CS340 Machine learning Bayesian model selection

Bayesian model selection

- Suppose we have several models, each with potentially different numbers of parameters.
- Example: $\mathrm{M} 0=$ constant, $\mathrm{M} 1=$ straight line, $\mathrm{M} 2=$ quadratic, M3 = cubic
- The posterior over models is defined using Bayes rule, where $p(D \mid m)$ is called the marginal likelihood or "evidence" for m

$$
\begin{aligned}
p(m \mid D) & =\frac{p(m) p(D \mid m)}{p(D)} \\
p(D \mid m) & =\int p(D \mid \theta, m) p(\theta \mid m) d \theta \\
p(D) & =\sum_{m \in \mathcal{M}} p(D \mid m) p(m)
\end{aligned}
$$

Polynomial regression, $n=8$

$$
\begin{gathered}
\operatorname{logev}(m)=\log p(D \mid m) \\
p(m)=1 / 4
\end{gathered}
$$

With little data, we choose a simple model

Polynomial regression, n=32

truth=quadratic (green curve)

Shape of cubic changes a lot - high variance estimator

With more data, we choose a more complex model

Bayesian Occam's razor

- The use of the marginal likelihood $p(\mathrm{D} \mid \mathrm{M})$ automatically penalizes overly complex models, since they spread their probability mass very widely (predict that everything is possible), so the probability of the actual data is small.

Bishop 3.13

Bayesian Occam's razor

Model 3 can generate many data sets; prior is broad, posterior is peaked

Model 1 can only generate a few types of data

Mackay 28.6

Computing marginal likelihoods

- Let $p^{\prime}(\mathrm{D} \mid \theta)$ and $\mathrm{p}^{\prime}(\theta)$ be the unnormalized likelihood and prior. Then

$$
\begin{aligned}
p(\theta \mid D) & =\frac{1}{p(D)} \frac{1}{Z_{l}} p^{\prime}(D \mid \theta) \frac{1}{Z_{0}} p^{\prime}(\theta)=\frac{1}{Z_{n}} p^{\prime}(\theta \mid D) \\
\frac{1}{Z_{n}} & =\frac{1}{p(D)} \frac{1}{Z_{l}} \frac{1}{Z_{0}} \\
p(D) & =\frac{Z_{n}}{Z_{0}} \frac{1}{Z_{l}}
\end{aligned}
$$

- Eg. Beta-bernoulli model

$$
p(D)=\frac{B\left(\alpha_{1}+N_{1}, \alpha_{0}+N_{0}\right)}{B\left(\alpha_{1}, \alpha_{0}\right)}
$$

- Eg. Normal-Gamma-Normal model

$$
p(D)=\frac{\Gamma\left(\alpha_{n}\right) \beta_{0}^{\alpha_{0}}}{\Gamma\left(\alpha_{0}\right) \beta_{n}^{\alpha_{n}}}\left(\frac{\kappa_{0}}{\kappa_{n}}\right)^{1 / 2}\left(\frac{1}{2 \pi}\right)^{n / 2}
$$

Bayesian hypothesis testing

- Suppose we toss a coin $\mathrm{N}=250$ times and observe $N_{1}=141$ heads and $N_{0}=109$ tails.
- Consider two hypotheses: H_{0} that $\theta=0.5$ and H_{1} that $\theta \neq 0.5$. Actually, we can let H_{1} be $p(\theta)=U(0,1)$, since $p\left(\theta=0.5 \mid \mathrm{H}_{1}\right)=0$ (pdf).
- For H_{0}, marginal likelihood is

$$
p\left(D \mid H_{0}\right)=0.5^{N}
$$

- For H_{1}, marginal likelihood is

$$
P\left(D \mid H_{1}\right)=\int_{0}^{1} P\left(D \mid \theta, H_{1}\right) P\left(\theta \mid H_{1}\right) d \theta=\frac{B\left(\alpha_{1}+N_{1}, \alpha_{0}+N_{0}\right)}{B\left(\alpha_{1}, \alpha_{0}\right)}
$$

Bayes factors

- To compare two models, use posterior odds

- If the priors are equal, it suffices to use the BF .
- The BF is a Bayesian version of a likelihood ratio test, that can be used to compare models of different complexity. If $B F(i, j) \gg 1$, prefer model i.
- For the coin example,

$$
B F(1,0)=\frac{P\left(D \mid H_{1}\right)}{P\left(D \mid H_{0}\right)}=\frac{B\left(\alpha_{1}+N_{1}, \alpha_{0}+N_{0}\right)}{B\left(\alpha_{1}, \alpha_{0}\right)} \frac{1}{0.5^{N}}
$$

Bayes factor vs prior strength

- Let $\alpha_{1}=\alpha_{0}$ range from 0 to 1000.
- The largest BF in favor of H 1 (biased coin) is only 2.0, which is only very weak evidence of bias.

Bayesian Occam's razor for biased coin

Blue line $=p\left(D \mid H_{0}\right)=0.5^{\mathrm{N}}$
Red curve $=p\left(D \mid H_{1}\right)=\int p(D \mid \theta) \operatorname{Beta}(\theta \mid 1,1) d \theta$
If we have already observed 4 heads, it is much more likely to observe a $5^{\text {th }}$ head than a tail, since θ gets updated sequentially.

CS340 Machine learning Frequentist parameter estimation

Parameter estimation

- We have seen how Bayesian inference offers a principled solution to the parameter estimation problem.
- However, when the number of samples (relative to the number of parameters) is large, we can often approximate the posterior as a delta function centered on the MAP estimate.

$$
\hat{\theta}_{M A P}=\arg \max _{\theta} p(D \mid \theta) p(\theta)
$$

- An even simpler approximation is to just use the maximum likelihood estimate

$$
\hat{\theta}_{M L E}=\arg \max _{\theta} p(D \mid \theta)
$$

Why maximum likelihood?

- Recall that the KL divergence from the true distribution p to the approximation q is

$$
\begin{aligned}
K L(p \| q) & =\sum_{x} p(x) \log \frac{p(x)}{q(x)} \\
& =\text { const }-\sum p(x) \log q(x)
\end{aligned}
$$

- Let p be the empirical distribution

$$
p_{e m p}(x)=\frac{1}{n} \sum_{i=1}^{n} \delta\left(x-x_{i}\right)
$$

ML = min KL to empirical

- KL to the empirical

$$
\begin{aligned}
K L\left(p_{\text {emp }} \| q\right) & =C-\sum_{x}\left[\frac{1}{n} \sum_{i} \delta\left(x-x_{i}\right)\right] \log q(x) \\
& =C-\frac{1}{n} \sum_{i} \log q\left(x_{i}\right)
\end{aligned}
$$

- Hence minimizing KL is equivalent to minimizing the average negative log likelihood on the training set

Computing the Bernoulli MLE

- We maximize the log-likelihood

$$
\begin{aligned}
\ell(\theta) & =N_{1} \log \theta+N_{0} \log (1-\theta) \\
\frac{d \ell}{d \theta} & =\frac{N_{1}}{\theta}-\frac{N-N_{1}}{1-\theta} \\
& =0 \\
& \Rightarrow \\
\hat{\theta} & =\frac{N_{1}}{N} \quad \text { Empirical tracion of heads eg. 47/100 }
\end{aligned}
$$

Regularization

- Suppose we toss a coin $\mathrm{N}=3$ times and see 3 tails. We would estimate the probability of heads as 0 .

$$
\hat{\theta}=\frac{0}{3}
$$

- Intuitively, this seems unreasonable. Maybe we just haven't seen enough data yet (sparse data problem).
- We can add pseudo counts C_{0} and C_{1} (e.g., 0.1) to the sufficient statistics N_{0} and N_{1} to get a better behaved estimate.

$$
\hat{\theta}=\frac{N_{1}+C_{1}}{N_{0}+N_{1}+C_{0}+C_{1}}
$$

- This is the MAP estimate using a Beta prior.

MLE for the multinomial

- If $x_{n} \in\{1, \ldots, K\}$, the likelihood is
$P(D \mid \theta) \propto \prod_{n=1}^{N} \prod_{k=1}^{K} \theta_{k}^{I\left(x_{n}=k\right)}=\prod_{k} \theta_{k}^{\sum_{n} I\left(x_{n}=k\right)}=\prod_{k} \theta_{k}^{N_{k}}$
- The N_{i} are the sufficient statistics
- The log-likelihood is

$$
\ell(\theta)=\sum_{k} N_{k} \log \theta_{k}
$$

Computing the multinomial MLE

- We maximize $L(\theta)$ subject to the constraint $\sum_{k} \theta_{k}=1$.
- We enforce the constraint using a Lagrange multiplier λ.

$$
\tilde{\ell}=\sum_{\text {arivativ } k \text { co }} N_{k} \log \theta_{k}+\lambda\left(1-\sum_{k} \theta_{k}\right)
$$

- Taking derivatives wrt θ_{k}

$$
\frac{\partial \tilde{\ell}}{\partial \theta_{k}}=\frac{N_{k}}{\theta_{k}}-\lambda=0
$$

- Taking derivatives wrt λ yields the constraint

$$
\frac{\partial \tilde{\ell}}{\partial \lambda}=\left(1-\sum_{k} \theta_{k}\right)=0
$$

Computing the multinomial MLE

- Using the sum-to-one constraint, we get

$$
\begin{aligned}
N_{k} & =\lambda \theta_{k} \\
\sum_{k} N_{k} & =\lambda \sum_{k} \theta_{k}=\lambda \\
\hat{\theta}_{k} & =\frac{N_{k}}{\sum_{k} N_{k}} \quad \text { Empirical fraction of counts }
\end{aligned}
$$

- Example: $\mathrm{N}_{1}=100$ spam, $\mathrm{N}_{2}=10$ urgent, $\mathrm{N}_{3}=20$ normal, $\theta=(100 / 130,10 / 130,20 / 130)$.
- Can add pseudo counts if some classes are rare.

Computing the Gaussian MLE

- The log likelihood is

$$
\begin{aligned}
p\left(\mathcal{D} \mid \mu, \sigma^{2}\right) & =\prod_{n=1}^{N} \mathcal{N}\left(x_{n} \mid \mu, \sigma^{2}\right)=\prod_{n}\left(2 \pi \sigma^{2}\right)^{-\frac{1}{2}} \exp \left(-\frac{1}{2 \sigma^{2}}\left(x_{n}-\mu\right)^{2}\right) \\
\ell\left(\mu, \sigma^{2}\right) & =-\frac{1}{2 \sigma^{2}} \sum_{n=1}^{N}\left(x_{n}-\mu\right)^{2}-\frac{N}{2} \ln \sigma^{2}-\frac{N}{2} \ln (2 \pi)
\end{aligned}
$$

- The MLE for the mean is the sample mean

$$
\begin{aligned}
\frac{\partial \ell}{\partial \mu} & =-\frac{2}{2 \sigma^{2}} \sum_{n}\left(x_{n}-\mu\right)=0 \\
\hat{\mu} & =\frac{1}{N} \sum_{n=1}^{N} x_{n}
\end{aligned}
$$

Estimating σ

- The log likelihood is

$$
\ell\left(\mu, \sigma^{2}\right)=-\frac{1}{2 \sigma^{2}} \sum_{n=1}^{N}\left(x_{n}-\mu\right)^{2}-\frac{N}{2} \ln \sigma^{2}-\frac{N}{2} \ln (2 \pi)
$$

- The MLE for the variance is the sample variance (see handout for proof)

$$
\begin{aligned}
\frac{\partial \ell}{\partial \sigma^{2}} & =\frac{1}{2} \sigma^{-4} \sum_{n}\left(x_{n}-\hat{\mu}\right)-\frac{N}{2 \sigma^{2}}=0 \\
\hat{\sigma^{2}}{ }_{M L} & =\frac{1}{N} \sum_{n=1}^{N}\left(x_{n}-\hat{\mu}\right)^{2} \\
& =\frac{1}{N} \sum_{n} x_{n}^{2}-(\hat{\mu})^{2}
\end{aligned}
$$

Sampling distribution

- MLE returns a point estimate $\hat{\theta}(D)$
- In frequentist (classical/ orthodox) statistics, we treat D as random and θ as fixed, and ask how the estimate would change if D changed. This is called the sampling distribution of the estimator.

$$
p(\hat{\theta}(D) \mid D \sim \theta)
$$

- The sampling distribution is often approximately Gaussian.
- In Bayesian statistics, we treat D as fixed and θ as random, and model our uncertainty with the posterior $p(\theta \mid \mathrm{D})$

Unbiased estimators

- The bias of an estimator is defined as

$$
\operatorname{bias}(\hat{\theta})=E[\hat{\theta}(D)-\theta \mid D \sim \theta]
$$

- An estimator is unbiased if bias=0.
- Eg. MLE for Gaussian mean is unbiased

$$
E \hat{\mu}=E \frac{1}{N} \sum_{n=1}^{N} X_{n}=\frac{1}{N} \sum_{n} E\left[X_{n}\right]=\frac{1}{N} N \mu=\mu
$$

Estimators for σ^{2}

- The MLE for Gaussian variance is biased (HW3)

$$
E \hat{\sigma}^{2}=\frac{N-1}{N} \sigma^{2}
$$

- It is common to use the following unbiased estimator instead

$$
\hat{\sigma}_{N-1}^{2}=\frac{N}{N-1} \hat{\sigma}^{2}
$$

- This is unbiased

$$
E\left[\hat{\sigma}_{N-1}^{2}\right]=E\left[\frac{N}{N-1} \hat{\sigma}^{2}\right]=\frac{N}{N-1} \frac{N-1}{N} \sigma^{2}=\sigma^{2}
$$

- In Matlab, $\operatorname{var}(\mathrm{X})$ returns $\hat{\sigma}_{N-1}^{2}$ whereas $\operatorname{var}(\mathrm{X}, 1)$ returns $\hat{\sigma}^{2}$
- The MLE underestimates the variance (e.g., $\mathrm{N}=1$, no variance) since we use an estimated μ, which is shifted from the true μ towards the data (see HW3).

Is being unbiased enough?

- Consider the estimator

$$
\tilde{\mu}\left(x_{1}, \ldots, x_{N}\right)=x_{1}
$$

- This is unbiased

$$
E \tilde{\mu}\left(X_{1}, \ldots, X_{N}\right)=E\left[X_{1}\right]=\mu
$$

- But intuitively it is unreasonable since it will not improve, no matter how many samples N we have.

Consistent estimators

- An estimator is consistent if it converges (in probability) to the true value with enough data

$$
P(|\hat{\theta}(D)-\theta|>\epsilon \mid D \sim \theta) \rightarrow 0 \text { as }|D| \rightarrow \infty
$$

- MLE is a consistent estimator.

Bias-variance tradeoff

- Being unbiased is not necessarily desirable! Suppose our loss function is mean squared error

$$
\left.M S E=E[\hat{\theta}(D)-\theta)^{2} \mid D \sim \theta\right]
$$

- To minimize MSE, we can either minimize bias or minimize variance. Define

$$
\bar{\theta}=E[\hat{\theta}(D) \mid D \sim \theta]
$$

- Then

$$
\begin{aligned}
E_{\mathcal{D}}(\hat{\theta}(\mathcal{D})-\theta)^{2} & =E_{\mathcal{D}}(\hat{\theta}(\mathcal{D})-\bar{\theta}+\bar{\theta}-\theta)^{2} \\
& =E_{\mathcal{D}}(\hat{\theta}(\mathcal{D})-\bar{\theta})^{2}+2(\bar{\theta}-\theta) E_{\mathcal{D}}(\hat{\theta}(\mathcal{D})-\bar{\theta})+(\bar{\theta}-\theta)^{2} \\
& =E_{\mathcal{D}}(\hat{\theta}(\mathcal{D})-\bar{\theta})^{2}+(\bar{\theta}-\theta)^{2} \\
& =V(\hat{\theta})+\operatorname{bias}^{2}(\hat{\theta}) \quad E_{D}(\hat{\theta}(D)-\bar{\theta})=\bar{\theta}-\bar{\theta}=0
\end{aligned}
$$

We will frequently use biased estimators!

