
CS340 Fall 2007: Homework 1
Out 10 Sep, due 17 Sep

1 Bayes rule
After your yearly checkup, the doctor has bad news and good news. The bad news is that you tested positive for a
serious disease, and that the test is 99% accurate (i.e., the probability of testing positive given that you have the disease
is 0.99, as is the probability of tetsing negative given that you don’t have the disease). The good news is that this is a
rare diseas, striking only one in 10,000 people. What are the chances that you actually have the disease? (Show your
calculations as well as giving the final result.)

2 Bernoulli distributions
Let X ∈ {0, 1} be a binary random variable (e.g., a coin toss). Suppose p(X = 1) = θ. Then

p(x|θ) = Be(X|θ) = θx(1− θ)1−x (1)

is called a Bernoulli distribution. Prove the following facts:

E[X] = p(X = 1) = θ (2)
Var [X] = θ(1− θ) (3)

3 Conditional independence
1. Let H ∈ {1, . . . , K} be a discrete random variable, and let e1 and e2 be the observed values of two other random

variables E1 and E2. Suppose we wish to calculate the vector

~P (H|e1, e2) = (P (H = 1|e1, e2), . . . , P (H = K|e1, e2))

Which of the following sets of numbers are sufficient for the calculation?

(a) P (e1, e2), P (H), P (e1|H), P (e2|H)

(b) P (e1, e2), P (H), P (e1, e2|H)

(c) P (e1|H), P (e2|H), P (H)

2. Now suppose we now assume E1 ⊥ E2|H (i.e., E1 and E2 are conditionally independent given H). Which of
the above 3 sets are sufficent now?

Show your calculations as well as giving the final result. Hint: recall Bayes rule

P (H|~e) =
P (~e|H)P (H)

P (~e)
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K=1, error rate = 133/500 = 0.266

Figure 1: Data

4 kNN in Matlab
In this homework, we will learn how to plot data in Matlab, how to apply a kNN classifier, and how to use cross-
validation to select k.

1. The file knnClassify3CTrain.txt contains 200 rows and 3 columns (separated by a space). The first
2 columns contain the input features, the last column contains the class label. Read this file using dlmread
and create matrices Xtrain and ytrain. Similarly convert knnClassify3CTest.txt into Xtest and
ytest. Turn in your code.

2. Plot the training data so that points in class 1 are red +s’, and points in class 2 are blue *’s and points in class 3
are green x’s. The result should look like Figure 1(top left). Turn in your code and plot.

3. You are provided a function

[ypred] = knnClassify(Xtrain, ytrain, Xtest, K);

that classifies each row of Xtest using the K-nearest neighbor algorithm. Apply this function to the test set using
K = 1. Plot the test data with their predicted labels using the colors/ symbols above. Put a black circle around
any points that are incorrectly classified. The result should look like Figure 1(bottom right). How many errors
did your classifier make? Turn in your code and plot.

4. To visualize the prediction function ŷ = f(x), we can apply it to a dense grid of test points x. The provided
function makeGrid2d, which uses meshgrid, creates such a set of test points. Classify these test points and
plot the result as follows:

XtestGrid = makeGrid2d(Xtrain);
ypredGrid = knnClassify(Xtrain, ytrain, XtestGrid, K);
plotLabeledData(XtestGrid, ypredGrid) % you must implement this

Do this for K ∈ {1, 5, 10}. The results should look like Figure 2. Turn in your plots. (We see that as K
increases, the decision boundary tends towards a straight line, which is in fact optimal in this case (as we will
see later), since the data was generated from a mixture of Gaussians.)
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Figure 2: Predictive function for K = 1, K = 5 and K = 10

5. Now compute the error rate on the training and test sets for K ∈ {1, 2, . . . , 20}. Plot the error rate vs the
degrees of freedom, N/K. Use a log scale for the x-axis. The result should look like Figure 3(left). Also plot
the training and test error vs K. The result should look like Figure 3(right). What is the best K? Turn in your
code and plots.

6. In real applications, we don’t have access to a test set to choose K. Instead we will use 5-fold cross-validation
to pick K. You can use the provided function Kfold to compute the indices for each fold. Use the following
code fragment:

nfolds = 5;
[trainfolds, testfolds] = Kfold(Ntrain, nfolds);
Ks = [1:20];
for k=1:length(Ks)
K = Ks(k);
for i=1:nfolds
XtrainFold = Xtrain(trainfolds{i},:);
ytrainFold = ytrain(trainfolds{i});
XtestFold = Xtrain(testfolds{i},:);
ytestFold = ytrain(testfolds{i});
[ypred] = knnClassify(XtrainFold, ytrainFold, XtestFold, K);
errorRateFold(k,i) = ???

end
end

Plot the mean error rate vs K. Also plot the standard error, se = σ/
√

N , using the errorbar command. The
result should look like Figure 3(right). The key point is that the CV curve has the same shape as the test curve.
Turn in your code and plots.
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Figure 3: (a) Error vs dof. cf. Fig 2.4 of [HTF01]. (b) Error vs K. cf Fig 13.4 of [HTF01].
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