CS 340 Fall 2007: Homework 3

1 Marginal likelihood for the Beta-Bernoulli model

We showed that the marginal likelihood is the ratio of thernalizing constants:
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We will now derive an alternative derivation of this fact. Bye chain rule of probability,
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whereD; .y is the data seen so far. Now suppdse- H, 7,7, H, H,H or D =1,0,0,1,1,1. Then
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Show how this reduces to Equation 2 by using the fact thaintegers(a — 1)! = I'(«).

2 Betaupdating from censored likelihood

Suppose we toss a coin= 5 times. LetX be the number of heads. We observe that there are fewer thaad3h
Let the prior probability of heads hg6) = Beta(6|1,1). Compute the posterigr(f|.X < 3) up to normalization
constants, i.e., derive an expression proportiona(# X < 3). Plot the (unnormalized) posterior.

3 Fun with the Beta-binomial model

1. Letd ~ Be(a,b). (Inclass, we called = «; andb = «.) Sometimes our prior knowledge is not in the form of
pseudo counts, so it is not immediately clear how taxsatdb. For example, suppose you believe th#@t= m
and Varf = v. Use the following properties of the Beta distribution tdvedor ¢ andb in terms ofm andw.
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2. Let6 represent the proportion of adults in New York who suppoetdieath penalty. Suppoges beta with
mean 0.7 and standard deviation 0.2. What are the value® dfyiber-parametersandb that correspond to
this?

3. Arandom sample of 1000 adults in New York is taken, and 6@ppert the death penalty. Plot the prigid)
and posteriop(6| D). What is the posterior mean and variance? What is the 95%parstredible interval?
i.e., find value®, 5 andfy7 5 such that

p(92,5 << 997.5|D) =0.95 (10)

Hint: use the functiofetainv in the statistics toolbox.

4 Gaussian posterior credibleinterval

Let X ~ N(u,0? = 4) wherey is unknown but has prigi ~ N (1o, 02 = 4). The posterior after seeingsamples
is  ~ N (in, o2). How big does: have to be to ensure

p(p € I(pn)|D) > 0.95 (11)

wherel(u,,) is an interval (centered om,) of width 1, andD is the data. Hint: recall that 95% of the probability
mass of a Gaussian is withih1.96¢0 of the mean.

5 Gaussian sensor fusion

Suppose we have two sensors with known (and different) vegisv,, andv,,, but unknown (and the same) mean
Suppose we observe, observations from the first sensor amgobservations from the second sensor. Call tHege
andD,,. Assume all distributions are Gaussian.

1. What is the posteriop(u|D,, D), assuming a non-informative prior fa? Give an explicit expression for
the posterior mean and variance. Hint: use Bayesian ugdétiite, once to get fromp(u) — p(u|D.)
(starting from a non-informative prior, which we can sintalaising a precision of 0), and then again to get

from p(u|D.) — p(p|Dx, Dy).

2. Suppose thg sensor is very unreliable. What will happen to the posteriean estimate? Give a simplified
approximate expression.

6 Estimation of o2 when 1 isknown

Suppose we sample, ..., zy ~ N (u, o?) wherep is aknown constant. Derive an expression for the MLE &
in this case. Is it unbiased?

7 Detecting differentially expressed genes

Consider the problem of detecting which genes change whentairt treatment is applied. Load the (synthetic) data

stored inbayesFactorGeneData.mat . You should see the following
Name Size Bytes Class Attributes
Xcontrol 100x2 1600 double
Xtreat 100x2 1600 double
truth 1x100 800 double



If you plot the data, you should see something like the topanels of Figure 1. The goal is to figure out which of
the 100 genes are different between treatment and contrelwlWapply a Bayesian and a frequentist approach to
this.

Letz, , be ther'th replicate (sample) of gengunder the control condition, ang ,. be ther'th replicate (sample) of
geneg under the treatment condition. For each gene, we want tosehoetween modél, which saysc, andy, were
generated from a Gaussian with the same mean fandvhich says they were generated from two Gaussians with
different means. We will treat each gene independently énsophisticated models can capture the interdependence
between genes; see e.g., [FD06].) The Bayes factor in fdvBiydor geneg is

whereD, = (24,1:n,,¥Yg,1:n,) iS all the data for geng. The provided functiombayesianTtest(x,y) computes
this. To apply this to the gene data, just type
bf(g) = bayesianTtest(Xtreat(g,:), Xcontrol(g,:));
The classical alternative to a Bayes factor is to computgihalue, defined as
pvaly = p(t(Dy) > t(Dy)|Dy, ~ My = 0) (13)

wheret(D,) is the value of the t-statistic on the observed dageandt (D) is the t-statistic for a fictitious datasB,
drawn from the null distribution. P-values are often ddsediin words as “the probability, under the null hypothesis,
of getting a test statistic as large or larger than the oleseone”! The smaller the p-value, the less likelyZi. In
Matlab, to compute a p-value for a two-sample t-test usiegsthtistics toolbox, just type

[hyptest(g),pval(g)] = ttest(Xtreat(g,:), Xcontrol(g,: );

(Herehyptest(g) = 0 if the null hypothesis cannot be rejected at the 5% signifiedavel; this is just a thresholded
version of a p-value, and can be ignored.)
Finally, we get to the tasks you have to perform.

1. Load the filebayesFactorGeneData.mat . For each gene, compute the Bayes factor in favor of model 0
and the p-value. Plot the data alog(1/BF,) andl/pval(g). You should get something like Figure 1. Turnin
your plots and code.

2. Using the provided functioROCcurve, compute a ROC curve usirigg(1/BFy) as the score and the binary
vectortruth  as the true label. (Hereuth(g)=1 means that geng is differentially expressed under the
treatment.) Repeat this usingpval(g) for the score. You should get something like Figure 2. Turgdor
plots and code. Notice that the area under the curve (AUCytseh for the Bayes factor than for the p-value.

3. Use thetruth  vector to sort the data, so that the unaffected genes comedind then the affected (differ-
entially expressed) ones come last. Redo you plot from pausihg the permuted indices. You should get
something like Figure 3. Turn in your plots and code. Now itlesar that, on average, the Bayes factor scoring
function more clearly separates the two groups than theipvdlhe benefits of the Bayesian approach are even
greater when one models dependence between the genegy(sfe¥06]), which is hard to do with t-tests.

4. Optional, for extra credit. The Bayesian t-test requires a prior (see Section 8 forilgletalry changing
the prior (the third and fourth argumentshiayesianTtest ) and see what effect it has. Summarize your
conclusions.

11t should be obvious that p-values are very unintuitive ditias. For example, why should we care about the probglufitgetting a statistic
larger than what we observed? Setp://www.stat.duke.edu/ ~berger/p-values.html and [Goo99a, Goo99b] for more details
on p-values, and why you should avoid using them.
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Figure 1: Unsorted data. We have 2 replicates for each of@begtnes.
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Figure 2: ROC curves
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Figure 3: Sorted data

8 Appendix: detailson the Bayesian T test

(This section will not be on the exam.) Since we model eacle geparately, we will drop thesubscript. The data is
D = (x1.n,,Y1:n,) from two groups. The probability model is

=0 = [ [ [ﬁNmm,a?)] [ﬁmyrm,a?)] P11, o) dpdor® (14)
o= = [ V [TV G e 07001 duT] V [TVl 02y o )duy] plo?)do? (15)

Note that model 0 requires the pripfu, o2) and model 1 requires the pripf 1, u2, o2). Following [GILWO5], we
will reparameterize the latter in terms pf= ©; andéd = ps — p1, Since it isy that we care about. Let us write

p(p,8,0%) = p(p, o)p(8|p, o°) (16)

Then the marginal likelihood function becomes

p(DIM =1) = ///p(u, p(dlp, o” [HN Telp, 0 ] [ﬁN(yr|N+5,02)p(Ny|02)‘| dudo®dg17)
r=1

Sinceyp ando? are common to both models, we can safely give them an unirgfivenprior

p(p,0%) < o? (18)

Rather than putting a prior ofy we will put a prior ond /o, the standardized effect size, since this is a more inter-
pretable quantity (dimensionless). Specifically, we wskame

p(5/0'|0',/.L,M = 1) NN(M&U(?) (19)

If we do not know whether the difference will be positive ogagve, we can set; = 0, and make the variance
suitably large (say2 = 100) to reflect our relative ignorance.



[GWJLO5] proves that, under this model, the Bayes factoauof of the null hypothesis is given by
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Heret is the standard two-samptiestatistic andl, (x|a, b) is @ noncentrat distribution with locatioru, scaleb and
dofv. The provided functiobayesianTtest(X,y) computes this expression, assuming= 0 ands? = 100.
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