are scientifically interesting, and not noise that we want to eliminate.)

A more formal way to test fit is to define a test statistic. Sincewe are interested in small values, let us use

T (D) = min{x : x ∈ D} (183)

For the real data,T (D) = −44, but the distribution ofT (D′
s) for s = 1 : 1000 is shown in Figure 14. It is clear that

T (D) is very unlikely according to our fitted model.
The code to generate these plots is shown below.

% newcomb.m
% Example from Gelman04 p77 - see if Newcomb’s speed of light d ata is Gaussian

seed = 0; randn(’state’, seed); rand(’state’, seed);

% Data from http://www.stat.columbia.edu/˜gelman/book/ data/light.asc
D = [28 26 33 24 34 -44 27 16 40 -2 29 22 24 21 25 30 23 29 31 19 ...

24 20 36 32 36 28 25 21 28 29 37 25 28 26 30 32 36 26 30 22 ...
36 23 27 27 28 27 31 27 26 33 26 32 32 24 39 28 24 25 32 25 ...

29 27 28 29 16 23];

% uninformative prior
k0 = 0; v0 = -1; s0 = 0; mu0 =0;
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Figure 12: Histogram of Newcomb’s data. We plot the measured time it takes light to travel 7442m minus24, 800ns.
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Figure 13: Histogram of data sampled from Newcomb’s posterior.
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Figure 14: Histogram of test statistic on data sampled from Newcomb’s posterior. The vertical line is the test statistic on the true
data.
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% suff stat
xbar = mean(D); n = length(D); s2 = mean( (D-xbar).ˆ2);

% posterior
kn = k0+n;
mun = (k0 * mu0+n* xbar)/kn;
vn = v0+n;
s2n = (v0 * s0 + n * s2 + k0 * mu0ˆ2 + n * xbarˆ2 -kn * munˆ2)/vn;

% credible interval for mu
low = mun + tinv(0.025, vn) * sqrt(s2n/kn) %23.5706
high = mun + tinv(1-0.025, vn) * sqrt(s2n/kn) %28.8537

% generate posterior samples
S = 1000;
sigma2 = (1+kn) * s2n/kn;
rep = trnd(vn, S, n) * sqrt(sigma2) + mun;

figure(1); clf
hist(D); title(’Newcombs speed of light data’)

figure(1); clf
for i=1:20

subplot(5,4,i)
hist(rep(i,:))
set(gca,’xlim’,[0 50])
%title(sprintf(’synth %d’, i))

end
suplabel(’posterior samples’, ’t’)

% compute distribution of test statistic
test=inline(’min(x)’,’x’);
for s=1:S

testVal(s) = test(rep(s,:));
end
testValTrue = test(D);
figure(2);clf
hist(testVal);
title(sprintf(’posterior of min(%s), true min=%d’, ’x’, t estValTrue))
hold on
line([testValTrue, testValTrue], get(gca,’ylim’))

5 Approximate inference
Often it is difficult to computep(θ|D) in closed form. One approach is to try to approximate the posterior using a
simpler kind of parametric distribution, such as a Gaussian. Another approach is to represent the posterior implicitly,
in terms of a set of samplesθs ∼ p(θ|D). Note that generating such samples can be difficult, but oncewe have them,
it becomes easy to compute arbitrary posterior featuresE[f(θ)] as we saw above. This topic is beyond the scope of
this chapter. However, we introduce one very simple approach below.

5.1 Laplace approximation

TheLaplace approximation is to approximatep(θ|D) by a multivariate Gaussian. (In physics, this is called asaddle
point approximation .) See Figure 15 for an example.

Supposeθ ∈ IRd. Let p(θ|D) = 1
Z f(θ). Performing a Taylor series expansion around a modeθ0 we get

ln f(θ) ≈ ln f(θ0) +
1

2
(θ − θ0)

T H(θ − θ0) (184)

where

H
def
=

∂2 log f(θ)

∂θ∂θT
|θ=θ0

(185)

is the Hessian oflog p(θ). Hence

f̂(θ) = f(θ0) exp

[

−1

2
(θ − θ0)

T C−1(θ − θ0)

]

(186)
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Figure 15: Laplace approximation (red) to the functionexp(−x2/2)σ(20x + 4). From [Bis06] Figure 4.14.

whereC = −H−1. So

p̂(θ) =
1

Ẑ
f̂(θ) = N (θ|θ0, C) (187)

Ẑ =

∫

f̂(θ)dθ = f(θ0)(2π)d/2|C|
1
2 (188)

We will use the termẐ when we derive the BIC score below.
Since the Laplace approximation assumes the posterior is approximately Gaussian, it is often necessary to trans-

form the parameters so that this is a reasonable assumption.For example, when estimating a positive term, we can
take logs. We will see an example of this below.

5.1.1 Worked example

Let us consider the following example from [GCSR04, p102]. Consider estimating the mean and variance of a 1D
Gaussian using a non-informative priorp(µ, log σ) ∝ 1. Define

s2 =
1

n

n
∑

i=1

(yi − y)2 (189)

The log posterior is given by

log p(µ, log σ|D) = const− n logσ − 1

2σ2
[ns2 + n(y − µ)2] (190)

For brevity, letλ = log σ. The first derivatives are

∂

∂µ
log p(µ, λ|D) =

n(y − µ)

σ2
(191)

∂

∂λ
log p(µ, λ|D) = −n +

ns2 + n(y − µ)2

σ2
(192)

from which the posterior mode is easily seen to be

µ̂ = y (193)

log σ̂ = 1
2 log

(n

n
s2
)

(194)

The Hessian matrix is given by

H =

(

∂2

∂µ2 log p(µ, λ|D) ∂2

∂µ∂λ log p(µ, λ|D)
∂2

∂λ2 log p(µ, λ|D) ∂2

∂µ∂λ log p(µ, λ|D)

)

=

(

− n
σ2 −2n

y−µ
σ2

−2n
y−µ
σ2 − 2

σ2 (ns2 + n(y − µ)2)

)

(195)
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Evaluating this at the mode we have

H |θ̂ =

(

− n
σ̂2 0
0 −2n

)

(196)

Hence the approximate posterior is

p(µ, log σ|D) ≈ N
((

y
log σ̂

)

,

(

σ̂2

n 0
0 1

2n

))

(197)

6 Bayesian model selection
Suppose we haveK possible models for our data. Let us writep(D|Mi) to represent the data generated from modeli,
for i = 1 : K. We can express our belief in which model is correct using

p(M = i|D) = p(Mi|D) =
p(D|Mi)p(Mi)

p(D)
(198)

where

p(D|Mi) =

∫

p(D|θ, Mi)p(θ|Mi)dθ (199)

is the marginal likelihood, also called theevidencefor modelMi. We cannot use the “standard” likelihoodp(D|Mi, θ)

for model selection, becauseθ is unknown; and we cannot usep(D|Mi, θ̂ML) since the maximum likelihood model is
always the most complex one (since the most complex model canalways fit the training data the best).

Notice that the normalizing constant used for parameter estimation becomes the likelihood for the next level up
the modeling hierarchy:

p(θ|D, Mi) =
p(D|θ, Mi)p(θ|Mi)

p(D|Mi)
(200)

The termp(Mi) is our prior preference for modeli. Sometimes we explicitly encode a preference for simpler models,
by penalizing models with many parameters, although, as we will see in Section 6.2, this is not strictly necessary.

If we just want to compare two models, we can compute theirposterior odds ratio

Oij =
p(Mi|D)

p(Mj |D)
=

p(D|Mi)p(Mi)

p(D|Mj)p(Mj)
(201)

wherep(Mi)
p(Mj) is called theprior odds ratio and

BF (Mi, Mj) =
p(D|Mi)

p(D|Mj)
=

p(Mi|D)

p(Mj |D)
/

p(Mi)

p(Mj)
(202)

is called theBayes factor(posterior to prior odds ratio). For two models, we write

BF (1, 2) =
P (D|H1)

P (D|H2)
(203)

This is like alikelihood ratio , except we integrate out the parameters. If we haveOij for all pairs, we can infer the
distribution over modelsp(Mi|D) using the fact that

∑

i p(Mi|D) = 1. For example, for 2 models, we have

p(M1|D) = O12p(M2|D) (204)

= O12(1 − p(M1|D)) (205)

=
O12

1 + O12
(206)
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6.1 Worked example: is the coin biased?

Consider the problem of determinining if a coin is biased. Let θ be the probability of heads. We want to compare two
hypotheses or models,H0 thatθ = 0.5, andH1 thatθ 6= 0.5. In fact, since the probability thatθ is exactly equal to 0.5
is zero (becausep(θ) is a density function), we can letH1 be the hypothesis thatθ ∈ [0, 1], without worrying about
excluding 0.5.

ForH0, there is no free parameter, so the marginal likelihood is

P (D|H0) = 0.5N (207)

whereN is the number of coin tosses inD. ForH1, we need to integrate outθ:

P (D|H1) =

∫ 1

0

P (D|θ, H1)P (θ|H1)dθ (208)

For simplicity, let us use aBeta(α1, α2) prior onθ, whereα1 = α2 = α.
Suppose, following [Mac03], that we toss a coinN = 250 times, and observeN1 = 141 heads andN0 = 109

tails. Then

BF (1, 0) =
P (D|H1)

P (D|H0)
=

B(α1 + N1, α0 + N0)

B(α1, α0)

1

0.5N
(209)

To test therobustnessof our conclusion to our prior, we computeBF (1, 0) for a range of prior strengthsα. The results
are shown in Figure 16. For a uniform prior,α = 1, P (H1|D)

P (H0|D) = 0.48, (weakly) favoring the fair coin hypothesisH0.
At best, forα = 50, we can make the biased hypothesis twice as likely. A Bayes factor of 2 is not evidence in favor of
a hypothesis.

The code to implement Figure 16 is shown below. Note thatbetaln is the log-beta function; we must work in
log domain to avoid underflow.

% modelSelCoinDemo
alphas = [0.37 1 2.7 7.4 20 55 148 403 1096];
Nh = 140; Nt = 110; N = Nh+Nt;
figure(1);clf
logBF = betaln(Nh+alphas, Nt+alphas) - betaln(alphas, alp has) - N * log(0.5);
plot(alphas, exp(logBF), ’o-’);

6.2 Bayesian Occam’s razor

A simple approach to model selection is to pick the one with the largestpenalized likelihood, where the penalty is
proportional to the number of parameters in the model (see Section 6.4). However, simply counting parameters is a
rather blunt instrument. It turns out that, for many models,themagnitudeof the parameters is at least as important as
the number of parameters. To see why, consider linear regression,y = θT f(x) + ε, wheref(x) is a basis function
expansion ofx, such as a polynomial expansion. Ifθi ≈ 0 for the featuresi that represent higher order terms, then
the function will be fairly linear, but ifθi is large for such terms, the function will be very “wiggly”. Hence the
parameter priorp(θ|Mi) turns out to control model complexity as well. In the Bayesian approach, by integrating over
all parameters, we are seeking a model that is good, no matterwhat parameters it uses. This discourages picking models
that only fit the data well at a particularθ (by chance). Thus the mere act of integrating overθ will automatically pick
simpler models. This is called the BayesianOccam’s razor. (Occam’s razor says: “if two models are equally good at
predicting, pick the simpler one”.) In other words, even if we have no explicit penalty on complex models (soP (Mi)
is uniform), merely by integrating over all possible parameter values (i.e., by usingP (D|Mi) =

∫

P (D, θ|Mi)dθ),
we automatically prefer models that are not too complex (provided they fit the data well).

An overly simple modelM1 has lowP (D|M1) since it has poor fit to the data. An overly complex modelM3

has lowerP (D) than a medium modelM2, since a complex model spreads its probability mass over more possible
datasets, but this mass must sum to one (conservation of belief). Put another way, we trust an expert who predicts a
few specific(and correct!) things more than an expert who predicts many things. See Figure 17.
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Figure 16: Bayes factor in favor of biased coin versus strenght of symmetric Beta hyperparameter. Produced by
modelSelCoinDemo.m .
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Figure 17: An illustration of the Bayesian Occam’s razor. The broad (green) curve corresponds to a complex model, the narrow
(blue) curve to a simple model, and the middle (red) curve is just right. Source: Figure 3.13 [Bis06].
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6.2.1 Worked example: is the coin biased?

Let us consider a simple example. Consider comparing the model M0 that a coin is unbiased,θ = 0.5, to the model
M1 that says the coin may be biased,θ ∼ Be(1, 1). (Note thatM1 includesM0, but only assigns infinitessimal
probability mass to the eventθ = 0.5.) The marginal likelihood underM0 is simply

p(D|M0) =
1

2

N

(210)

whereN is the number of coin tosses. The marginal likelihood underM1 is

p(D|M1) =

∫

p(D|θ)p(θ)dθ =

∫

Bin(N1|N, θ)Beta(θ|1, 1)dθ =
B(1 + N1, 1 + N0)

B(1, 1)
(211)

We plot this vs the number of headsN1 in Figure 18 (assumingN = 5). We see is that if we observe 2 or 3 heads, the
unbiased coin hypothesisM0 is more likely, since it is simpler (has no free parameters);but if we observe 0, 1, 4, or
5 heads, the biased coin hypothesisM1 is more likely. It would be asuspicious coincidenceif the coin were biased
but happened to produce almost exactly 50/50 heads/tails, so we discount modelM1 for the data in the middle of the
curve.

Another interesting feature of this plot is the strong probability of getting all heads or all tails underM1. To
understand this, let us use the chain rule to write

p(D) = p(x1:N ) = p(x1)p(x2|x1)p(x3|x1:2) . . . (212)

Now, the posterior predictive distribution is

p(X = 1|D1:N ) =
N1 + α1

N1 + α1 + N0 + α0

def
=

N1 + α1

N + α
(213)

whereD1:N is the data seen so far andα = α0 + α1. So a sequence of all 0 heads, say, is much more likely than a
sequence with 1 head or 2 heads:

p(0, 0, 0, 0, 0) =
α0

α
· α0 + 1

α + 1
· α0 + 2

α + 2
· α0 + 3

α + 3
· α0 + 4

α + 4
= 0.1667 (214)

p(0, 0, 0, 0, 1) =
α0

α
· α0 + 1

α + 1
· α0 + 2

α + 2
· α0 + 3

α + 3
· α1

α + 4
= 0.0333 (215)

p(0, 0, 0, 1, 1) =
α0

α
· α0 + 1

α + 1
· α0 + 2

α + 2
· α1

α + 3
· α1 + 1

α + 4
= 0.0167 (216)

Note that the order of the data does not matter. Also, the shape of the curve is not very sensitive toα.
The code to produce Figure 18 is shown below.

%joshCoins4

theta = 0.7; N = 5; alpha = 1;
alphaH = alpha; alphaT = alpha;
for i=1:(2ˆN)

flips(i,:) = ind2subv(2 * ones(1,N), i); % convert i to bit vector
Nh(i) = length(find(flips(i,:)==1));
Nt(i) = length(find(flips(i,:)==2));
nh = Nh(i); nt = Nt(i);
margLik(i) = exp(betaln(alphaH+nh, alphaT+nt) - betaln(a lphaH, alphaT));

end

% sort in order of number of heads
[Nh, ndx] = sort(Nh);
margLik = margLik(ndx);

figure(1); clf
hold on
p0 = (1/2)ˆN;
h=plot(margLik, ’o-’);
h = line([0 2ˆN], [p0 p0]); set(h,’color’,’k’,’linewidth’ ,3);
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Figure 18: Marginal likelihood for different data sets under two different models: horizontal black line assertsθ = 0.5; other blue
line asserts only thatθ ∈ [0, 1]. Produced byjoshCoins4 .

set(gca,’xtick’, 1:2ˆN)
set(gca,’xticklabel’,Nh)
xlabel(’num heads’)
title(sprintf(’Marginal likelihood for Beta-Bernoulli m odel, %s p(D|%s) Be(%s|1,1) d%s’, ...

’\int’, ’\theta’, ’\theta’, ’\theta’))

6.3 Lindley’s paradox

Problems can arise when we use improper priors for model selection/ hypothesis testing. For example, consider testing
the hypothesesH0 : θ ∈ Θ0 vs H1 : θ ∈ Θ1. Let p0 be the priorH0, andp1 = 1 − p0 be the prior ofH1. To define
the priordensityonθ, we use the following mixture model

p(θ) = p(θ|H0)p(H0) + p(θ|H1)p(H1) = π0(θ)p1 + π1(θ)p0 (217)

The mixing weightsp0, p1 are only meaningful ifπ0 andπ1 are proper (normalized) density functions. In this case,
the posterior is given by

p(H0|x) =
p0p(x|H0)

p0p(x|H0) + p1p(x|H1)
(218)

=
p0

∫

Θ0
p(x|θ)π0(θ)dθ

p0

∫

Θ0
p(x|θ)π0(θ)dθ + (1 − p0)

∫

Θ1
p(x|θ)π1(θ)dθ

(219)

Now suppose we use improper priors,π0(θ) ∝ c0 andπ1(θ) ∝ c1. Then

p(H0|x) =
p0c0

∫

Θ0
p(x|θ)dθ

p0c0

∫

Θ0
p(x|θ)dθ + (1 − p0)c1

∫

Θ1
p(x|θ)dθ

(220)

=
p0c0`0

p0c0`0 + (1 − p0)c1`1
(221)
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where`i =
∫

Θi
p(x|θ)dθ is the integrated likelihood. Now letp0 = p1 = 1

2 . Hence

p(H0|x) =
c0`0

c0`0 + c1`1
(222)

=
`0

`0 + (c1/c0)`1
(223)

Thus we can change the posterior arbitrarily by choosingc1 andc0. Note that using proper, but very vague, priors can
cause the same problem. In particular, the Bayes factor willalways favor the simpler model. This is calledLindley’s
paradox. Thus choosing the hyper-parameters of a prior is a way of controlling the complexity of the chosen model.

Note that, ifH0 andH1 share the same prior over certain parameters, this part of the prior can be improper, since
the normalization constant will cancel out.

6.4 Bayesian information criterion (BIC)

We can approximate the marginal likelihood in the large sample setting as follows. Let us apply the Laplace ap-
proximation (Section 5.1) to the posterior, sof(θ) = p(D|θ)p(θ), andZ = p(D). From Equation 188, the Laplace
approximation to the marginal likelihood is

p(D) ≈ p(D|θ0)p(θ0)(2π)d/2|C| 12 (224)

whereθ0 is a posterior mode.
TheBayesian information criterion (BIC) is an approximation to the above approximation in which we assume

p(θ) ∝ 1 and|H | ≈ nd, wheren is the number of data points andd is the number of parameters (length ofθ). Since
C = −H−1, we have

log p(D) ≈ log p(D|θ̂MLE) − 1
2d log n (225)

dropping additive constants.
TheAkaike Information Criterion (AIC) is derived from a different framework, but the final answer is similar:

log P (D) ≈ log P (D|θ̂MLE) − d (226)

Note that determining the “effective number of parameters”d is a difficult problem in general, especially in latent
variable models.
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