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0.1 Normal-Gamma model

In this section, we consider the case where the mean and precision are both unknown. We just state the results without
proofs. Derivations may be found in [Mur07]. First we introduce two useful distributions.

0.1.1 Gamma distribution

The gamma distribution is a flexible distribution for positive real valued rv’s,x > 0. It is defined in terms of two
parameters. There are two common parameterizations. This is the one used by Bishop [Bis06] (and many other
authors):

Ga(x|shape =a, rate =b) =
ba

Γ(a)
xa−1e−xb, x, a, b > 0 (1)

The second parameterization (and the one used by Matlab’sgampdf) is

Ga(x|shape =α, scale =β) =
1

βαΓ(α)
xα−1e−x/β (2)

Note that the shape parameter controls the shape; the scale parameter merely defines the measurement scale (the
horizontal axis). The rate parameter is just the inverse of the scale. See Figure 1 for some examples. This distribution
has the following properties (using the rate parameterization):

mean =
a

b
(3)

mode =
a − 1

b
for a ≥ 1 (4)

var =
a

b2
(5)

0.1.2 Student t distribution

The generalized t-distribution is given as

tν(x|µ, σ2) = c

[

1 +
1

ν
(
x − µ

σ
)2
]

−( ν+1

2
)

(6)

c =
Γ(ν/2 + 1/2)

Γ(ν/2)

1√
νπσ

(7)

wherec is the normalization consant.µ is the mean,ν > 0 is thedegrees of freedom, andσ2 > 0 is the scale. (Note
that theν parameter is written as a subscript.)

The distribution has the following properties:

mean = µ, ν > 1 (8)

mode = µ (9)

var =
νσ2

(ν − 2)
, ν > 2 (10)
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Figure 1: SomeGa(a, b) distributions. Ifa < 1, the peak is at 0. As we increaseb, we squeeze everything leftwards and upwards.
Figures generated bygammaDistPlot2.

Note: if x ∼ tν(µ, σ2), then
x − µ

σ
∼ tν (11)

which corresponds to a standard t-distribution withµ = 0, σ2 = 1 (Matlab’stpdf):

tν(x) =
Γ((ν + 1)/2)√

νπΓ(ν/2)
(1 + x2/ν)−(ν+1)/2 (12)

In Figure 2, we plot the density for different parameter values. T-distributions are like Gaussian distributions with
heavy tails. Hence they are more robust to outliers (see Figure 3). Asν → ∞, the T approaches a Gaussian.

If ν = 1, this is called aCauchy distribution. This is an interesting distribution since ifX ∼ Cauchy, thenE[X ]
does not exist, since the corresponding integral diverges.Essentially this is because the tails are so heavy that samples
from the distribution can get very far from the centerµ.

It can be shown that the t-distribution is like an infinite sumof Gaussians, where each Gaussian has a different
variance [Arc05, p111]:

tν(x|µ, λ−1) =

∫

∞

0

N (x|µ, (uλ)−1)Ga(u|shape=
ν

2
, rate=

ν

2
)du (13)

(See exercise 2.46 of [Bis06].)

0.2 Likelihood

The likelihood can be written in this form

p(D|µ, λ) =
1

(2π)n/2
λn/2 exp

(

−λ

2

n
∑

i=1

(xi − µ)2

)

(14)

=
1

(2π)n/2
λn/2 exp

(

−λ

2

[

n(µ − x)2 +
n
∑

i=1

(xi − x)2

])

(15)

2



−6 −4 −2 0 2 4 6
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
Student T distributions

t(ν=0.1)
t(ν=1.0)
t(ν=5.0)
N(0,1)

Figure 2: Student t-distributionsTν(µ, σ2) for µ = 0. The effect ofσ is just to scale the horizontal axis. Asν→∞, the distribution
approaches a Gaussian. SeestudentTplot.
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Figure 3: Fitting a Gaussian and a Student distribution to some data (left) and to some data with outliers (right). The Student
distribution (red) is much less affected by outliers than the Gaussian (green). Source: [Bis06] Figure 2.16.
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Figure 4: Some Normal-Gamma distributions. Produced byNGplot2.

0.3 Prior

The conjugate prior is thenormal-Gamma:

NG(µ, λ|µ0, κ0, α0, β0)
def
= N (µ|µ0, (κ0λ)−1)Ga(λ|α0, rate= β0) (16)

=
1

ZNG(µ0, κ0, α0, β0)
λ

1
2 exp(−κ0λ

2
(µ − µ0)

2)λα0−1e−λβ0 (17)

=
1

ZNG
λα0−

1
2 exp

(

−λ

2

[

κ0(µ − µ0)
2 + 2β0

]

)

(18)

ZNG(µ0, κ0, α0, β0) =
Γ(α0)

βα0

0

(

2π

κ0

)

1
2

(19)

See Figure 4 for some plots.

0.4 Posterior

The posterior is

p(µ, λ|D) = NG(µ, λ|µn, κn, αn, βn) (20)

µn =
κ0µ0 + nx

κ0 + n
(21)

κn = κ0 + n (22)

αn = α0 + n/2 (23)

βn = β0 + 1
2

n
∑

i=1

(xi − x)2 +
κ0n(x − µ0)

2

2(κ0 + n)
(24)

4



We see that the posterior sum of squares,βn, combines the prior sum of squares,β0, the sample sum of squares,
∑

i(xi − x)2, and a term due to the discrepancy between the prior mean and sample mean. As can be seen from
Figure 4, the range of probable values forµ andσ2 can be quite large even after for moderaten. Keep this picture in
mind whenever someones claims to have “fit a Gaussian” to their data.

The posterior marginals are

p(λ|D) = Ga(λ|αn, βn) (25)

p(µ|D) = T2αn
(µ|µn,

βn

αnκn
) (26)

0.5 Marginal likelihood

p(D) =
Zn

Z0
(2π)−n/2 (27)

=
Γ(αn)

Γ(α0)

βα0

0

βαn

n
(
κ0

κn
)
1
2 (2π)−n/2 (28)

0.6 Posterior predictive

p(x|D) = t2αn
(x|µn,

βn(κn + 1)

αnκn
) (29)
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