CS340 Machine learning Bayesian model selection

Bayesian model selection

- Suppose we have several models, each with potentially different numbers of parameters.
- Example: M0 = constant, M1 = straight line, M2 = quadratic, M3 = cubic
- The posterior over models is defined using Bayes rule, where p(D|m) is called the marginal likelihood or "evidence" for m

$$p(m|D) = \frac{p(m)p(D|m)}{p(D)}$$
$$p(D|m) = \int p(D|\theta, m)p(\theta|m)d\theta$$
$$p(D) = \sum_{m \in \mathcal{M}} p(D|m)p(m)$$

Polynomial regression, n=8

Polynomial regression, n=32

Bayesian Occam's razor

 The use of the marginal likelihood p(D|M) automatically penalizes overly complex models, since they spread their probability mass very widely (predict that everything is possible), so the probability of the actual data is small.

Bayesian Occam's razor

Model 3 can generate many data sets; prior is broad, posterior is peaked Model 1 can only generate a few types of data

Computing marginal likelihoods

 Let p'(D|θ) and p'(θ) be the unnormalized likelihood and prior. Then

$$p(\theta|D) = \frac{1}{p(D)} \frac{1}{Z_l} p'(D|\theta) \frac{1}{Z_0} p'(\theta) = \frac{1}{Z_n} p'(\theta|D)$$
$$\frac{1}{Z_n} = \frac{1}{p(D)} \frac{1}{Z_l} \frac{1}{Z_0}$$
$$p(D) = \frac{Z_n}{Z_0} \frac{1}{Z_l}$$

• Eg. Beta-bernoulli model

$$p(D) = \frac{B(\alpha_1 + N_1, \alpha_0 + N_0)}{B(\alpha_1, \alpha_0)}$$

• Eg. Normal-Gamma-Normal model

$$p(D) = \frac{\Gamma(\alpha_n)\beta_0^{\alpha_0}}{\Gamma(\alpha_0)\beta_n^{\alpha_n}} \left(\frac{\kappa_0}{\kappa_n}\right)^{1/2} \left(\frac{1}{2\pi}\right)^{n/2}$$

Bayesian hypothesis testing

- Suppose we toss a coin N=250 times and observe N_1 =141 heads and N_0 =109 tails.
- Consider two hypotheses: H_0 that $\theta=0.5$ and H_1 that $\theta \neq 0.5$. Actually, we can let H_1 be $p(\theta) = U(0,1)$, since $p(\theta=0.5|H_1) = 0$ (pdf).
- For H₀, marginal likelihood is

 $p(D|H_0) = 0.5^N$

• For H₁, marginal likelihood is

$$P(D|H_1) = \int_0^1 P(D|\theta, H_1) P(\theta|H_1) d\theta = \frac{B(\alpha_1 + N_1, \alpha_0 + N_0)}{B(\alpha_1, \alpha_0)}$$

Bayes factors

• To compare two models, use posterior odds

- If the priors are equal, it suffices to use the BF.
- The BF is a Bayesian version of a likelihood ratio test, that can be used to compare models of different complexity. If BF(i,j)>>1, prefer model i.
- For the coin example,

$$BF(1,0) = \frac{P(D|H_1)}{P(D|H_0)} = \frac{B(\alpha_1 + N_1, \alpha_0 + N_0)}{B(\alpha_1, \alpha_0)} \frac{1}{0.5^N}$$

Bayes factor vs prior strength

- Let $\alpha_1 = \alpha_0$ range from 0 to 1000.
- The largest BF in favor of H1 (biased coin) is only 2.0, which is only very weak evidence of bias.

Bayesian Occam's razor for biased coin

Blue line = $p(D|H_0) = 0.5^N$ Red curve = $p(D|H_1) = \int p(D|\theta) Beta(\theta|1,1) d \theta$

CS340 Machine learning Frequentist parameter estimation

Parameter estimation

- We have seen how Bayesian inference offers a principled solution to the parameter estimation problem.
- However, when the number of samples (relative to the number of parameters) is large, we can often approximate the posterior as a delta function centered on the MAP estimate.

$$\hat{\theta}_{MAP} = \arg\max_{\theta} p(D|\theta) p(\theta)$$

• An even simpler approximation is to just use the maximum likelihood estimate

$$\hat{\theta}_{MLE} = \arg\max_{\theta} p(D|\theta)$$

Why maximum likelihood?

Recall that the KL divergence from the true distribution p to the approximation q is

$$KL(p||q) = \sum_{x} p(x) \log \frac{p(x)}{q(x)}$$
$$= \text{const} - \sum p(x) \log q(x)$$

• Let p be the empirical distribution

$$p_{emp}(x) = \frac{1}{n} \sum_{i=1}^{n} \delta(x - x_i)$$

ML = min KL to empirical

• KL to the empirical

$$KL(p_{emp}||q) = C - \sum_{x} \left[\frac{1}{n} \sum_{i} \delta(x - x_{i})\right] \log q(x)$$
$$= C - \frac{1}{n} \sum_{i} \log q(x_{i})$$

 Hence minimizing KL is equivalent to minimizing the average negative log likelihood on the training set

Computing the Bernoulli MLE

- We maximize the log-likelihood
- $= N_1 \log \theta + N_0 \log(1-\theta)$ $\ell(\theta)$ $= \frac{N_1}{\theta} - \frac{N - N_1}{1 - \theta}$ $d\ell$ $d\theta$ ____ \Rightarrow $\frac{N_1}{N}$ $\hat{\theta}$ Empirical fraction of heads eg. 47/100

Regularization

- Suppose we toss a coin N=3 times and see 3 tails. We would estimate the probability of heads as 0. $\hat{\theta} = \frac{0}{2}$
- Intuitively, this seems unreasonable. Maybe we just haven't seen enough data yet (*sparse data problem*).
- We can add *pseudo counts* C₀ and C₁ (e.g., 0.1) to the sufficient statistics N₀ and N₁ to get a better behaved estimate.

$$\hat{\theta} = \frac{N_1 + C_1}{N_0 + N_1 + C_0 + C_1}$$

• This is the MAP estimate using a Beta prior.

MLE for the multinomial

• If $x_n \in \{1, \dots, K\}$, the likelihood is

$$P(D|\theta) \propto \prod_{n=1}^{N} \prod_{k=1}^{K} \theta_k^{I(x_n=k)} = \prod_k \theta_k^{\sum_n I(x_n=k)} = \prod_k \theta_k^{N_k}$$

- The N_i are the sufficient statistics
- The log-likelihood is

$$\ell(\theta) = \sum_k N_k \log \theta_k$$

Computing the multinomial MLE

- We maximize L(θ) subject to the constraint $\sum_k \theta_k = 1$.
- We enforce the constraint using a Lagrange multiplier λ .

$$\tilde{\ell} = \sum_{k=1}^{k} N_k \log \theta_k + \lambda \left(1 - \sum_k \theta_k \right)$$

• Taking derivatives wrt θ_k

$$\frac{\partial \tilde{\ell}}{\partial \theta_k} = \frac{N_k}{\theta_k} - \lambda = 0$$

• Taking derivatives wrt λ yields the constraint

$$\frac{\partial \tilde{\ell}}{\partial \lambda} = \left(1 - \sum_k \theta_k\right) = 0$$

Computing the multinomial MLE

• Using the sum-to-one constraint, we get

- Example: $N_1 = 100$ spam, $N_2 = 10$ urgent, $N_3 = 20$ normal, $\theta = (100/130, 10/130, 20/130)$.
- Can add pseudo counts if some classes are rare.

Computing the Gaussian MLE

• The log likelihood is

$$p(\mathcal{D}|\mu,\sigma^2) = \prod_{n=1}^N \mathcal{N}(x_n|\mu,\sigma^2) = \prod_n (2\pi\sigma^2)^{-\frac{1}{2}} \exp(-\frac{1}{2\sigma^2}(x_n-\mu)^2)$$
$$\ell(\mu,\sigma^2) = -\frac{1}{2\sigma^2} \sum_{n=1}^N (x_n-\mu)^2 - \frac{N}{2}\ln\sigma^2 - \frac{N}{2}\ln(2\pi)$$

• The MLE for the mean is the sample mean

$$\frac{\partial \ell}{\partial \mu} = -\frac{2}{2\sigma^2} \sum_n (x_n - \mu) = 0$$
$$\hat{\mu} = \frac{1}{N} \sum_{n=1}^N x_n$$

Estimating σ

• The log likelihood is

$$\ell(\mu, \sigma^2) = -\frac{1}{2\sigma^2} \sum_{n=1}^{N} (x_n - \mu)^2 - \frac{N}{2} \ln \sigma^2 - \frac{N}{2} \ln(2\pi)$$

• The MLE for the variance is the sample variance (see handout for proof)

$$\frac{\partial \ell}{\partial \sigma^2} = \frac{1}{2} \sigma^{-4} \sum_n (x_n - \hat{\mu}) - \frac{N}{2\sigma^2} = 0$$
$$\hat{\sigma^2}_{ML} = \frac{1}{N} \sum_{n=1}^N (x_n - \hat{\mu})^2$$
$$= \frac{1}{N} \sum_n x_n^2 - (\hat{\mu})^2$$

Sampling distribution

- MLE returns a point estimate $\hat{\theta}(D)$
- In frequentist (classical/ orthodox) statistics, we treat D as random and θ as fixed, and ask how the estimate would change if D changed. This is called the *sampling distribution* of the estimator. $p(\hat{\theta}(D)|D \sim \theta)$
- The sampling distribution is often approximately Gaussian.
- In Bayesian statistics, we treat D as fixed and θ as random, and model our uncertainty with the posterior p(θ|D)

Unbiased estimators

- The bias of an estimator is defined as $bias(\hat{\theta}) = E\left[\hat{\theta}(D) - \theta | D \sim \theta\right]$
- An estimator is unbiased if bias=0.
- Eg. MLE for Gaussian mean is unbiased

$$E\hat{\mu} = E\frac{1}{N}\sum_{n=1}^{N} X_n = \frac{1}{N}\sum_{n} E[X_n] = \frac{1}{N}N\mu = \mu$$

Estimators for σ^2

• The MLE for Gaussian variance is biased (HW3)

$$E\hat{\sigma}^2 = \frac{N-1}{N}\sigma^2$$

- It is common to use the following unbiased estimator instead $\hat{\sigma}_{N-1}^2 = \frac{N}{N-1}\hat{\sigma}^2$
- This is unbiased $E[\hat{\sigma}_{N-1}^2] = E[\frac{N}{N-1}\hat{\sigma}^2] = \frac{N}{N-1}\frac{N-1}{N}\sigma^2 = \sigma^2$
- In Matlab, var(X) returns $\hat{\sigma}_{N-1}^2$ whereas var(X,1) returns $\hat{\sigma}^2$
- The MLE underestimates the variance (e.g., N=1, no variance) since we use an estimated μ, which is shifted from the true μ towards the data (see HW3).

Is being unbiased enough?

Consider the estimator

$$\tilde{\mu}(x_1,\ldots,x_N)=x_1$$

• This is unbiased

 $E\tilde{\mu}(X_1,\ldots,X_N)=E[X_1]=\mu$

• But intuitively it is unreasonable since it will not improve, no matter how many samples N we have.

Consistent estimators

• An estimator is consistent if it converges (in probability) to the true value with enough data

 $P(|\hat{\theta}(D) - \theta| > \epsilon | D \sim \theta) \to 0 \text{ as } |D| \to \infty$

• MLE is a consistent estimator.

Bias-variance tradeoff

- Being unbiased is not necessarily desirable! Suppose our loss function is mean squared error $MSE = E[\hat{\theta}(D) - \theta)^2 | D \sim \theta]$
- To minimize MSE, we can either minimize bias or minimize variance. Define

 $\overline{\theta} = E[\hat{\theta}(D)|D \sim \theta]$

• Then

$$E_{\mathcal{D}}(\hat{\theta}(\mathcal{D}) - \theta)^{2} = E_{\mathcal{D}}(\hat{\theta}(\mathcal{D}) - \overline{\theta} + \overline{\theta} - \theta)^{2}$$

$$= E_{\mathcal{D}}(\hat{\theta}(\mathcal{D}) - \overline{\theta})^{2} + 2(\overline{\theta} - \theta)E_{\mathcal{D}}(\hat{\theta}(\mathcal{D}) - \overline{\theta}) + (\overline{\theta} - \theta)^{2}$$

$$= E_{\mathcal{D}}(\hat{\theta}(\mathcal{D}) - \overline{\theta})^{2} + (\overline{\theta} - \theta)^{2}$$

$$= V(\hat{\theta}) + \text{bias}^{2}(\hat{\theta})$$

$$E_{D}(\hat{\theta}(D) - \overline{\theta}) = \overline{\theta} - \overline{\theta} = 0$$

We will frequently use biased estimators!

Not on exam