
CS 340 Fall 2007: Homework 3

1 Marginal likelihood for the Beta-Bernoulli model

We showed that the marginal likelihood is the ratio of the normalizing constants:

p(D) =
B(α1 + N1, α0 + N0)

B(α1, α0)
(1)

=
Γ(α1 + N1)Γ(α0 + N0)

Γ(α1 + α0 + N)

Γ(α1 + α0)

Γ(α1)Γ(α0)
(2)

We will now derive an alternative derivation of this fact. Bythe chain rule of probability,

p(x1:N ) = p(x1)p(x2|x1)p(x3|x1:2) . . . (3)

We also showed that the posterior predictive distribution is

p(X = 1|D1:N ) =
N1 + α1

N1 + α1 + N0 + α0

def
=

N1 + α1

N + α
(4)

whereD1:N is the data seen so far. Now supposeD = H, T, T, H, H, H or D = 1, 0, 0, 1, 1, 1. Then

p(D) =
α1

α
·

α0

α + 1
·
α0 + 1

α + 2
·
α1 + 1

α + 3
·
α1 + 2

α + 4
(5)

=
[α1(α1 + 1)(α1 + 2)] [α0(α0 + 1)]

α(α + 1) · · · (α + 4)
(6)

=
[(α1) · · · (α1 + N1 − 1)] [(α0) · · · (α0 + N0 − 1)]

(α) · · · (α + N)
(7)

Show how this reduces to Equation 2 by using the fact that, forintegers,(α − 1)! = Γ(α).

2 Beta updating from censored likelihood

Suppose we toss a coinn = 5 times. LetX be the number of heads. We observe that there are fewer than 3 heads.
Let the prior probability of heads bep(θ) = Beta(θ|1, 1). Compute the posteriorp(θ|X < 3) up to normalization
constants, i.e., derive an expression proportional top(θ, X < 3). Plot the (unnormalized) posterior.

3 Fun with the Beta-binomial model

1. Letθ ∼ Be(a, b). (In class, we calleda = α1 andb = α0.) Sometimes our prior knowledge is not in the form of
pseudo counts, so it is not immediately clear how to seta andb. For example, suppose you believe thatEθ = m
and Varθ = v. Use the following properties of the Beta distribution to solve for a andb in terms ofm andv.

Eθ = m =
a

a + b
(8)

Var θ = v =
m(1 − m)

a + b + 1
=

ab

(a + b)2(a + b + 1)
(9)
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2. Let θ represent the proportion of adults in New York who support the death penalty. Supposeθ is beta with
mean 0.7 and standard deviation 0.2. What are the values of the hyper-parametersa andb that correspond to
this?

3. A random sample of 1000 adults in New York is taken, and 62% support the death penalty. Plot the priorp(θ)
and posteriorp(θ|D). What is the posterior mean and variance? What is the 95% posterior credible interval?
i.e., find valuesθ2.5 andθ97.5 such that

p(θ2.5 < θ < θ97.5|D) = 0.95 (10)

Hint: use the functionbetainv in the statistics toolbox.

4 Gaussian posterior credible interval

Let X ∼ N (µ, σ2 = 4) whereµ is unknown but has priorµ ∼ N (µ0, σ
2
0 = 4). The posterior after seeingn samples

is µ ∼ N (µn, σ2
n). How big doesn have to be to ensure

p(µ ∈ I(µn)|D) ≥ 0.95 (11)

whereI(µn) is an interval (centered onµn) of width 1, andD is the data. Hint: recall that 95% of the probability
mass of a Gaussian is within±1.96σ of the mean.

5 Gaussian sensor fusion

Suppose we have two sensors with known (and different) variancesvx andvy, but unknown (and the same) meanµ.
Suppose we observenx observations from the first sensor andny observations from the second sensor. Call theseDx

andDy. Assume all distributions are Gaussian.

1. What is the posteriorp(µ|Dx,Dy), assuming a non-informative prior forµ? Give an explicit expression for
the posterior mean and variance. Hint: use Bayesian updating twice, once to get fromp(µ) → p(µ|Dx)
(starting from a non-informative prior, which we can simulate using a precision of 0), and then again to get
from p(µ|Dx) → p(µ|Dx,Dy).

2. Suppose they sensor is very unreliable. What will happen to the posteriormean estimate? Give a simplified
approximate expression.

6 Estimation of σ
2 when µ is known

Suppose we samplex1, . . . , xN ∼ N (µ, σ2) whereµ is aknown constant. Derive an expression for the MLE forσ2

in this case. Is it unbiased?

7 Detecting differentially expressed genes

Consider the problem of detecting which genes change when a certain treatment is applied. Load the (synthetic) data
stored inbayesFactorGeneData.mat . You should see the following

Name Size Bytes Class Attributes
Xcontrol 100x2 1600 double
Xtreat 100x2 1600 double
truth 1x100 800 double

2



If you plot the data, you should see something like the top twopanels of Figure 1. The goal is to figure out which of
the 100 genes are different between treatment and control. We will apply a Bayesian and a frequentist approach to
this.
Let xg,r be ther’th replicate (sample) of geneg under the control condition, andyg,r be ther’th replicate (sample) of
geneg under the treatment condition. For each gene, we want to choose between modelH0, which saysxg andyg were
generated from a Gaussian with the same mean, andH1, which says they were generated from two Gaussians with
different means. We will treat each gene independently (more sophisticated models can capture the interdependence
between genes; see e.g., [FD06].) The Bayes factor in favor of H0 for geneg is

BFg =
p(Dg|H0)

p(Dg|H1)
(12)

whereDg = (xg,1:nx
, yg,1:ny

) is all the data for geneg. The provided functionbayesianTtest(x,y) computes
this. To apply this to the gene data, just type

bf(g) = bayesianTtest(Xtreat(g,:), Xcontrol(g,:));

The classical alternative to a Bayes factor is to compute thep-value, defined as

pvalg = p(t(D′

g) ≥ t(Dg)|D
′

g ∼ Mg = 0) (13)

wheret(Dg) is the value of the t-statistic on the observed dataDg andt(D′

g) is the t-statistic for a fictitious datasetD′

g

drawn from the null distribution. P-values are often described in words as “the probability, under the null hypothesis,
of getting a test statistic as large or larger than the observed one”.1 The smaller the p-value, the less likely isH0. In
Matlab, to compute a p-value for a two-sample t-test using the statistics toolbox, just type

[hyptest(g),pval(g)] = ttest(Xtreat(g,:), Xcontrol(g,: ));

(Herehyptest(g) = 0 if the null hypothesis cannot be rejected at the 5% significance level; this is just a thresholded
version of a p-value, and can be ignored.)
Finally, we get to the tasks you have to perform.

1. Load the filebayesFactorGeneData.mat . For each gene, compute the Bayes factor in favor of model 0
and the p-value. Plot the data andlog(1/BFg) and1/pval(g). You should get something like Figure 1. Turn in
your plots and code.

2. Using the provided functionROCcurve , compute a ROC curve usinglog(1/BFg) as the score and the binary
vectortruth as the true label. (Heretruth(g)=1 means that geneg is differentially expressed under the
treatment.) Repeat this using1/pval(g) for the score. You should get something like Figure 2. Turn inyour
plots and code. Notice that the area under the curve (AUC) is higher for the Bayes factor than for the p-value.

3. Use thetruth vector to sort the data, so that the unaffected genes come first, and then the affected (differ-
entially expressed) ones come last. Redo you plot from part 1, using the permuted indices. You should get
something like Figure 3. Turn in your plots and code. Now it isclear that, on average, the Bayes factor scoring
function more clearly separates the two groups than the pvalue. The benefits of the Bayesian approach are even
greater when one models dependence between the genes (see e.g., [FD06]), which is hard to do with t-tests.

4. Optional, for extra credit. The Bayesian t-test requires a prior (see Section 8 for details). Try changing
the prior (the third and fourth arguments tobayesianTtest ) and see what effect it has. Summarize your
conclusions.

1It should be obvious that p-values are very unintuitive quantities. For example, why should we care about the probability of getting a statistic
larger than what we observed? Seehttp://www.stat.duke.edu/ ˜ berger/p-values.html and [Goo99a, Goo99b] for more details
on p-values, and why you should avoid using them.
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Figure 1: Unsorted data. We have 2 replicates for each of the 100 genes.
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Figure 2: ROC curves
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Figure 3: Sorted data

8 Appendix: details on the Bayesian T test

(This section will not be on the exam.) Since we model each gene separately, we will drop theg subscript. The data is
D = (x1:nx

, y1:ny
) from two groups. The probability model is

p(D|M = 0) =

∫ ∫

[

nx
∏

r=1

N (xr |µ, σ2)

] [

ny
∏

r=1

N (yr|µ, σ2)

]

p(µ, σ2)dµdσ2 (14)

p(D|M = 1) =

∫

[

∫ nx
∏

r=1

N (xr |µx, σ2)p(µx|σ
2)dµx

] [

∫ ny
∏

r=1

N (yr|µ, σ2)p(µy|σ
2)dµy

]

p(σ2)dσ2 (15)

Note that model 0 requires the priorp(µ, σ2) and model 1 requires the priorp(µ1, µ2, σ
2). Following [GJLW05], we

will reparameterize the latter in terms ofµ = µ1 andδ = µ2 − µ1, since it isδ that we care about. Let us write

p(µ, δ, σ2) = p(µ, σ2)p(δ|µ, σ2) (16)

Then the marginal likelihood function becomes

p(D|M = 1) =

∫ ∫ ∫

p(µ, σ2)p(δ|µ, σ2)

[

nx
∏

r=1

N (xr |µ, σ2)

] [

ny
∏

r=1

N (yr|µ + δ, σ2)p(µy |σ
2)

]

dµdσ2dδ(17)

Sinceµ andσ2 are common to both models, we can safely give them an uninformative prior

p(µ, σ2) ∝ σ−2 (18)

Rather than putting a prior onδ, we will put a prior onδ/σ, the standardized effect size, since this is a more inter-
pretable quantity (dimensionless). Specifically, we will assume

p(δ/σ|σ, µ, M = 1) ∼ N (µδ, σ
2
δ ) (19)

If we do not know whether the difference will be positive or negative, we can setµδ = 0, and make the variance
suitably large (sayσ2

δ = 100) to reflect our relative ignorance.
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[GWJL05] proves that, under this model, the Bayes factor in favor of the null hypothesis is given by

BF (0, 1) =
p(D|M = 0)

p(D|M = 1)
=

Tν(t|0, 1)

Tν(t|nδµδ, 1 + nδσ2
δ )

(20)

ν = nx + ny − 2 (21)

nδ =
1

1/nx + 1/ny

(22)

t =
x − y

√

P

r(xr−x)2+
P

r(yr−y)2

nδ(nx+ny−2)

(23)

Heret is the standard two-samplet-statistic andTν(x|a, b) is a noncentralt distribution with locationa, scaleb and
dof ν. The provided functionbayesianTtest(x,y) computes this expression, assumingµδ = 0 andσ2

δ = 100.
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