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1 Introduction
In this Chapter, we provide a brief overview of the most commonly studied problems and solution methods within the
field of machine learning. This Chapter might be hard to understand on a first reading; we recommend you return to it
after reading some of the subsequent chapters. However, it serves to provide a “big picture” and some motivation, and
to introduce some useful notation.

2 Supervised learning
The most widely studied problem in machine learning issupervised learning. We are given alabeled training setof
input-output pairs,D = (xi, yi)

n
i=1

, and have to learn a way to predict theoutput or target ỹ for a noveltest input x̃
(i.e, for x̃ 6∈ D). (We use the tilde notation to denote test cases that we havenot seen before.) Some examples include:
predicting if someone has cancerỹ ∈ {0, 1} given some measured variablesx̃; predicting the stock price tomorrow
ỹ ∈ IR given the stock prices todaỹx; etc.

A common approach is to just predict one’s “best guess”, suchas ŷ(x̃). However, we prefer to compute a prob-
ability distribution over the output,p(ỹ|x̃), since it is very useful to have a measure of confidence associated with
one’s prediction, especially in medical and financial domains. In addition, probabilistic methods are essential for
unsupervised learning, as we discuss in Section 3.

If y is discrete orcategorical, sayy ∈ {1, 2, . . . , C}, this problem is calledclassificationor pattern recognition.
If there areC = 2 classes orlabels, the problem is calledbinary classification (see Figure 1 for an example), otherwise
it is calledmulti-class classification. We usually assume the classes are mutually exclusive, soy can only be in one
possible state. If we want to allow multiple labels, we can representy by a bit-vector of lengthC, soyj = 1 if y
belongs to classj.

If y is continuous, sayy ∈ IR, this problem is calledregression. If y is multidimensional, sayy ∈ IRq, we call it
multivariate regression. If y is discrete, but ordered (e.g.,y ∈ {low,medium,high}), the problem is calledordinal
regression.

A priori, our prediction might be quite poor, but we are provided with a labeled training set of input-output pairs,
D = (xi, yi)

n
i=1

, which provides a set of examples of the “right response” fora set of possible inputs. If each input

Figure 1: Illustration of binary classification where the input spaceis IR2. White points are negative, red points are positive.
The axes could represent cholestrol and insulin levels, andthe class labels could represent “healthy” or “unhealthy”.Left: linear
classifier: we separate the classes with a line. Points on thedecision boundaryare equally likely to be in class 1 or class 2; as
we move away from the boundary,p(y = 1|x) increases or decreases, depending on which side of the boundary we are on. The
parameters controlling the shape of the line are calledw. The line makes 3 misclassification errors.Right: we separate the classes
with a “wiggly” boundary. This makes no errors, but may haveoverfit. Source: Leslie Kaelbling.
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Figure 2: Design matrix. We assume the user has converted the input data (here, coloured shapes) into an adequate set of features,
and has labeled every example. The learning algorithm then tries to learn a mapping from the features to the class label. Figure
courtesy of Leslie Kaelbling.

xi is ad-dimensional vector, called afeature vector, we can store the training data in ann × d design matrix. See
Figure 2 for an example. We can then use theposterior predictive density, p(ỹ|x̃, D), to generate possible answers.1

We can assess how well we are doing by computing theposterior predictive likelihood, i.e., how much probability
mass does our modelM assign to future data? We can approximate this by looking at the empirical performance of
the model on atest set. In particular, we can compute the averagelog-likelihood of the test data:

`(M |D̃) =
1

m

m∑
i=1

log p(ỹi|x̃, D, M) (1)

wherem is the number of test cases,M is the model we are testing, andD is the training data. A good model will be
able to predict the future, and hence will have high predictive (log) likelihood.

A simpler performance measure, in the case of classifiers, isjust to compute themisclassification rateor error
rate. However, we may want more than just being right; we may want to know when we are right, so that if we are
uncertain about our answer, we can do something else, like ask for help, rather than make a potentially serious mistake
(see Chapter??). In addition, another advantage of using log-likelihood is that it is well-defined even in the case of
unsupervised learning, where there is no well defined error signal, as we will see in Section 3.

2.1 Parametric vs non-parametric models

In this book, we will mostly focus onparametric models, which essentially means we can “absorb” the training
data into a fixed-length parameter vectorθ (of size independent ofn), and then “throw away” the data. The process
of infering p(θ|D) is calledlearning; often we will approximate it by computing a point estimate,or “best guess”,
θ̂(D). (For example, when predicting the outcome of a series of coin tosses, we may estimate that the probability of
heads is given bŷθ = N1/n, whereN1 is the number of heads inD, andn is the total number of trials inD.) Given
our parameter estimate, we can predict the future as follows:

p(ỹ|x̃, D) =

∫
p(ỹ|x̃, θ)p(θ|D)dθ (2)

1The posterior predictive is just the probability distribution over possible outputs̃y given the input̃x, and given the training dataD. It is called
“posterior” because it is the distribution after we have seen the training dataD. By contrast,p(ỹ|x̃) would be call the prior predictive.
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We will often use aplug-in approximation to this:

p(ỹ|x̃, D) ≈ p(ỹ|x̃, θ̂(D)) (3)

See Section?? for more details.
The main alternative to a parametric model is anon-parametric model, in which the number of parameters is

allowed to grow with the size of the data. A simple example is amemory-based approach, such as anearest
neighbor classifier (see Section??), in which we remember all our training examples,(xi, yi), and predict̃y by
comparingx̃ to all the storedxi, and using the labelyi of thexi that is closest tõx. Such models often work very
well, but they need a lot of time and memory at test time (and possibly training time, too). In addition, such models
are often hard to interpret, which may or may not be importantin any given problem.

2.2 Generative vs discriminative models

There are two main ways to computep(y|x), depending on whether we write

p(y,x) = p(y|x)p(x) (4)

or
p(y,x) = p(y)p(x|y) (5)

(We drop the conditioning onθ andD for notational simplicity.) The first approach is to directly estimate thecon-
ditional density p(y|x). In the context of classification, this is called adiscriminative model, since it discriminates
between different classesy given the input. The distribution of the input,p(x), is irrelevant, since we assume that
the input is always known orexogeneous. (This is not true if we havemissing valuesin the input, however.) We
shall usually usew to denote the parameters of the distributionp(y|x). These are often called regressionweights; in
statistics they are denoted byβ and are called regressioncoefficients.

The alternative is to learn ajoint density model of the inputs and outputs,p(y,x). Then we can useBayes rule2

to infer the posterior ony:

p(y|x) =
p(x, y)

p(x)
(6)

The joint is usually written as
p(y,x) = p(y)p(x|y) (7)

wherep(x|y) is theclass-conditional densityandp(y) is the prior over class labels. (The terminology is specific to
the classification setting, since in the regression setting, it is more common to use discriminative models.) We will
often useπ to denote the parameters of the class priorp(y), andθ to denote the parameters of the class-conditional
densitiesp(z|y). The approach of learningp(y,x) is calledgenerative modeling, sincep(x|y) specifies a way to
generate the feature vectorsx for each possible classy. We will see an example of this in Section??.

We discuss the advantages and disadvantages of discriminative vs generative classifiers in Section??. Most classi-
fication methods that you may have heard of (logistic regression, neural networks, decision trees, SVMs) are discrim-
inative (see Chapter?? for a discussion of these models). However, generative classifiers are often easier to learn, so
we will study these first. In particular, in Chapter??, we will study the naive Bayes classifier, which is widely used
for emailspam filtering.

2.3 Graphical models

The distinction between generative and discriminative models becomes much clearer if we use the notation of (di-
rected)graphical models. We will explain these in Section??, and in more detail in Chapter??. However, the basic
idea is very simple: we create a graph in which nodes represent random variables (which may be scalars or vectors),
such asx, y, θ, etc. We then draw arrows between the nodes which have a direct (probabilistic) dependence between
them. We shade the nodes that areobserved(known), and leave unshaded the nodes that are not observed (unknown).

2Recall that Bayes rule is simplyp(Y = i|X = j) =
p(X=j|Y =i)p(Y =i)

p(X=j)
, wherep(X = j) =

P

i p(X = j|Y = i)p(Y = i) is just a

normalization constant to ensure
P

i p(Y = i|X = j) = 1. See Section?? for more details.
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Name Training data Goal Model

Conditional density estimation (discriminative model)D = (xi, yi) p(ỹ|x̃, D)

Joint density estimation (generative model) D = (xi, yi) p(ỹ|x̃, D)

Transductive learning D = (xi, yi, x̃i) p(ỹi|D)

Semi-supervised learning D = (xl
i, y

l
i,x

u
i ) p(ỹ|x̃, D)

Density estimation D = (xi) p(x̃|D)

Latent variable model D = (xi) p(z̃|x̃, D)

Table 1: Most of machine learning, represented in terms of directed graphical models. Nodes on the left represent training data,
nodes on the right represent test data, and nodes in the middle (with Greek letters, plusw) are parameters. Shaded nodes are
observed, unshaded nodes are unknown. The first four methodsare supervised, the rest are unsupervised.
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X

Figure 3: Example of semi-supervised learning.Left : two points are labeled, red and blue. Note that the point markedX is closer
to the red point in terms of Euclidean distance, but closer tothe blue point in terms of distance along the datamanifold. Right: we
propagate the labels to the nearest neighbors, thus effectively labeling all the points. Source: Nando de Freitas.
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Figure 4: Left: A scatterplot of height and weight of various people. Right: points have been colour coded: men are blue crosses,
women are red circles. Figure produced byheightWeightDataPlot .

We give some examples in Figure 2.3. For discriminative models, we have arcs fromx andw to y to represent the
termp(y|x,w). Similarly we have arcs from̃x andw to ỹ. The goal of learning is to estimatew from D = (xi, yi),
and then use this to predictỹ givenx̃ andw.

For generative models, we have arcs fromπ to y, to representp(y|π), and arcs from fromy andθ tox, to represent
the termp(x|y, θ). At test time,x̃ is observed, and we use Bayes rule to “invert the arrow” and infer ỹ from x̃.

2.4 Variants of supervised learning

Some variations on the standard supervised learning paradigm have been proposed. Intransductive learning, one
is given access to the test questions at training time. That is, D = {xi,yi}

n
i=1

∪{x̃i}
m
i=1

, wheren is the number of
training cases andm is the number of test cases. One can use this when learning theweights,p(w|D). The goal
is just to predict the outputs̃yi for the fixed test set̃xi, rather than for arbitrary test inputs. Note that in a standard
discriminative model, we are allowed to include an arc fromx to w, reflecting the fact that the prior onw can depend
on x, p(w|x), since everything can be conditioned onx. (We will see an example of this when we study g-priors in
Section??.) However, in transductive learning, we canalso include an arc from̃x to w.

In semi-supervised learning, only some of the training cases have labels; call these(x`
i , y

`
i ). The other training

cases have features but no labels; call thesex
u
i . The goal is to use all this data to predict future outputs,p(ỹ|x̃, D). By

exploiting the fact that the inputs may besimilar in some way, we canpropagatethe labels from the labeled examples
to the unlabeled ones, and thereby increase the effective size of the training set. See Figure 3. (A similar technique
can be used for transductive learning.)
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3 Unsupervised learning
In unsupervised learning, the data only consists of a set of features,D = {xi}, with no target variableyi to predict.
The goal is to fit a model to all the data, in order to discover something “interesting”. For example, given the data in
Figure 4(left), we might hope to discover that there are twoclustersunderlying the data (in this case corresponding to
male and females), and furthemore, we might hope to infer theassignment of points to clusters, as in Figure 4(right).
Of course, since we are never told the “true” clustering (which might not even exist), we cannot measure performance
in this way. Instead, we will assess performance of an unsupervised modelM by its predictive likelihood:

`(M |D̃) =
1

m

m∑
i=1

p(x̃i|D, M) (8)

This is similar to Equation 1, except it tries to predict all the variablesx, rather than just the target variabley.
The hope is that a model that can model the data accurately hasdiscovered something fundamental about the data,

and hence it is sensible to try and “look under the hood” of themodel, for example by examining its parameters, in
order to learn something about the purported mechanism responsible for generating the data. Note that such model
fitting plus model examination is the mainstay of statistics, whereas machine learning has traditionally been more
concerned purely with supervised prediction tasks, often using hard-to-interpret models. This is also reflected in the
fact that statisticians worry a lot about the confidence theycan attach to their parameter estimates, whereas this topic
is rarely discussed within machine learning.

Note that it is possible to try to intepret the parameters of aconditional density model,p(y|x, θ), as well. Indeed,
this is very common in statistics (linear regression being avery widely used example of a conditional density model).
The only difference from supervised machine learning is that the goal is to learn something about the data, rather than
merely predicting accurately. In other words, it is often not enough to build an accurate predictor; one often wants to
know why it is an accurate predictor. Such a task is best described as simply “model fitting”, and does not fall neatly
into the categories of “supervised” or “unsupervised” learning.

Density models (both unconditional and conditional) oftencontainhidden variablesor latent variables, zi, whose
values are never observed. These are not part of the data, butare part of the model. They are just like parameters,
except there areO(n) of them, i.e., there is onezi for eachxi (and for eachyi, if we are using a conditional density
model). By contrast, we assume the number of parameters is fixed. Furthermore, we often think of “fixing” the
parameters to the best value learned from the training data,θ̂(D), whereas the hidden variables will be free to change
at test time. However, in Section??, we will see that, from the Bayesian viewpoint, this distinction between hidden
variables and parameters is rather artificial.

The meaning of the hidden variableszi depends on the model/ application. In the clustering example above,
zi ∈ {1, . . . , K} represents the cluster to whichxi is assigned, andK is the (unknown) number of clusters. Another
example isdimensionality reduction, in which zi is a low-dimensional representation ofxi. For more flexible
models, it can be harder to interpret the hidden states. Figure 5 shows an example of aBoltzmann machine, which
is an (undirected) graphical model defined on binary variables. The observed variablesx correspond to the data (here
clamped to the digit ’8’). A typical hidden state, sampled from the posteriorp(z|x, θ̂), is shown. This is an example
of adistributed representation: the “meaning” of the state is encoded across the whole set ofbinary variables, which
can be thought of as acting like stochasticneurons.

A different subset of the variables are on in each sample (rather like neural firing). Each such bit patternz,
together with the model’s parametersθ, induces a different prediction about the data,x. Since many bit patterns can
make similar predictions (just as many different visual scenes can produce the same image), it is not clear what the
“right” bit pattern should be. Hence the system stochastically moves between differentinterpretations of the data.

A similar thing is presumed to happen inhuman vision: given an imagex, there are many possible interpretations
(scenes)z that could have produced it (think of optical illusions); the brain’s job is to solve theinverse problemof
inferring z from x. Since there are multiple possible answers (due to ambiguity), the brain uses prior knowledge in
the form ofp(z), together with Bayes rule, to infer the posterior over scenes,p(z|x). This is sometimes calledstate
estimation. See Figure 6.

In some problems, the meaning of the latent variableszi is well-defined, because the user imposes a meaning on
them. For example, in the Boltzmann machine in Figure 5, the nodes in the small2 × 5 block on the left have been
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Figure 5: Visualization of the hidden state of a probabilistic model trained to generate handwritten digits. The observed datax is the
digit ’8’ in the bottom right corner. The hidden variablesx are binary random variables, structured as a series of “stacked” bipartite
graphs. (This model is called aBoltzmann machine, and will be studied in Section??). We are showing a sample from the posterior
p(z|vx, θ̂). The small2 × 4 rectangular block in the top left represents the class label. Currently the bit corresponding to digit 8 is
activated, indicating a correct classification. Source:http://www.cs.toronto.edu/ ˜ hinton/adi/index.htm .
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Figure 6: Computer/human vision as inverse graphics. The worldz generates observationsx, the system must invert this to inferz
from x. Since this is an ill-posed problem, the system must combinea priorp(z), i.e., a world model, with the likelihood,p(x|z),
in order to compute its posterior,p(z|x). Source: [Rao97].
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engineered to represent the class label,yi. This was done by simplyclamping the appropriate node to its “on” value
when an image is presented. For example, ifx is set to the digit 8, we clamp the node representing class 8 toits on
state; the remaining hidden nodes areunclamped. We then update our posterior over the parameters based on the new
x, y pair by computingp(θ|x, y, D).

This technique of forcing some of the hidden nodes to represent labels can be seen as simply a generative model
for supervised learning. But because it is a generative model, we can train it in an unsupervised way on large quantities
of unlabeled data as well, by computingp(θ|x, D). There are two advantages of this. First, unlabeled data is easier
to acquire in large quantities (no human is required to labelthe images, one simply feeds a video stream into the
system). Second, because the model is required to explain all the data, and not just the labels, it is less likely to
overfit, which means we can use more complex models. Put another way, there is much more information content in
a video stream to constrain our parameter estimates than there is in the captions at the bottom of the video stream.3

Consequently, this book will focus more on generative models than on discriminative models. (For a textbook that
focuses on discriminative models, see [HTF01].)
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