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CS340 Machine learning
Decision theory
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From beliefs to actions

• We have briefly discussed ways to compute p(y|x), 
where y represents the unknown state of nature (eg. 
does the patient have lung cancer, breast cancer or no 
cancer), and x are some observable features (eg., 
symptoms)

• We now discuss: what action a should we take (eg. 
surgery or no surgery)? 

• Define a loss function L(y,a)

• Pick the action with minimum expected loss (risk)

50500No surgery

1020100Surgery

BreastLungNone

a∗(x) = argmin
a

∑

y

p(y|x)L(y, a)

y

a
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Loss/ utility functions, policies

• In statistics, we use loss functions L. In economics, 
we use utility functions U. Clearly U=-L.

• The principle of maximum expected utility says the 
optimal (rational) action is

• A decision procedure δ(x) or policy π(x) is a 
mapping from X to A, which specifies which action 
to perform for every possible observed feature 
vector x.

a∗(x) = argmax
a

∑

y

p(y|x)U(y, a)
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Bayes decision rule

• The conditional risk (expected loss conditioned on 
x) is

• The optimal strategy (Bayes decision rule) is

• The Bayes risk is the expected performance of the 
optimal strategy

R(a|x) =
∑

y

p(y|x)L(y, a)

π(x) = argmin
a
R(a|x)

r =

∫
dx
∑

y

L(y, π(x))p(x, y)
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Sequential decision problems

• In general we need to reason about the 
consequences of our actions.

• This is beyond the scope of this class (see e.g. 
CS422). We focus on one-shot decision problems.

Yt−1 ×At−1 → Yt

World model

Yt → Xt

Observation model

Xt → At+1

Policy
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Classification problems

• In classification problems, the action space A is usually 
taken to be the same as the label space Y.

• We interpret the action a as our best guess about the 
true label y.  The loss matrix defines the penalties for 
getting the answer wrong.

10050Lung

01050Breast

1001000None

BreastLungNone

ŷ

y
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Binary classification problems

• Let Y=1 be ‘positive’ (eg cancer present) and Y=2 be 
‘negative’ (eg cancer absent).

• The loss/ cost matrix has 4 numbers:

True negativeFalse negative2

False positiveTrue positive1

21

ŷ

y

action

state

λ11 λ12

λ21 λ22
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Optimal strategy for binary classification

• We should pick class/ label/ action 1 if

where we have assumed λ21 (FN) >λ11 (TP)
• As we vary our loss function, we simply change the 

optimal threshold θ on the decision rule

R(α2|x) > R(α1|x)

λ21p(Y = 1|x) + λ22p(Y = 2|x) > λ11p(Y = 1|x) + λ12p(Y = 2|x)

(λ21 − λ11)p(Y = 1|x) > (λ12 − λ22)p(Y = 2|x)

p(Y = 1|x)

p(Y = 2|x)
>

λ12 − λ22
λ21 − λ11

π(x) = 1 iff
p(Y = 1|x)

p(Y = 2|x)
> θ
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0-1 loss

• If the loss function penalizes misclassification 
errors equally

• then we should pick the most probable class

• In general, for 0-1 loss and multiple classes,

012

101

21

ŷ

ystate

λ11 λ12

λ21 λ22

π(x) = 1 ⇐⇒
p(Y = 1|x)

p(Y = 2|x)
>

λ12 − λ22
λ21 − λ11

=
1− 0

1− 0
= 1

π(x) = argmax
j

p(Y = j|x)

action



10

Reject option

• Suppose we can choose between incurring loss λs if we 
make a misclassification (label substitution) error and 
loss λr if we declare the action “don’t know”

• In HW2, you will show that the optimal action is to pick 
“don’t know” if the most probable class is below a 
threshold 1-λr/λs

λ(αi|Y = j) =






0 if i = j and i, j ∈ {1, . . . , C}
λr if i = C + 1
λs otherwise

Bishop 1.26
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Discriminant functions

• The optimal strategy π(x) partitions X into decision 
regions Ri, defined by discriminant functions gi(x)

π(x) = argmax
i

gi(x)

Ri = {x : gi(x) = max
k

gk(x)}

In general

gi(x) = −R(a = i|x)

But for 0-1 loss we have

gi(x) = p(Y = i|x)

= log p(Y = i|x)

= log p(x|Y = i) + log p(Y = i)

Class prior merely shifts decision boundary by a constant
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Binary discriminant functions

• In the 2 class case, we define the discriminant in 
terms of the log-odds ratio

g(x) = g1(x)− g2(x)

= log p(Y = 1|x)− log p(Y = 2|x)

= log
p(Y = 1|x)

p(Y = 2|x)
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Do we need probabilistic classifiers?

• One popular approach to ML is to learn the 
classification function π(x) = f(x,w) directly, 
bypassing the need to estimate p(y|x)

• However, having access to p(y|x) is useful because
– Modular – no need to relearn if change L
– Can use reject option
– Can combine different p(y|x)’s
– Can compensate for different class priors p(y)
– Scientific discovery (inference) often involves examining 

typical samples from p(y|x), rather than decision making. 

w∗ = argmin
w

∑

n

L(yn, f(xn, w))
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ROC curves

• The optimal threshold for a binary detection 
problem depends on the loss function

• Low threshold will give rise to many false positives 
(Y=1) and high threshold to many false negatives.

• A receive operating characteristic (ROC) curves 
plots the true positive rate vs false positive rate as 
we vary θ

π(x) = 1 ⇐⇒
p(Y = 1|x)

p(Y = 2|x)
>
λ12 − λ22
λ21 − λ11
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Definitions

• Declare xn to be a positive if p(y=1|xn)>θ, otherwise 
declare it to be negative (y=2)

• Define the number of true positives as

• Similarly for FP, TN, FN – all functions of θ

ŷn = 1 ⇐⇒ p(y = 1|xn) > θ

TP =
∑

n

I(ŷn = 1 ∧ yn = 1)

P̂ = TP + FP

N̂ = FN + TN

P = TP + FN, N = FP + TN
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Performance measures

precision = positive
predictive value (PPV) = TP / P-hat

False neg rate = false rejection =
type II error rate  = FN / P = 1-TPR

Sensitivity = recall =
True pos rate = hit rate 
= TP / P = 1-FNR

False pos rate = false acceptance = 
= type I error rate = FP / N = 1-spec

Specificity = TN / N = 1-FPR 
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Performance measures

• EER- Equal error rate/ cross over error rate (false 
pos rate = false neg rate), smaller is better

• AUC - Area under curve, larger is better

• Accuracy = (TP+TN)/(P+N)



18

Precision-recall curves

• Useful when notion of “negative” (and hence FPR) 
is not defined

• Used to evaluate retrieval engines

• Recall = of those that exist, how many did you find?
• Precision = of those that you found, how many 

correct?

• F-score is harmonic mean F =
2

1/P + 1/R
=

2PR

R+ P
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ROC vs PR curves
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Loss functions for regression

• Regression means predicting         ; classification 
means predicting a discrete output

• The most common loss is squared error

• The residual sum of squares is  

y ∈ IR

y ∈ {1, 2, . . . , C}

L(y, f(x|θ)) = (y − f(x|θ))2

RSS(θ) =
∑

n

(yn − f(xn|θ))
2

HTF 2.10
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Minimizing squared error

• The expected loss is

• Let us discretize x and optimize this wrt fx

• Hence to minimize squared error, we should compute the 
posterior mean E[y|x]

EL =

∫ ∫
(y − f(x))2p(x, y)dxdy

∂

∂fx
E[L] =

∂

∂fx

∫
dy
∑

x

(y − fx)
2p(x, y)

=

∫
dy 2(y − fx)p(x, y)

= 0⇒

fxp(x) =

∫
dy y p(x, y)

fx = E[y|x]
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Robust loss functions

• Square error (L2) is sensitive to outliers

• It is common to use L1 instead.
• In general, Lp loss is defined as

Lp(y, ŷ) = |y − ŷ|p
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Minimizing robust loss functions

• For L2 loss, mean p(y|x)

• For L1 loss, median p(y|x)
• For L0 loss, mode p(y|x)


