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0.1 Normal-Gamma model

In this section, we consider the case where the mean angjareeire both unknown. We just state the results without
proofs. Derivations may be found in [MurQ7]. First we intca two useful distributions.

0.1.1 Gammadistribution

The gamma distribution is a flexible distribution for posdtireal valued rv'sz > 0. It is defined in terms of two
parameters. There are two common parameterizations. Jhieione used by Bishop [Bis06] (and many other
authors):
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The second parameterization (and the one used by Matalo'pdf ) is
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Note that the shape parameter controls the shape; the sm@meter merely defines the measurement scale (the
horizontal axis). The rate parameter is just the inversa®fttale. See Figure 1 for some examples. This distribution
has the following properties (using the rate parameteazst
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0.1.2 Student ¢ distribution
The generalized t-distribution is given as
1 x—p —(59)
Walno?) = el1+ (2P ©)
14 g
I'(v/24+1/2 1
. _ Lw/211)2) @

I'v/2) +vro

wherec is the normalization consant.is the meany > 0 is thedegrees of freedom, ands? > 0 is the scale. (Note
that thev parameter is written as a subscript.)
The distribution has the following properties:
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Figure 1: SomeGa(a, b) distributions. Ifa < 1, the peak is at 0. As we increabewe squeeze everything leftwards and upwards.
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Note: if x ~ ¢, (u,0?), then

~t, (11)
which corresponds to a standard t-distribution witk: 0, 02 = 1 (Matlab’st pdf ):
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In Figure 2, we plot the density for different parameter esluT-distributions are like Gaussian distributions with
heavy tails. Hence they are more robust to outliers (see Figure 3} As oo, the T approaches a Gaussian.

If v = 1, this is called &Cauchy distribution. This is an interesting distribution sinceXf ~ Cauchy, thenE[X]
does not exist, since the corresponding integral divefgssentially this is because the tails are so heavy that ssmpl
from the distribution can get very far from the center

It can be shown that the t-distribution is like an infinite sofmGaussians, where each Gaussian has a different
variance [Arc05, p111]:
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(See exercise 2.46 of [Bis06].)
0.2 Likelihood
The likelihood can be written in this form
p(Dlp, A) = /2 exp 2 En:(x' - p)? (14)
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Figure 2: Student t-distributiong, (11, %) for 1 = 0. The effect ofv is just to scale the horizontal axis. As-oo, the distribution
approaches a Gaussian. Sgaident Tpl ot .
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Figure 3: Fitting a Gaussian and a Student distribution to some daf) @nd to some data with outliers (right). The Student
distribution (red) is much less affected by outliers thaa @aussian (green). Source: [Bis06] Figure 2.16.
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Figure 4: Some Normal-Gamma distributions. Produced\@p! ot 2.

0.3 Prior
The conjugate prior is theor mal-Gamma:
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See Figure 4 for some plots.
0.4 Posterior
The posterior is
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We see that the posterior sum of squargs,combines the prior sum of squargh, the sample sum of squares,
> .(z; — 7)?, and a term due to the discrepancy between the prior meanasnples mean. As can be seen from
Figure 4, the range of probable values foands? can be quite large even after for moderateKeep this picture in
mind whenever someones claims to have “fit a Gaussian” to dia¢a.

The posterior marginals are
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0.5 Marginal likelihood
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