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Bayesian model selection

• Suppose we have several models, each with 
potentially different numbers of parameters.

• Example: M0 = constant, M1 = straight line, M2 = 
quadratic, M3 = cubic

• The posterior over models is defined using Bayes
rule, where p(D|m) is called the marginal likelihood 
or “evidence” for m

p(m|D) =
p(m)p(D|m)

p(D)

p(D|m) =

∫
p(D|θ,m)p(θ|m)dθ

p(D) =
∑

m∈M

p(D|m)p(m)



Polynomial regression, n=8

logev(m) = log p(D|m)

p(m) = 1/4

With little data, we choose a simple model

truth=quadratic
(green curve)



Polynomial regression, n=32

Shape of cubic
changes a lot – high
variance estimator

With more data, we choose a more complex model

truth=quadratic
(green curve)



Bayesian Occam’s razor

• The use of the marginal likelihood p(D|M) 
automatically penalizes overly complex models, 
since they spread their probability mass very widely 
(predict that everything is possible), so the 
probability of the actual data is small.

Bishop 3.13

Too simple, cannot predict D

Too complex, can predict
everything

Just right



Bayesian Occam’s razor

Actual data

Model 3 can generate
many data sets; prior is broad,
posterior is peaked 

Model 1 can only
generate a few
types of data

Samples from model

Mackay 28.6



Computing marginal likelihoods

• Let p’(D|θ) and p’(θ) be the unnormalized likelihood 
and prior. Then

• Eg. Beta-bernoulli model

• Eg. Normal-Gamma-Normal model
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Bayesian hypothesis testing

• Suppose we toss a coin N=250 times and observe 
N1=141 heads and N0=109 tails.

• Consider two hypotheses: H0 that θ=0.5 and H1 that 
θ ≠ 0.5. Actually, we can let H1 be p(θ) = U(0,1), 
since p(θ=0.5|H1) = 0 (pdf).

• For H0, marginal likelihood is

• For H1, marginal likelihood is
p(D|H0) = 0.5

N

P (D|H1) =

∫ 1

0

P (D|θ,H1)P (θ|H1)dθ =
B(α1 +N1, α0 +N0)

B(α1, α0)



Bayes factors

• To compare two models, use posterior odds

• If the priors are equal, it suffices to use the BF.
• The BF is a Bayesian version of a likelihood ratio 

test, that can be used to compare models of 
different complexity. If BF(i,j)>>1, prefer model i.

• For the coin example,

Oij =
p(Mi|D)

p(Mj |D)
=

p(D|Mi)p(Mi)

p(D|Mj)p(Mj)

Prior oddsBayes factor

BF (1, 0) =
P (D|H1)

P (D|H0)
=

B(α1 +N1, α0 +N0)

B(α1, α0)

1

0.5N

Posterior odds



Bayes factor vs prior strength

• Let α1=α0 range from 0 to 1000.
• The largest BF in favor of H1 (biased coin) is only 

2.0, which is only very weak evidence of bias.

α

BF(1,0)



Bayesian Occam’s razor for biased coin
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Red curve = p(D|H1) = ∫ p(D|θ) Beta(θ|1,1) d θ

If we observe 2 or 3 heads out of 5,
the simpler model is more likely

Blue line = p(D|H0) = 0.5N

If we have already observed 4 heads,
it is much more likely to observe a 5th head
than a tail, since θ gets updated sequentially.
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Parameter estimation

• We have seen how Bayesian inference offers a 
principled solution to the parameter estimation 
problem.

• However, when the number of samples (relative to 
the number of parameters) is large, we can often 
approximate the posterior as a delta function 
centered on the MAP estimate.

• An even simpler approximation is to just use the 
maximum likelihood estimate

θ̂MLE = argmax
θ

p(D|θ)

θ̂MAP = argmax
θ

p(D|θ)p(θ)



Why maximum likelihood?

• Recall that the KL divergence from the true 
distribution p to the approximation q is

• Let p be the empirical distribution

KL(p||q) =
∑

x

p(x) log
p(x)

q(x)

= const−
∑

x

p(x) log q(x)

pemp(x) =
1

n

n∑

i=1

δ(x− xi)



ML = min KL to empirical

• KL to the empirical

• Hence minimizing KL is equivalent to minimizing 
the average negative log likelihood on the training 
set

KL(pemp||q) = C −
∑

x

[
1

n

∑

i

δ(x− xi)] log q(x)

= C −
1

n

∑

i

log q(xi)



Computing the Bernoulli MLE

• We maximize the log-likelihood

ℓ(θ) = N1 log θ +N0 log(1− θ)

dℓ

dθ
=

N1

θ
−
N −N1

1− θ
= 0

⇒

θ̂ =
N1

N
Empirical fraction of heads eg. 47/100



Regularization

• Suppose we toss a coin N=3 times and see 3 tails. 
We would estimate the probability of heads as 0.

• Intuitively, this seems unreasonable. Maybe we just 
haven’t seen enough data yet (sparse data 
problem).

• We can add pseudo counts C0 and C1 (e.g., 0.1) to 
the sufficient statistics N0 and N1 to get a better 
behaved estimate.

• This is the MAP estimate using a Beta prior. 

θ̂ =
0

3

θ̂ =
N1 + C1

N0 +N1 + C0 + C1



MLE for the multinomial

• If xn ∈ {1,…,K}, the likelihood is

• The Ni are the sufficient statistics

• The log-likelihood is

ℓ(θ) =
∑

k

Nk log θk

P (D|θ) ∝
N∏

n=1

K∏

k=1

θ
I(xn=k)
k =

∏

k

θ

∑
n
I(xn=k)

k =
∏

k

θNk

k



Computing the multinomial MLE

• We maximize L(θ) subject to the constraint
∑k θk = 1.

• We enforce the constraint using a Lagrange 
multiplier λ.

• Taking derivatives wrt θk

• Taking derivatives wrt λ yields the constraint

ℓ̃ =
∑

k

Nk log θk + λ

(

1−
∑

k

θk

)

∂ℓ̃

∂θk
=

Nk
θk
− λ = 0

∂ℓ̃

∂λ
=

(

1−
∑

k

θk

)

= 0



Computing the multinomial MLE

• Using the sum-to-one constraint, we get

• Example: N1 = 100 spam, N2 = 10 urgent, N3 = 20 
normal, θ = (100/130, 10/130, 20/130).

• Can add pseudo counts if some classes are rare.

Nk = λθk∑

k

Nk = λ
∑

k

θk = λ

θ̂k =
Nk∑
kNk

Empirical fraction of counts



Computing the Gaussian MLE

• The log likelihood is

• The MLE for the mean is the sample mean

p(D|µ, σ2) =
N∏

n=1

N (xn|µ, σ
2) =

∏

n

(2πσ2)−
1

2 exp(−
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2σ2
(xn − µ)2)
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1

2σ2
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N

2
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N

2
ln(2π)

∂ℓ

∂µ
= −

2

2σ2

∑

n

(xn − µ) = 0

µ̂ =
1

N

N∑

n=1

xn



Estimating σ
• The log likelihood is

• The MLE for the variance is the sample variance 
(see handout for proof)

ℓ(µ, σ2) = −
1

2σ2

N∑

n=1

(xn − µ)2 −
N

2
lnσ2 −

N

2
ln(2π)

∂ℓ

∂σ2
=

1

2
σ−4

∑

n

(xn − µ̂)−
N

2σ2
= 0

σ̂2ML =
1

N

N∑

n=1

(xn − µ̂)2

=
1

N

∑

n

x2n − (µ̂)
2



Sampling distribution

• MLE returns a point estimate

• In frequentist (classical/ orthodox) statistics, we 
treat D as random and θ as fixed, and ask how      
the estimate would change if D changed. This is 
called the sampling distribution of the estimator. 

• The sampling distribution is often approximately 
Gaussian. 

• In Bayesian statistics, we treat D as fixed and θ as 
random, and model our uncertainty with the 
posterior p(θ|D)

θ̂(D)

p(θ̂(D)|D ∼ θ)



Unbiased estimators

• The bias of an estimator is defined as

• An estimator is unbiased if bias=0.

• Eg. MLE for Gaussian mean is unbiased

bias(θ̂) = E
[
θ̂(D)− θ|D ∼ θ

]

Eµ̂ = E
1

N

N∑

n=1

Xn =
1

N

∑

n

E[Xn] =
1

N
Nµ = µ



Estimators for σ2

• The MLE for Gaussian variance is biased (HW3)

• It is common to use the following unbiased 
estimator instead 

• This is unbiased

• In Matlab, var(X) returns       whereas var(X,1) 
returns 

• The MLE underestimates the variance (e.g., N=1, 
no variance) since we use an estimated µ, which is 
shifted from the true µ towards the data (see HW3).

Eσ̂2 =
N − 1

N
σ2

σ̂2N−1 =
N

N − 1
σ̂2

σ̂2N−1

σ̂2

E[σ̂2N−1] = E[
N

N − 1
σ̂2] =

N

N − 1

N − 1

N
σ2 = σ2



Is being unbiased enough?

• Consider the estimator

• This is unbiased

• But intuitively it is unreasonable since it will not 
improve, no matter how many samples N we have.

µ̃(x1, . . . , xN ) = x1

Eµ̃(X1, . . . , XN ) = E[X1] = µ



Consistent estimators

• An estimator is consistent if it converges (in 
probability) to the true value with enough data

• MLE is a consistent estimator.

P (|θ̂(D)− θ| > ǫ|D ∼ θ)→ 0 as |D| → ∞



Bias-variance tradeoff

• Being unbiased is not necessarily desirable! 
Suppose our loss function is mean squared error

• To minimize MSE, we can either minimize bias or 
minimize variance. Define

• Then

MSE = E[θ̂(D)− θ)2|D ∼ θ]

ED(θ̂(D)− θ)2 = ED(θ̂(D) − θ + θ − θ)2

= ED(θ̂(D) − θ)2 + 2(θ − θ)ED(θ̂(D) − θ) + (θ − θ)2

= ED(θ̂(D) − θ)2 + (θ − θ)2

= V (θ̂) + bias2(θ̂)

θ = E[θ̂(D)|D ∼ θ]

ED(θ̂(D)− θ) = θ − θ = 0

We will frequently use biased estimators! Not on exam


